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Domain formation anti elastic long-range interaction in ferroelectric perovskites
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On the basis of a Ginzburg-Landau model for ferroelectric perovskites, we calculate an effective free

energy for a polarization field by eliminating elastic fields which are coherently induced by inhomogene-
ous configurations of polarizations. %e obtain elastic long-range interaction between polarization fields

on an adiabatic approximation. Computer simulations of a two-dimensional time-dependent Ginzburg-
Landau (TDGL) model are performed by taking into account those long-range interactions. Charge-
neutral 90' twins and its tine evolution in the tetragonal phase are obtained with appropriate parameters
of a phenomenological free energy. Resultant domain patterns are in agreement with experimental ob-

servations of tetragonal BaTi03 ceramics. It is shown that anisotropic long-range interaction between

polarization fields caused by elastic effects plays a major role in determining both the domain morpholo-

gy and domain growth law in ferroelectric perovskites.

I. IN1'RODUCTION

There is considerable interest in ferroelectric transi-
tion, in which a long-wavelength instability creates a pat-
tern formation of domains and the domains coarsen and
grow to macroscopic size as time evolves. This process is
also technologically important, since applications of fer-
roelectric materials need to control macroscopic charac-
teristics, such as hysteresis loop, dielectric loss, aging
phenomena, etc. , which relate to the domain morphology
and domain motion. '

Twinning in ferroelectric single crystals may be elim-
inated by field-induced domain switching. A single crys-
tal has a free boundary condition, it need not have twins
in the thermodynamic limit from the mechanical point of
view. In a ceramic, a crystallite (one grain) is clamped by
its neighboring grains in all three dimensions. Numerous
polycrystalline ferroelectrics which undergo the phase
transition have a simple lamellar twinning or a complex
banded twin structure. ' Typical examples have been re-
ported for BaTi03 (Refs. 6—8}and Pb(Zr, Ti}03solid solu-
tions. ' The physical origin of these twinning struc-
tures, in a static sense, may be ascribed to the sum of
electrostatic energy of polarizations and elastic energy,
which is reduced at the expense of domain-wall energy in
order to minimize the total energy by the formation of
twins, although the formation process of these twins is
essentially nonequilibrium.

On the basis of studies using electron microscopy,
our present knowledge of ferroelectric domains in tetrag-
onal BaTi03 and Pb(Zr, Ti)03 can be summarized as fol-
lows. Two kinds of domains can exist, 90 domain and
180 domain. The predominant category of domains are
90' domains. The adjacent domains of this kind are twin
related. The twin boundary is the domain boundary and
the twin plates are ferroelectric domains. ' ' The twin
planes are I 110I and the polarization vectors in adjacent
domains are perpendicular to each other and adopt a
"head-to-tail" arrangement across a 90' boundary in or-
der to minimize the charge at the domain wall. These

twins are displacement twins, and are created due to
stress in the material during the paraelectric to ferroelec-
tric phase transition. ' On the other hand, the energy of
180' boundary walls is less sensitive to crystallographic
orientation. The electrostatic energy is minimized when
the polarization vectors of adjacent domains are adopted
such that div P=O at the domain boundary. This is
satisfied for 90' and 180 walls. There is no expense of
elastic energy for 180' walls. It can be said that 180'
walls form to minimize the electrostatic energy, while in
90' domains (twins), elastic energy minimization is
predominant. The experimentally observed preponder-
ance of 90' domains show that the effect of elastic strain
plays a major role in determining the domain morpholo-

gy in BaTi03 and Pb(Zr, Ti)03.
Cao and Cross' proposed a three-dimensional

Landau-Ginzburg model to describe the tetragonal twin
structures in ferroelectric perovskites, and they presented
quasi-one-dimensional analytic solutions for the space
profiles of the order parameter for a 180' twin and a
charge neutral 90' twin, though the solutions are static
for a single domain and they did not treat elastic long-
range interactions. From the view point of elastic effect,
the situation of ferroelectric 90' twins is analogous to
twins in ferroelastic materials which is caused by marten-
sitic transformation. ' ' The twin bands in martensites is
stabilized by a long-range elastic interaction between the
twin boundaries. ' Furthermore, with respect to elastic
effect on pattern formation in solids, it has been shown
that elastic long-range interactions determined both the
domain morphology and domain growth law of spinodal
decomposition with the coherence of the lattice based on
a time-dependent Ginzburg-Landau (TDGL) model. '

On the formation of ferroelectric domain structure the
same situation will be expected.

