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Wannier and Bloch orbital computation of the nonlinear susceptibility
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We present a method to compute high-order derivatives of the total energy of a periodic solid with respect
to a uniform electric field. We apply the 2n+ 1 theorem to a recently introduced total energy functional which

uses a Wannier representation for the electronic orbitals and we find an expression for the static nonlinear

susceptibility which is much simpler than the one obtained by standard perturbative expansions. We show that

the zero-field expression of the nonlinear susceptibility can be rewritten in a Bloch representation. We test
numerically the validity of our approach with a 1D model Hamiltonian.

Perturbative techniques are usually applied to density
functional theory' (DFT) to study the response properties of
materials from first principles. The evaluation of the second-
order derivatives of the total energy yields phonon spectra,
effective charges, ' dielectric constants, ' piezoelectric
tensors, ' and many other experimentally measurable quan-
tities. Likewise the computation of higher-order derivatives
permits the ab initio prediction of properties such as the
Raman tensors, the second- and higher-order susceptibili-
ties, the nonlinear elastic constants, etc.

There are already very sophisticated analytical methods to
obtain the values of the second-order derivatives, and today
it is possible to evaluate these quantities in systems with
many atoms per unit cell. ' On the contrary, the evaluation of
third- or higher-order derivatives relies mainly on finite dif-
ferences: the required derivatives are computed by numerical
differentiation of the second-order derivatives. The cost of
the finite differentiation limits the applicability of the tech-
nique to small systems and to short wavelength perturba-
tion s.

Closed-form expressions of the third- or higher-order de-
rivatives, obtained by a straightforward application of
quantum-mechanical perturbation theory, are usually curn-
bersome. In the case of the second-order susceptibilities, i.e.,
third-order derivatives of the energy with respect to a uni-
form electric field, the perturbative expansion provides a for-
mula which apparently diverges in the static limit. This di-
vergence can be eliminated as shown in Ref. 11 in the
context of a non-self-consistent electronic structure theory. A
specific application of the resulting formula has been per-
formed using a semiempirical tight-binding Hamiltonian. '
In order to extend this scheme to self-consistent DFT one has
to face rather formidable formal difficulti. An explicit ex-
pression for the second-order susceptibility within DFT has
been obtained using a software package for symbolic
manipulation, ' and it has been applied by just one research
group due to its complexity.

Alternative analytical expressions for the high-order de-
rivatives of the energy are provided by the 2n+ 1 theorem,
well known in quantum chemistry and recently rewritten in
the language of OFT. This theorem states that the deriva-
tives of the energy up to order 2n+ 1 can be computed if the
change of the wave functions is known up to order n. This
approach appears particularly promising to compute high-

order derivatives of the total energy with respect to an atomic
displacement but, in the formulation of Ref. 16, it is of no
practical use when the perturbation is an electric field. In fact
the formulas contain the change of the eigenvalues of the
Hamiltonian due to the perturbation, i.e., a quantity which is
ill-defined when the perturbation is an electric field and the
wave functions are Bloch states.

Recently methods have been introduced in DFT to solve
the electronic structure problem, mainly to reduce the num-

ber of operations necessary for the numerical solution. One
of these methods' is based on a Wannier representation of
the electronic orbitals which are constrained to be localized
in finite regions of the real space. The localized states are in
general nonorthonormal and are obtained from a direct mini-
mization of the total energy of the system. The method is
very convenient to study systems with many atoms since the
localization of the wave functions allows the computation of
the total energy with a work load proportional to the number
of atoms. At the same time, the application of this technique
to a periodic solid provides a good approximation for the
Wannier functions which are usually difficult to obtain with
other techniques. In Ref. 18 it was shown that the center of
these Wannier functions yields the correct polarization of the
system, and that their localization property can be conve-
niently used to study the behavior of a periodic insulating
solid inside a uniform electric field. This approach allowed
the computation of the physical properties of a solid under a
finite electric field. The derivatives of the energy with respect
to the electric field were computed by means of accurate
finite difference calculations. '

In this paper we further extend the approach of Ref. 18
and Ref. 16 and we give a method to compute analytically
high-order derivatives of the energy with respect to the elec-
tric field. Using the 2n+1 theorem we obtain well-defined
expressions of the linear and nonlinear susceptibilities in the
Wannier representation of the electronic orbitals. ' ' Fur-
thermore we rewrite the zero-field expression of the nonlin-
ear susceptibility in a Bloch representation. To this purpose
we apply a procedure which was used in Refs. 19 and 20 to
relate the center of the Wannier functions to a Berry phase.
Our formulas for the second-order susceptibility are much
simpler than those obtained by standard perturbation theory
because the use of the 2n+ 1 theorem allows us to express
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this third-order derivative of the energy only as a function of
the first-order variation of the wave functions.

