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Using a finite-frequency recursive Green's-function technique, we calculate the dynamic magnetoconduc-

tance fluctuations and oscillations in disordered mesoscopic normal-metal systems, incorporating interparticle

Coulomb interactions within a self-consistent potential method. In a disorderd metal wire, we observe ergodic

behavior in the dynamic conductance fluctuations. At low ao, the real part of the conductance fluctuations is

essentially given by the dc universal conductance fluctuations while the imaginary part increases linearly from

zero, but for co greater than the Thouless energy and temperature, the fluctuations decrease as eo
' . Similar

frequency-dependent behavior is found for the Aharonov-Bohm oscillations in a metal ring. However, the

Al tshuler-Aronov-Spivak oscillations, which predominate at high temperatures or in rings with many chan-

nels, are strongly suppressed at high frequencies, leading to interesting crossover effects in the cu dependence

of the magnetoconductance oscillations.

Quantum transport in inesoscopic normal-metal systems
has been extensively studied both experimentally and theo-

retically in the last decade. ' ' Most of the work has focused
on interference effects in static (to=0) transport properties,
such as universal conductance fluctuations (UCF) of order

e /h in wires and hc/e-periodic Aharonov-Bohm oscilla-
tions in mesoscopic rings. Recently, the pioneering experi-
rnent of Pieper and Price" on the frequency dependence of
the Aharonov-Bohm effect in Ag rings has stimulated re-
newed interest in the dynamic response of mesoscopic sys-
tems. Simultaneously, the development of a finite-frequency
Landauer-Buttiker formula ' and other theoretical
techniques' makes possible a more complete theoretical de-
scription of ac transport in mesoscopic systems. The dy-
namic response of mesoscopic systems is of fundamental in-

terest because the frequency introduces another energy scale
into the problem which plays a role quite different from tem-

perature, and there are possible device applications, such as a
mesoscopic photovoltaic effect device. '

In this paper, we present a theoretical investigation of
dynamic magnetoconductance fluctuations and oscillations in
disordered mesoscopic normal-metal systems, using the re-
cently developed finite-frequency Landauer-Biittiker
formalism. ' ' An advantage of this formalism is that the
qualitative frequency dependence can be understood by
simple arguments. Furthermore, this method can take into
account the internal potential distribution in the sample due
to the dynamic response of the system by an approximate
self-consistent potential method. ' Using this technique, we
find that the corrections to the conductance due to charging
effects are of order e /h in diffusive mesoscopic conductors
in the frequency range of interest, indicating the importance
of interactions for the dynamic response.

We consider the diffusive but phase-coherent transport re-

gime, where the elastic mean-free path is less than the
sample length L, but the temperature T is low enough so that
the inelastic mean-free path is much larger than L. There are
then three important energy scales in the problem: k&T,
fi, to, and the Thouless energy E, . E, is defined as the en-

ergy change necessary for electrons traversing the sample to
pick up a phase difference of order unity. For diffusive trans-

port, where the typical path length S-uFL /D,

E,=huF/S=hD/L =g,bE,

where D is the diffusion constant, bE is the level spacing at

EF, and g, is the dc conductance (in units of e /h). Inter-
esting effects occur due to the interplay of these three energy
scales.

We find the following results: (I) In disordered wires at
T=O, both the real and (for sufficiently large frequencies)
imaginary parts of the conductance fluctuations bg(co) show
UCF for co&E„and both fall as co

' for co&&E, . These
fluctuations are ergodic over all frequencies investigated. (2)
In disordered metal rings, the hc/e Aharonov-Bohm (AB)
conductance oscillations with respect to magnetic field per-
sist to high frequencies, and have a frequency dependence
similar to that of the conductance fluctuations. The hc/2e
Altshuler-Aronov-Spivak (AAS) oscillations, which pre-
dominate at high temperatures or in samples with many
channels, show a more rapid decrease with frequency; as a
result, the magnetoconductance oscillations may cross over
from AAS to AB behavior when the frequency is increased.

Following conventional treatments, ' we consider the me-
soscopic sample as a disordered region which scatters elec-
trons incident from semi-infinite ordered regions (perfect
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FIG. 1. Dynamic conductance of a 100X4 wire vs frequency
co. Both real (solid line for C=ac, dashed-dot line for C=O) and

imaginary (dashed line for C= ~, dotted line for C= 0) parts of the

conductance are shown. The disorder amplitude is W= 1, and E, is
estimated to be 0.03.

"leads" ). Using the recently developed finite-frequency
Landauer-Buttiker formula, the conductance matrix for a
multiprobe system of noninteracting electrons, g p(co)
= (BI (co))/bU&(co), where (I ) is the current in lead cr

and Up is the potential in lead P, may be written as' '

teracting electrons using Eqs. (2) and (3). This conductance
is not current conserving and will be compared with a
charge- and current-conserving answer. Figure 1 illustrates
the generic frequency dependence of a diffusive metallic
conductor: ~im[g]~ increases linearly for small frequencies,
becoming comparable to e /h when co-E, ; Re[g] exhibits
a weak-localization suppression at low frequencies; both ex-
hibit random fluctuations of order e /h on a frequency scale
-E, , which decrease in amplitude with increasing fre-
quency.