In the present work we study the dynamics of forma-
tion of ferroelectric domain structures with a first-order
phase transition on the basis of a TDGL model. We
derive an effective free energy for the local polarization
field by eliminating elastic fields which are coherently in-
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duced by polarization inhomogeneities in Secs. II-IV. A
general dynamic equation for the local polarization field
to describe the pattern formation of ferroelectric domain
structure is presented in Sec. V. Two-dimensional nu-
merical simulations are done in Sec. VI. Summary and
conclusions are included in Sec. VII.

II. MODEL FREE ENERGY

The total free energy of the system to describe fer-
roelectric phase transition is written by a sum of the

I

Landau-Devonshire free-energy density f, the elastic
free-energy density f,l, the electrostrictive free-energy
density f„andthe gradient free-energy density f:
S'[{P(r)],[ui(r)]]=f dr[fr, +f 1+f,+fg] (2.1)

where P(r) is the polarization field and u;. (r) is elastic
strain field. The Landau-Devonshire free-energy density
is expressed as

f ([P})=al(P„+P+P, }+all(P„+P+P, ) +a12(P„P+P„P,+P,P„)+alll(P„+P+P, )

+a112[P„"(P+P, )+P (P, +P„)+Pg (P„+P)]+a123P„PyPz,

where a1 is written as

al=(2eoC) '(T To)—
with Curie constant C and permittivity of vacuum eo. The elastic free-energy density of the system is given by

f„=2'C»(u, „+u +u )+C,2(u„„u+u~„u„+u„u„„)+2'C44(u„~+u,+u ),

(2.2)

(2.3)

(2.4)

where we use the notation of strain fields u, , =Bu;/Bx; and u,"=Bu, /Bx +Bu /Bx, (i';i j =1,2, 3), u (r) is the com-
ponent of elastic displacement, C; are the second-order elastic constants. The coupling term between the polarization
field and the strain field is written as

f, = —q»(u„„P„+uP +u„P,)—q, 2Iu,„(P+P, )+u „(P„+P,)+u (P„+P)] q~(u„—P„P+u, P P, +u,„P,P„)
6

p=1
Qpgp, (2.5}

where q;J are the electrostrictive coefFicients, and functions g are defined by

g 1 g (q1 1 q12 )P +q12P

g2 g (qll q12)P +q12P

g3 g (q 1 1 q12 }P,'+q12P

g4=gyz =q44PyPz ~

g5 gxz q44Px Pz

and

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e}

g6=gxy =q44PxPy .

We write the gradient free-energy density of the lowest order with cubic symmetry as

(2.6f}

1=—6 11

BP„
Bx

BP„BP,+ +

+~12 '
BP„
Bx

BP, 'BP, 'BP,
+ +

By By Bz Bz

BP„
Bx

1+ 2644'

' BP„BP„'' BP, BP,
' '

BP, BP„'
+ " + + + +

Bx Bz Bp Bx Bz

BPx
+2G

L

BP„' BP,+
Bx Bz

BP,
'

BP,+
By Bx

BP.
Bz

(2.7)
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We assume that the coefficient a& is temperature depen-
dent, and others are independent of temperature, which is
conventional in Landau theory.

III. FREE ENERGY IN THE STRESS-FREE STATE

We summarize simple expressions of the stress-free
state in order to clarify the effect of elastic long-range in-
teractions which is discussed in a later section. The local
stress field 0.