We apply our results to a one-dimensional (1D) model
Hamiltonian to test the convergence properties of the pro-
posed algorithm. We compute analytically, in the Wannier
representation, the first-, second-, and third-order derivatives
of the total energy with respect to a uniform electric field and

we compare the results with those of the finite difference
calculations. The third-order derivative is computed for an

arbitrary field, so that the fourth-order derivative is available
as well through finite differences. Furthermore, we test nu-

merically the equivalence between the expression of the non-
linear susceptibility as obtained in a Wannier and in a Bloch
representation.

Following Ref. 15 we state the 2n+ 1 theorem in the form
applicable to an unconstrained total energy functional

E[w, k], where w is a vector whose elements are the coeffi-
cients of all the occupied wave functions on a given basis
and X. is a parameter measuring the magnitude of the pertur-
bation. For a given X the total energy is defined as the mini-

inum of E[w, )i.] with respect to w. If k is varied from kt l to
k~ ~+AX, the vector w which minimizes the energy func-

tional will change from wt ~ to w~ l+ b w. We can expand
the total energy around w~ ~ by a Taylor series:

1 8 +~E[w k~ )E[w~o~+aw, ~to~+a~]= g g
p=o k=o P

X(b,w) (b, k)~,

E[w,F]= g g (wp~~H+eFx~w&„)
m, n=1 I

X (28~ pb (wi ~wo )), (4)

where H is the unperturbed Hamiltonian of the solid, F is the
electric field, x is the position operator, e is the electron
charge, M is the number of occupied bands, and

~
wI „) is the

Wannier function of the band n associated with the direct
lattice vector RI. The

~
w& „) are in general nonorthonormal.

The Wannier function ~w&„) is obtained by translating the
function centered at the origin by a vector Ri. ~wp ) is free
to vary within a real space localization region (LR) of radWs

R, centered at the origin and it is set equal to zero outside
LR. For simplicity in Eq. (4) we assume that the system is
one dimensional and that the total energy describes indepen-
dent electrons. Self-consistency does not yield any additional
problem. We stress here that the expectation value of x is
well defined for any finite cutoff radius R, . Furthermore we
note that even if no orthogonality constraints are imposed on
the

~
w& „), at the minimum they become approximately

orthonormal. '
We now recall that the linear and the quadratic suscepti-

bilities gt'l and yt l are obtained as —
~z y~'l(AF)

= E~ ~ and —
—,
' yt ~(bF) =Et ~, whereEt"l is the variation

of the energy functional given in Eq. (4) to order n in the
perturbing field hF. From Eq. (1) with b, k=hF, we obtain
the expressions

where we use the notation (8 E/b'w )(b, w)"
=(X;b,w;8/Bw;) E. We now define Et"l as the variation of
the energy of order n in Ak. An explicit expression of this

quantity is obtained by writing hw as

b, w=w' +w +

where wt"~ is of order (Ak)". Since b w minimizes the total
energy, we have

E[w + Aw, k + Ak] =E[w + Aw+0(b k"+'),k

Therefore, the energy is exact up to order 2n+1 if we sub-
stitute Eq. (2) only up to order n in Eq. (1). In this way we
write E "+ as a polynomial of degree 2n+1 in the argu-
ments w~'~, . . . ,m~"~.

Applying this formulation of the 2n+1 theorem to the
self-consistent energy functional with no explicit orthonor-
malization constraints presented in Ref. 17, we can obtain an
explicit expression for E~"~ within DFT just by computing
simple partial derivatives. This is useful to derive the pertur-
bative expansion in cases where the standard approach is
cumbersome, e.g., the case of DFT when the atoms are de-
scribed by Vanderbilt pseudopotentials. '

We now apply the above theorem to the computation of
the linear and nonlinear susceptibilities. As explained in Ref.
18 it is possible to define a total energy functional for a
periodic insulating solid in a finite electric field as

1 BE BE

1 BE 1 BE

(6)

where we used the fact that the total energy functional is
linear in the electric field. As shown in Ref. 10, the first-
order variation of the localized orbitals w '~ is obtained by
minimizing E~ ~ with respect to w~'~. This condition is
equivalent to the equation bEt &/b'w&'l= 0.

At zero electric field Eq. (6) can be transformed in an
expression which contains only the unperturbed Bloch orbit-
als and their first-order variations projected on the conduc-
tion band. If we perform first the limit where the electric
field goes to zero and then the limit where R, goes to infinity,
the Wannier functions ~wl „) become orthonormal. ' There-
fore we can write the relationships

( I,".Iwio',.') = &I,o&...,

These equations are useful to simplify the condition
bEt ~/Bwt'l =0 which now reads
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Q—ehFxlwrI l)=HQlwo' ) 0

—X X Ql ",.')(",.'IHI .",.')
n=1 l

(8)

where Q=1 —X„,XtlwI„))(w&„)lis the projector on the
conduction bands. Using Eq. (7) and Eq. (8), we can write

Eq. (6) in a form which contains only the projection of

l
wt(')) on the unperturbed conduction bands:

1
M

(b,F) = g e(wIt' lgxglwo' )
Hf = 1

—10
C)