The dynamic response of an interacting mesoscopic sys-
tem depends in detail on the inhomogeneities in the local
electric field, which must be determined self-consistently
from the external potentials and the dynamic charge distribu-
tion in the sample, in contrast to the dc case, where inhomo-
geneities in the local electric field are irrelevant in linear
response. To lowest order, the self-consistent potential due to
the interactions in the system can be approximated by a con-
stant induced potential resulting from the charge pileup in

the system, Uo" =go/C, where C is the effective capaci-
tance of the mesoscopic wire or ring. Within this approxima-
tion, the response of the interacting system g &

is charge and
current conserving and can be determined from the admit-
tances g & for the noninteracting system as'

e2
g &(co)= — dETr{1 8

/3 stp(E)s p(E+—hco))t

f(E) f(E+ vari co—)
X (2)

g'.p(~) =g.p(~)

(i/ c)g g r(co)g gsp(co)
y

"
8

I+(i/coC)g g s(co)

(4)

r „=i(v v„)"G+„(0,0) —8' „,
t „=i(v v„)'t G+„(0, L)e' ~,

(3a)

(3b)

where m, n=1,2, . . . ,M is the channel number, U is the
group velocity for channel m, and k„ is the wave vector for
channel n. In Fig. 1, we show the real (solid curve) and
imaginary (dashed curve) parts of the dynamic conductance
of a 100X4 wire versus frequency co, calculated for nonin-

where s &(E) is the scattering matrix for electrons of energy
E, and the trace over channels includes spin. Thus the dy-
namic conductance is related to the correlation of transmis-
sion (or reflection) amplitudes at energies differing by fico
For a rnesoscopic conductor with two leads (i.e., cr, P= 1,2)
there are in general three independent ac response
functions we shall consider the current response in lead 1
due to an ac potential difference applied symmetrically to
reservoirs 1 and 2, which for noninteracting electrons is
given by g(co) = [g»(co) —g&2(co)]/2.

We simulate the mesoscopic system using a tight-binding
model on a square lattice, with unit nearest-neighbor hopping
matrix element. The disorder is modeled by an on-site ran-
dom potential ranging from —W/2 to W/2. A magnetic field
modifies the hopping term by a Peierls phase factor. The
retarded single particle Green's function G+ is calculated
using fhe recursive Green's-function algorithm. ' For an
LM system (length L, width M), the transmission and re-
flection coefficients t=—s&2 and r=—s» are determined using
the following relations:

In Fig. 1, the dynamic conductance of the interacting system
(C=0) is compared to that of the noninteracting system
(C=oc). As is evident from Fig. 1, the corrections to the
dynamic conductance due to the self-consistent potential are
proportional to co for small frequencies, and are largest in
magnitude when co-E, , where the fluctuations away from
zero of the sums over admittances in the second term of Eq.
(4) are maximal. The relevant capacitance scale determining
the crossover from strongly to weakly interacting behavior is
set by the dwell time r of an electron in the system if
RC&& r, interactions can be neglected; if RC&& r, interactions
enforce charge neutrality. For a typical diffusive mesoscopic
conductor, such as the Ag ring of Ref. 11, the RC time is
estimated to be several orders of magnitude smaller than the
dwell time -h/E, , so effectively C=O. As shown in Fig. 1,
the correction to the conductance due to self-consistent
charging effects can be considerable (of order e /h). How-
ever, we find no significant change in the amplitude of the
conductance fluctuations or oscillations when the capacitive
effect is incorporated. In the following, averaged quantities
shown are for C =~, while results for a single sample use
C=O.

Conductance fluctuations similar to those shown as a
function of co in Fig. 1 are obtained when the other param-
eters of the system are varied. In Fig. 2, we show the dy-
namic magnetoconductance fluctuations in disordered meso-
scopic wires at T=O calculated by averaging over (a) an
ensemble of samples, (b) magnetic field, and (c) chemical
potential. Regardless of the averaging method, the results
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FIG. 3. The Aharonov-Bohm effect for a 40X4 ring at 6nite
frequency (co =0.02-E,). Here the real part (solid line) is offset by
—4e2/h to compare with the imaginary part (dotted line). The field
in the annulus is 25% of that in the hole.

FIG. 2. Frequency dependence of the conductance fluctuations
for 100X8 wires. Both real (filled symbols connected by solid line)
and imaginary (open symbols connected by dotted line) are shown.