;~ is given by

u„„=Q„P„+Q12(P+P, ),
u =Q„P+Q12(P„+P,),
u„=Q11P,+Q12(P„+P},
u, =(q44/C44)P P, ,

u„,= (q44/C44 )P„P,,
u„=(q44/C44 )P„Py,

where we define new constants as follows:

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

(3.2f}

o„„=5F/5u„„=C„u„„+C,2(u„+u )
—g„„,

o =5F/5u =Cllu +C12(u„„+u„)—g

o „=5F/5u„=C» u„+C,2(u„„+u)
—g„,

oy, =5F/5uy, =C44uy, —g, ,

o„,=5F/5u„,=C44u„,—g„,,
o „~= 5F/5u„~=C44u„—g„

(3.1a)

(3.1b)

(3.1c)

(3.1d)

(3.le)

(3.1f)

Qll 3 (all /11 +2022/22) ~

Q12 3 (011/ll 022/22 } ~

411 q 11+2112

422 111 712

Ci, =Cli+2C12
—C1 1 C

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

(3.3f)

Putting stress field o;J =0 in the equilibrium, we have the
strain fields of the stress-free state

Substitution of Eqs. (3.2a) —(3.2f) into Eqs. (2.4) and (2.5)
leads to the e8'ective Landau-Devonshire free-energy den-

sity for the stress-free state

f,&=f +f,l+f, =a, (P, +P~+P, )+a'»(P„+P~+P,) +a', 2(P„P~+PP, +P,P„)+a„,(P„+P+P, )

+a1,2{Pg{P +Pg }+P (P„+P,)+Pg(P, +P }]+a123P„PP, , (3.4)

where efFective expansion coefficients a» and a', z are
written as g,j =(Cll —C12)

B
+C12

B

all all 6 (0 1 1 /11+ 2022 /22 )

a12 a12 2 (944 /C44 20 22 /22 )

(3.5a)

(3.5b)
+C44 g

j (Ai ) j
(4.2}

The expression of the e8'ective free-energy density of Eq.
(3.4) is used to describe the uniform solution of the
stress-free state in equilibrium.

IV. ELASTIC LONG-RANGE INTERACTIONS

B BF BF
0 ( 123)

Bxj BP; BP;
(4.1a)

The static equilibrium conditions can be derived by us-

ing variational method. ' Euler equations are written as

We define the Fourier transformation of the displacement
field u, (r)

u, (k) =(21r) ~ Idr u;(r)exp[ i k —r]

and function g; (r } is defined by (2.6a) —(2.6f)

gj(k)=(21r) Jdrg;. (r)exP[ ik r] . —

(4.3)

(4.4}

We obtain the mechanical equilibrium in the Fourier
space as

{ik ') g kjg,,(k)+[(C„—C,2
—2C44)k,-+C~]u, (k)

with P; =OP; /Bx. and

5F/5u; = —g Bo;./Bxj =0 (i,j =1,2, 3) .
1

(4.1b)

Equation (4.1b} describes the condition of mechanical
equilibrium. In this paper we do not try to solve Eq.
(4.1a) analytically in the equilibrium state, but we try to
obtain numerical solutions in the nonequilibrium state by
a TDGL equation later. Substitution of Eqs. (3.1a}—(3.1f)
into Eq. (4.1b} leads to

+(C,2+C44)k; g k.u,.(k}=0 (4.5)

u, (k)= ik '[6 (k)/—d, D(k)H(k—)k /d ],
where

(4.6)

with the directional cosines in the Fourier space

~, =kj/lkl (j =1,2, 3), which satisfy gk, =l. Solving

Eq. (4.5), we obtain the displacement field in the Fourier
space as follows:
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and

G, (k)=gk g,"(k),
J

H(k)=g k; G;(k)ld; =g k;k,g,,(k)/d;,
l t&J

D(k) =(C,2+C44)/[1+(C, 2+C~)y(k)],

y(k)=gk, /d
J

(4.7) d =C~[1+gkq] (4.11)