—20
0 1

25

m, n=1
g e(w,"'lxlw,"„')

x(wI,".Iglw,"i ). (9)

We now express this formula with Bloch orbitals. We recall
that the Wannier functions are defined in terms of the Bloch
functions |/Ik „(x) as

wo „(x)= dk t/lk „(x),~4 BZ
(10)

(hF) = i g— dk
1, eQ
3 277 j Bz

7

where the integral is done over the first Brillouin zone (BZ),
0 is the dimension of the unit cell, the Bloch functions are
normalized on the unit cell, and t/1k+6 „(x)= t/Ia „(x);here G
is a reciprocal lattice vector. Inserting this definition
in Eq. (9) and using the relationship x Pk „(x)
= —(i8/Bk) t/Ik „(x)+e' "(i8/Bk)uk „(x), where uk „(x)
=e '

't/rl, „(x) are the periodic parts of the Bloch wave
functions, we eventually obtain

FIG. 1. Linear (dashed line) and quadratic (solid line) suscepti-
bilities of the model system computed analytically in the Wannier

representation, Eqs. (5) and (6). The results obtained from numeri-

cal differentiation of the polarization (solid squares) and of the lin-

ear susceptibility (open squares), both computed in finite electric
fields, are also shown.

resentation, Eq. (5). These are compared with the g&') values
obtained from a numerical differentiation of the polarization
P= —BE/BFcomputed at finite electric fields. The two re-
sults are in perfect agreement.

In the same figure we also show a comparison between
the values of y~ ~, as obtained from the analytical derivative,
Eq. (6), and from a numerical differentiation of the values of
g '~ computed at finite electric fields. Also in this case the
two calculations are in perfect agreement.

Using Eq. (6) it is possible to evaluate the values of
y~ ~ for a given finite electric field. Therefore we can com-
pute the value of yt )=3dy /dF by finite differences. At
+=2 we obtained y ~=1.0.

where lu,"))=lua&')) —X"„ tlu,"))(u~(')lu,"') is the per-
turbed orbital projected on the unperturbed conduction
bands.

We applied the above results to a 1D model with Hamil-
tonian H= —V +V(x) where V(x) is a periodic potential
with period 3, i.e., V(x+ 3)= V(x). We chose V(x) = —6 if
x E (—1.5,—0.5], V(x) =u —6 if x e (—0.5,0.5], and V(x)
=0 if x E (0.5,1.5].The parameter 5 is kept fixed at the value
b =4 and n varies between a=0 and a=A. At the two
limiting values, the model has inversion symmetry, and
therefore y~ ~= 0. Otherwise the parameter n tunes the value
of y( ). We discretized the wave functions w(x) on a mesh
x; with equal spacing hx. In this representation the action of
the Laplacian operator on the wave functions is modeled as a
finite difference: V w(x;) = [w(x;+,)+w(x;, )—2w(x;)]/
(hx) . All the calculations are made with one occupied
band, Ax= 1/3 and e=1.

In Fig. 1 we show the y~'& values computed from the
analytical derivative of the total energy in the Wannier rep-
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—30
0

» I I I l l I t l l I I » l l

FIG. 2. Quadratic susceptibility computed in the Wannier repre-
sentation, Eq. (6), as a function of the parameter a for several
dimensions of the localization regions. The curves refer to a local-
ization region equal to three (long dashed), five (dotted), seven
(dashed), and nine (solid line) unit cells, respectively. The filled
squares are the results obtained in the Bloch representation, Eq.
(12), with 20 k points.
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x( (12)

Here the
~

uk( )) were computed diagonalizing the unperturbed

Hamiltonian and the ~uk(')) were computed by standard per-

turbation theory. The g~ ~ computed with 20 k points coin-
cides, within the convergence error, with the result obtained
with Wannier orbitals.

In conclusion we applied the 2n+ 1 theorem to a periodic
insulator in a uniform electric field where the wave functions
are described by localized Wannier orbitals. In this Wannier

All the above calculations have been done with an R,
value such that the LR includes seven unit cells. In Fig. 2 we
show how the values of y~ converge as a function of the
size of the LR.

In Fig. 2 we plot also the values of the y computed in

the Bloch representation. We discretized the integral and the
derivative appearing in Eq. (11) on a uniform k-point mesh

k;, obtaining

representation we provided a method to compute analytically
the first- and second-order susceptibilities for a given electric
field. Furthermore, in the special case where this field is
taken as zero, we rewrote the expression of the nonlinear
susceptibility in a Bloch representation. With respect to pre-
vious approaches for the calculation of nonlinear suscepti-
bilities, our method avoids completely perturbation sums,
and has a simple expression in terms of the linear variation
of the occupied orbitals, a quantity which is nowadays ac-
cessible in various computational frameworks. The accuracy
of our method has been tested in a 1D model Hamiltonian.
We believe that the application of our method to state-of-the-
art DFT could open the way to a simple and reproducible
computation of high-order derivatives of the total energy
such as the Raman tensors or the nonlinear susceptibilities
even in systems with complex unit cells.
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