Cirles are for 100 sample ensemble average; squares are for mag-
netic field average (a= 0-0.1); triangles are for chemical potential

avegrage (p, = —0.4—0.4). The dashed line indicates the co "2 be-
havior. W=1 and E,=0.03.

obtained were equivalent within our statistical uncertainty
(see Fig. 2), demonstrating the ergodicity of the system. At
low frequencies, co&&E, , the root mean square value of the
real part of the conductance Iluctuations, Re[kg], is given

by the UCF value (=0.6e /h), independent of sample size
(as long as the sample is in the quantum coherent transport
regime, as we have assumed), while 1m[kg] increases lin-

early and saturates at the same universal value. In the high
frequency limit, ui&)E, , b,g- ui ", as shown in Fig. 2. The
ui dependence of hg may be understood by simple qualita-
tive arguments based on Eq. (2):g p is real for co= 0, but the

product st &(E)s /r(E+ 6 ru) (for a single channel) acquires a
complex phase of order unity when foui E, , so Re-[hg] and

Im[hg] become comparable at that frequency. For
fiui&)E, , the product st p(E)s p(E+ foui) has an arbitrary
complex phase which varies by an amount of order unity
when F.~E+F, Standard random walk arguments applied
to the integral in Eq. (2), whose range is roughly from
p, —u~ to p, , then give Re[A,g], 1m[kg]-(E, /ui)'~z for
fi ru)&E, , kryo T.

We now consider dynamic magnetotransport in meso-
scopic rings. In the dc case, it is well known that a magnetic
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FIG. 4. Frequency dependence of magnetoconductance oscilla-
tion amplitudes in mesoscopic rings. W=1 and E,=0.01. The
circle is for the AB oscillations, triangle for the AAS oscillations;
the solid symbol is for the real part, open symbol for the imaginary
part. (a) Zero temperature, 20 sample ensemble average. The
dashed line indicates co ' behavior; (b) T=0.05, single sample,
C=0.

Aux placed through a mesoscopic ring generates periodic
conductance oscillations with flux period bc/e [the
Aharonov-Bohm (AB) effect], and hc/2e [the Al'tshuler-
Aronov-Spivak (AAS) effect]. Both have been observed ex-
perimentally in mesoscopic rings. ' ' In Fig. 3, we show the
calculated conductance oscillations in a mesoscopic ring of
circumference 80 with four transverse channels (denoted
40X4) at ui E, and T=-O. For these parameters, the real
and imaginary parts of the AB amplitude are comparable,
and much greater than the AAS amplitude. The root mean
square AB and AAS amplitudes for an ensemble of 20
100X4 rings at T=O are shown in Fig. 4(a). The frequency
dependence of the AB amplitude is similar to that of the
conductance fluctuations (Fig. 2), while the AAS amplitude
is smaller, and has a more rapid decrease with frequency.
Qualitatively, this ui dependence may be understood from
Eq. (2): The AB effect comes from the quantum interference
of electrons going through opposite branches of the ring;
since these paths have a random phase difference in zero
field even at co=0, it is not important that s & and s~& are
evaluated at different energies in Eq. (2) (except that this
makes the AB amplitude complex), and the frequency depen-
dence of the AB effect is therefore similar to that of the
conductance fluctuations. However, the AAS effect comes
from the interference of time-reversed paths encircling the
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flux which have equal phases in zero field, so that the AAS
effect is insensitive to energy averaging at so=0. But the
finite frequency electric field breaks the time-reversal sym-
metry of the paths contributing to the AAS effect, leading to
an cu

'~ exp[ —( ro/E, ) ~ ] suppression of AAS oscillations at
high frequencies. The different frequency dependence of the
AB and AAS amplitudes is particularly evident in Fig. 4(b),
which is for a single sample at T= 0.05&E, . The finite tem-
perature suppresses the AB effect by energy averaging, but
not the AAS effect, so that the two are comparable at
co=0. As the frequency is increased, the AAS effect is
strongly suppressed, but the AB effect is not expected to be
suppressed until ro) kaT, and appears to be constant (up to
fluctuations) in Fig. 4(b). This crossover from AAS oscilla-
tions to AB oscillations demonstrates the qualitatively differ-
ent role of temperature and frequency in quantum transport
in mesoscopic systems. We point out that the ~ depen-
dence of the AB ef'feet shown in Fig. 4(b) is consistent with
the experimental results in Ref. 11.However, we find that the
smallness of 1m[A] relative to Re[A] at frequencies greater
than E, is sample specific, and does not persist in the en-
semble average [Fig. 4(a)].

In summary, we have calculated the dynamic magneto-
conductance for disordered mesoscopic normal metal wires
and rings. In a metal wire, we find that the dynamic conduc-
tance fluctuations decrease as (E, /cu)'~ when the frequency
is much larger than the Thouless energy and temperature; at
lower frequency, the real part of the conductance fluctuations
is essentially given by the dc universal conductance fluctua-
tions while the imaginary part increases linearly from zero.
Similar frequency-dependent behavior is found for the hc/e-
periodic Aharonov-Bohm oscillation amplitude in a metal
ring. For high enough temperatures, we find that the oscilla-
tions may cross over from hc/2e period to hc/e period with

increasing co. We find that incorporating interactions through
a self-consistent potential changes the magnetoconductance
of an individual mesocopic conductor considerably, but does
not affect the magnitude of the conductance fluctuations and
oscillations.
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