(4 8) with

(4.9) g=(C„—C,2
—2Cm )/C (4.12)

(4.10) By a lengthy algebra, we have the elastic free energy in-

cluding contributions from the electrostrictive effect in

the Fourier representation:

F,1+F,= r,1+
= —() /2) fdk[QG/(k)G/( —k)/dj —D(k)H(k)H( —k)]

1

= —(1/2)XX f dkg, (k)g~(k)g ( —k) .
p o

The interaction matrix element B (k) is given by

Bp (k)=P D(k—)8 8

where the matrix P is written as
~'

(4.13)

(4.14)

k ld„
k /dy

0

k,k„/d„0
k„k/d„k„ky/d

k, /d,

k, k, ld,

k, k„/d,

0

k k, /dy

k, k, ld,

ld, +k 2/d

k„k,/d,

k„k,ld,

k,k„ld„
0

k„k,ld,

k„k,ld,

k „/dg+0, /d„
kpkg /d„

k„k„ld„
k, k, /d,

0

k, k, ld,

k, k, ld„
k„/d +kp/d„

(4.15)

and

H, =k„/d, ,

8 =k„/d
83=k, /d, ,

8~=k k, (1/d +1/d, ),
83=k„k,(1/d„+1/d, ),
86=k„k(1/d„+1/dp) .

(4.16a)

(4.16b}

(4.16c)

(4.16&1)

(4.16e)

(4.16f}

3

App(k)=q22B (k)+2q12&22

3

+q12 gg Bp~(k) (p=1,2, 3),
p, o=1

A, 2(k)= A2, (k)
3

=q 22B]2(k)—q12$22 g Bp3(k)
p=l

3

+q„q,2 gg Bp (k),
p, 0=1

(4.19)

(4.20)

Using the inverse Fourier transformation, we have the
long-range interaction between polarization fields elim-
inating the elastic field:

A 13(k)= A3, (k)
3

q 22B 13(k } ]q22q2 g Bp2 (

F~r =Fe1++e
6= —2 'f f dr]dr2+g 4 (r2 —r, )Y (r, )Y (r2),

pko= 1

(4.17}

3

+q]]q]2 XXB
p, cr =1

A23(k)= A32(k)

p=1

(4.21)

where

(R)=(2m ) f dk A (k)exp[ —ik R] (4.18)

=q 22B23(k)—q]2/22 g Bp, (k)
p=1

3

+q»q]2 g+ Bp (k),
p, o=1

(4.22)



5842 SHINJI NAMBU AND DJUNIADI A. SAGALA 50

A 1 (k) q22q4481

3

+q, 2q44 QB (k) (o =4, 5, 6),
p=1

A2cr(k} q22q4482cr(k}

+q, 2q44 QB (k) (o =4, 5, 6),
p=l

A3~(k) =q22q4483o(k)
3

+q12q44 g 8 (k) (cr =4, 5, 6),
p=l

Ap (k) =q448 (k) (p, o =4, 5,6),
and Y (r) is the component of the vector Y.

(4.23)

(4.24)

(4.25)

(4.26)

Y(r)'=[P„(r),P (r),P,(r},P (r)

XP,(r},P„(r)P,(r), P„(r)P(r)] . (4.27)

F= r,~+ g

2 rl r2 %
p

I'2 I 1

where

X Yz(r1) Y (r2), (4.28)

The function A (k) in the Fourier space depends on
only the direction k=k/IkI. Finally, we obtain the real-
space representation of the total free energy in a compact
form as

f,z([P] ) =a,(P„+P+P, )+a'1'1(P +P~+P, ) +a'1'2(P„P +P~P, +P,P„)+a»1(P„+P+P, )

+a„[P„(P+P, )+P (P, +P„)+P,(P„+P))+a, P„PP, (4.29)

with

a", , =a, 1
—6 '(v11q 1, +2v22q 22),

a1'2=a12 2 (v44q44 2v22q 22),

and

(4.30a)

(4.30b)

3

u (r)=E (r)+ f dr'[&22 g g (r' —r)Y (r')

3 3

+q, 2 g g (r' —r) g Y„(r')

q1~ (R)=(2n ) f dk[ A
p (k) —( A p~(k) &,„]

Xexp[ —ik R] . (4.31)

+q~ g f (r' —r) Y (r')],
o=4

(4.34)

The angle average ( &,
„

is used to avoid the diver-

gence at R=O. New parameters are given by
where

and

V» =V»+2V12,

U22 V» U12

(4.32a)

(4.32b)

(4.32d)

=(8,(k) &,„, (4.32c)

V12
= (812(k) &,„,

v =(8 (k)&,„. (4.32e)

Since A (k) depends on only the direction k, the
function 1P~ (R) has the form

and

E1(r}=Q11P„(r)+Q12 [Py(r} +P, (r) ]

E2(r) =Q'»P (r) +Q', 2 [P,(r) +P, (r) ],
E3(r)=Q'»P, (r) +Q', 2[P„(r)+P~(r) ],
E4(r) =Q44P (r)P, (r),
E~(r) =Q44P, (r)P, (r),
E6(r)=Q44P„(r}P(r},

(4.35a)

(4.35b)

(4.35c}

(4.35d)

(4.35e)

(4.35f)

q, (R)=IRI dy(RzIRI), (4.33)
(R)=(2m) fdk[8,.(k) —(8,.(k) &,„]

Xexp[ —ik R], (4.36)
where d is the dimensionality. The interaction term in
the right-hand side of Eq. (4.28) is the anisotropic long-
range interaction determined by the elastic and the elec-
trostrictive property of the materials, that is, the phe-
nomenological parameters included in 1p (8 ) are C;
andq;.

It should be noted that the eft'ective free-energy density
of Eq. (4.29) has the same form as Eq. (3.4} by replacing
a» a", , and a', 2 ~",2, namely C;~ '~v, j-. The local
strain field u ( r ) (p = 1 —6) can be given by

Q'» =3 '( v „q1,+ 2v22q22 )

Q12 ( 1 1qll V22022)

I
Q44 =

V44q44

(4.37a)

(4.37b}

(4.37c)

Concerning the local strain field, the compatibility rela-
tions always hold since we obtained the local displace-
ment field and then calculated the strain field and the
stress field.
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V. TIME-DEPENDENT GINZBURG-LANDAU EQUATION the following TDGL equation:

The time evolution of the nonconserved order parame-
ter P(r, t ) is determined by the time-dependent
Ginzburg-Landau equation. Derivation of the dynamic
equation which describes pattern formation of the fer-
roelectric domain structure, is based on the assumption
that the relaxation of the polarization field P(r, t ) is much
"slower" compared to the elastic field at long wave-

lengths and the elastic field instantaneously relaxes to ad-
just to a given polarization configuration. The free-

energy functional of Eq. (4.28) derived by eliminating
elastic fields is used to obtain the dynamic equation. This
is the adiabatic approximation. As was noted by Gunton,
San Miguel, and Sahni, the free-energy functional in the
TDGL models is the coarse-grained free-energy function-
al, and the field variable is semimacroscopic variable. In
this sense, the polarization field P(r, t) in this paper
should be regarded as semimacroscopic variable. In fact,
the time scale of domain formation in BaTi03 is much
slower (order of a minute or hour) compared to the mi-

croscopic relaxation process. '

The dynamic equation of polarization field is given by
I

—P, (r, t)= —I +g, (r, t),a 5p
at ' ' 5P (r)

(5.1)

(5.2a)

(5.2b)

The functional derivative leads to the following equation:

——P(r, t)=I AP(r, t)-g(r, t},a
at

where the matrix A is given by

(5.3}

A= A

A„„
A„
A,

(5.4)

with

where F is the total free-energy functional given by Eq.
(4.28} and I is a kinetic coefficient, and g;(r, t) is the
Gaussian random force.

A,„=2ai+4ai'iP(r) +2ai'zIP (r) +P, (r) j+6aiiiP„(r) +4alizP„(r) [P (r) +P, (r) j+2ai&zIP~(r) +P,(r) j

a' a' az+2a„,P (r)'P, (r)' —G„,—(G44+G44), +
ax ayz az

6
r' 2 %'1 r' —r Y r' (5.5)

2

+2a,z3P„(r)P, (r) —G„2 2 a

A„=2a,+4a", ,P(r) +2a",zIP, (r) +P (r) j+6a»,P, (r) +4a»zP, (r) tP„(r)+P (r) j+2a»zIP„(r)"+P(r) j

A =2a, +4a", ,P(r) +2aI'zIP„(r) +P, (r) j+6a»,P (r) +4a»zP„(r) IP„(r)+P,(r)zj+2a„zIP„(r)4+P,(r)4j

—(G44+G44) + —f dr' 2 g tz (r' —r)Y (r')
y ax az cr =1

(5.6}

a' az az
+2a,zzP„(r)P (r) —G„—(644+644) ~ +

azz ax ay

6
r' 2 43 r' —r Y r' (5.7)

az 6

A~, = —(G,z+G44 —G44) —f dr' g t4 (r' —r)Y (r')
yaz o=1

(5.8}

az 6

A„,= —(G,z+G44 —G44) —f dr' g 46 (r' —r)Y (r')
ax az o=1

(5.9)

g2 6A„=—{Giz+G44 —G44) —f dr' g 46 (r' —r)Y {r')~ oxey a=1
(5.10)

The effect of the elastic strain on the formation of the fer-
roelectric domain structure is so complex that computer
simulation plays a major role, although the three-
dimensional simulation including the long-range interac-
tions is difficult for CPU time at the present stage. We
restrict ourselves to the use of a two-dimensional model,
which may not always describe the real three-dimensional
domain patterns, in particular, the structure of domains
observed in the rhombohedral phase of the Pb(zr, Ti)03
system, ' which is essentially a three dimensional case.

VI. TWO-DIMENSIONAL TDGL MODEL

~= [ 12a, lrG„j'".,
~= I2a, Irt,
P =P/P, ,

(6.1)

(6.2)

(6.3)

The two-dimensional version of Eq. (5.3) with the po-
larization P=(P„,P ) in (x,y) space can be written in a
simpler fashion by suitable rescaling of the fields.
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y ) =2a)')P,'ll a) I,
Yz 3af j jP,'/la j I

w =t P /I2a I,
g~=«~+G~)/Gii

g14 ( lz 44 44 ) IG11

(6 4)

(6.5)

(6.6)

(6.7)

(6.8)

where P, is the magnitude of the spontaneous polariza-
tion at a given temperature. %'e neglect the noise term,

l

P(F, r) =AP(F, ~),
B7

(6.9}

A„
A= A„„

where

A„
(6.10)

since, at low temperatures, the role of the noise term is
thought to be very small and does not a6ect the late
stages of the time evolution. The resulting dimension-
less equation is

A = —1+y,P(F) +2 'y, (aI'z/aI', )PY(F) +yzP, (F) +3 'yz(a„z/a„,)[2P„(F)P (F) +P (F) ]

—(Bz/Bx z) —g~(B /By )
—2 fdF'[w„(R)P„(F')+w, z(R)P (F') +w, 6(R)P„(F')P(F')],

A = —1+y)P(F) +2 'Y, (aI'z/aI'))P„(F) +yzP (F) +3 'yz(at)z/at)t)[2P„(F) P (F) +P„(F)]
—(B /By ) —g44(B /Bx )

—2 f dF'[w&z(R)P, (F') +wzz(R)P~(F') +wz6(R)P„(F')P~(F')],

A„=—
g&&(B IBXBy ) —fdF'[w66(R)P„(F')P ( F') + w& 6(R)P„(F') +w 6(R)P (F') ]

(6.11)

(6.12)

(6.13)

with R=K —F. Simulations will be done at low tempera-
tures suSciently below the transition temperature, we as-
sumed a& = —Ia, I.

In order to clarify the elastic long-range interaction in
real space and to carry out the numerical simulation for a
two-dimensional space, the anisotropic long-range in-
teraction w (R) should be obtained as a function of
IRI and directional cosines x =R„/IRI and

y =R~/IRI (x +y =1) explicitly. In general, we should
determine the habit plane in k space by the diagonaliza-
tion of interaction matrix 3 (k} in Eq. (4.18), that is,
the direction of the energy minimlum with respect to the
elastic free energy including the electrostrictive term. As
was noted in the introduction, the twin plates are [110]
in the tetragonal BaTi03 and Pb(Zr, Ti)03. In the case of
the present two-dimensional model, for simplicity, we use
Taylor's expansion of A with respect to the [11]direc-
tion in k space up to fourth order of directional cosines.
The inverse Fourier transformation ' ' and lengthy
algebra yields the elastic long-range interactions w (R)
in the form:

w»(R)=wp(1 —2x )/R z+w, (1/8 —x ~y z)/R z,

(6.14}

wp =J(2—g)(q» —q, z )/2~C'p,

w, =J(2/m )[—(qzz/Cp)12'(1+2C', /pC'zz)

+(2—q)zC, /C»]

(6.20a)

(6.20b)

(6.20c)

(6.20d)

(6.20e)

(6.201}

with

J=Pz/I2a, I,
q=(C„—C, z

—2C44)/(C&i —Clz),

0p C11+C)2+2C44

C, =C,z+C

(6.21)

(6.22)

(6.23}

(6.24)

WI1'q 12~22 I0 ]

w, =J(2/~)[qzz(C, /C'pC'zz)I4q(1 —C, /Cp)+(2 —ri) ]

4W 1 1 q 12 22 Ip ]

w3=J(2/77)q44(q/, +q/z)/Cp,

w$ =J(2/7r)[ q44qzz('/+4'/ /Czz )ICp ]

w&
=J(2/n. )[q44C'zz' [4rl C'zz/Cp+16C

&
/Cp

+4g(1 —40 ) /C p ) ] ],

wzz(R) =wp(1 —2y )/R +w, (l /8 —x ~y )/R z,

w&z(R)=wz(1/8 —x y )/R

w&6(R)= —w, xy/R —w4xy(1 —2x )/R z,

w„(R.)= —w, x y/R ' —w,xy(1 —2y ')/R ',
w66(R) =w~(1/8 —x y )/R

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

TABLE I. Values of parameters used in the calculation.

R14
1.90

g44
1.00

$1—1.18
r2

2.50

lt II
Q )2/CX I I—20.0

+112I +111
5.10

All parameters appearing in Eqs. (6.9)—(6.19) are dimen-
sionless and order of unity. We chose the values of phe-
nomenological parameters g &4 and g44 so as to appear 90
domain, and others were roughly estimated from the ex-

where constant parameters w (j=0, 1, . . . , 5) are given

by

Mo

0.14
l81

—4.07
N2

4.13
N3

0.04
W4—0.25

Ng

0.38
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perimental data of BaTi03 (Ref. 30} (Table I}, but we

didn't fit precisely these parameters to each physical
quantities as has been done in the equilibrium theory. '

Vfe wi11 give precise simulations for BaTi03 in a separate
paper.

Numerically solving Eq. (6.9} is performed by a finite
difference scheme for both the spatial and temporal
derivatives. The spatial discretization is achieved by re-

placing the continuous space of position vector f=(X,g)
by a square lattice with %=I. sites and lattice spacing
b,x. It is necessary to choose the appropriate values of
hx and the time step hv for the stability of the numerical
integration. We use in our simulation L = 128, hx =0.3,
and 6~=0.005 with cyclic boundary condition. The ini-

tial configuration of the local polarization vector P(F, O)

is chosen to be uniformly distributed, where the mean
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FIG. 1. Time evolution of 90 twin structure in a two-dimensional model including the elastic long-range interaction. The max-

imum value of normalized spontaneous polarization is 0.927. The numbers below the figures are the time steps after the quench.
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value is zero vector and the standard deviation is 0.01 for
P„and P . The square area of 30X30 lattice points
around the position F is taken into account in the integral
of the long-range interactions w (F' —F) with respect to
F' in Eqs. (6.11)—(6.13).

Figure 1 shows the time evolution of 90' domain struc-
ture along the [11] direction calculated at various time
steps. In order to clarify the effect of elastic long-range

interactions, we show the results of the simulation using
the same values of parameters only without the elastic
long-range interactions (wo =w, =wz =w3 =w4 =w~ =0)
in Fig. 2, which corresponds to the stress-free state. In
an early stage of domain formation (1000 and 2000 steps),
the gradient energy terms is dominant to form 90'
domain patterns. Similar patterns were obtained at 1000
and 2000 steps in Figs. 1 and 2.
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FIG. 2. Time evolution of 90 twin structure in a two-dimensional model without elastic long-range interaction, which corresponds
to the case of stress free state. The maximum value of normalized spontaneous polarization is 1.00. The numbers below the figures
are the time steps after the quench.
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On the contrary, in the late stage, the efiect of elastic
long-range interactions appears as shown in Figs. 1(c) and
1(d). The growth of the width of domains is drastically
slowed down due to the presence of the elastic constraint.
Because the elastic long-range interaction in Eq. (4.28) is
a fourth-order interaction with respect to the polarization
vector, so that the elect of elastic constraint appears
after that the magnitude of spontaneous polarization ap-
proaches its saturated value, this is apparently a non-
linear efFect in the formation of twin structures. In fact,
the case of the stress-free state (Fig. 2), the continuous
growth of domain patterns with similar figures can be
seen. The maximum values of the normalized spontane-
ous polarization at each lattice site in the late stage are
0.927 in the case including elastic long-range interaction
and 1.00 in the case without it, where we chose the values
of parameters so that the normalized polarization satu-
rates to unity in the case without elastic long-range in-

teraction.
The domain structure obtained in Fig. 1 is simple

lamellar twinning. There are two typical patterns of 90'
twins observed in a ceramic crystallite (single grain), her-
ringbone and simple lamellar patterns. Arlt showed that
a crystallite (grain) clamped in two dimensions, such as
the surface of polycrystal or thin layer, has a simple
lamellar twinning in the tetragonal BaTi03. Our result,
based on the two-dimensional model, quite reasonably ex-
plains, the appearance of lamellar twinning in a two-
dimensional clamped surface, and the reason why the
domain growth of 90' twins is frozen as observed in
ceramics compared to single crystals.

VII. SUMMARY AND CONCLUSIQN

Theory and simulation were presented to describe the
efFect of e1astic strain on the tetragona1 twin structures of
ferroelectric perovskites. The effective free energy in-
cluding elastic long-range interactions was derived for
polarization fields which is coherently induced by polar-
ization inhomogeneities. Computer simulations for the
two-dimensional space showed that the elastic long-range
interactions between polarization fields give the lamellar
twin structure of 90' domain and the frozen patterns ex-
perimentally observed in the tetragonal BaTi03 ceramics.
It is interesting that numerical simulations based on the
present method can be applicable to the study of the
kinetics of domain-wall motion and ferroelectric charac-
teristics, such as hysteresis loop, etc., which have long
been unsolved problems in the microscopic level due to
their complexity, although the technological importance
is increasing more and more recently. Theory presented
here and computer simulations by an extensive use of the
resources of both memory and CPU of a powerful super-
computer will give a three-dimensional solution of the
formation of ferroelectric domain structure and ferroelec-
tric characteristics due to its domain motion.
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