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Transmittance fluctuations and nonlinearity in random chains
in the presence of applied electric fields
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%'e have carried out numerical investigations of transmittance fluctuations in disordered chains in the
presence of external electric fields. We have obtained an almost constant fluctuation in a length scale
smaller than the localization length. However, the value of the fluctuation in the plateau region is

dependent on the external electric field and the strength of the disorder. We have also studied the
transmittance autocorrelation as a function of external electric field to probe the nonlinearity in the
transmittance.

Universality has been predicted in the zero-
temperature aperiodic conductance Quctuations of a
mesoscopic sample as a function of chemical potential,
magnetic field, or impurity configurations, by various au-
thors (ALSF). ' It is now well understood that the
phenomenon originates from quantum mechanical in-
terference of multiply scattered electrons. The universal
value of the root-mean-square conductance fluctuations
hg, is of the order of (e /irt) and has been found to be in-
dependent of randomness and length of the sample in the
weak-disorder limit. The value depends weakly on the
dimensionality of the system.

The above theory (ALSF) has been invoked by the
pioneering experimental studies of aperiodic magne-
toresistance fluctuations in metallic wires, quasi-one-
dimensional metal-oxide-semiconductor configurations,
and periodic Aharonov-Bohm magnetoresistance oscilla-
tions in loops. The universal characteristics have been
tested numerically by Giordano, Xie and Das Sarma,
Harris and Houari, ' as well as our group. "Most of the
studies of universal conductance fiuctuations have made
use of Anderson tight binding Hamiltonian. ' Disorder
is usually introduced in the diagonal terms. Harris and
Houari' have recently studied the phenomenon in disor-
dered binary allows with the Hamiltonian characterized
by 5-function like potential at each site. Manna and
Mookerjee" have examined the UCF in systems with
continuously and randomly varying potentials using the
invariant imbedding method. '

In the previous theoretical works, ' ' ' quasi-one-
dimensional systems (width much less than localization
length) have been considered and have direct relevance to
the experimental studies in thin wires where evidence for
quantum difFusion has been revealed. The striking point
is that UCF is independent of width of the system which
has been verified by decreasing the width up to even a lat-
tice spacing.

Manna and Mookerjee' have pointed out that al-
though the distribution of phase angles for the amplitude
transmission or reflection coefficient is approximately
uniform in large, weakly disordered chains, for smaller
lengths or stronger disorders the distribution of the phase
angle is twin peaked as the phases are pinned Recen. tly,
Pradhan and Kumar' observe the same and point out
that its consequence, strong correlation between the
phase and the magnitude of the amplitude reflection or
transmission coeScient, leads to finite average conduc-
tances and finite averaged conductance fluctuations for
smaller length scales in weakly disordered chains. This
correlation seems to have escaped notice prior to our nu-
merical work on disordered chains"' and Pradhan and
Kumar's' analytical treatment. It then becomes reason-
able to study UCF in disordered chains.

We concentrate first on the behavior of fluctuations in
sufficiently weakly disordered one-dimensional systems.
We have found that in a length scale within a phase
coherence length shorter than the localization length,
such systems do exhibit UCF. Then we proceed to study
the fluctuation and underlying nonlinearities in transmit-
tance in the phase coherence regime due to applied elec-
tric fields. In this regime, the interference pattern is ex-
tremely sensitive to the details of impurity potentials.
With the presence of an electric field, the overall scatter-
ing potential structure is modified. This changes the de-
tails of the interference efFect. This aspect causes highly
nonlinear I-V characteristics.

To date there are not many studies on mesoscopic
transport phenomena in the presence of an electric field.
Al'tshuler and Khmelnitskii' have shown that conduc-
tance of a mesoscopic sample is a random function of
voltage and this variation is characterized by the correla-
tion function. This is a signature of the fact that when
quantum interference, the I-V curve is strongly non-
linear. They have predicted a voltage scale V, where
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+k, (x)R2(x)[R,(x)—1],
dR2(x) k2(x) [1+Ri (x)+R2(x) ]

(2)

conductance fluctuations is of the order of (e /A'). And
beyond V, fluctuation decays as (e /fi)Q(V, /V). The
experimental results ' in small metallic samples are in
quahtative agreement with the AKL (Al'tschuler-
Khmelnitskii-Larkin) theory. ' Recently, Tang and Fu
have proposed a theory that claims to explain the strong
nonlinearity as observed by Webb, Washburn, and Um-
bach. ' According to this theory, nonlinearity appears
when the change in electron energy hE becomes equal to
the order of level spacing E instead of hE =ga, as pre-
dicted in AKL theory.

Our approach is based on the invariant imbedding
method' which yields a nonlinear first order differential
equation for the complex coefficient of reflection. We
shall follow the approach of Heinrichs which yields a
coupled nonlinear differential equation for the complex
reflection coeScient. This equation differs from that uti-
lized by Vijayagobindan et al. for the work on localiza-
tion and resistance fluctuations. However, for the zero-
field situation, both the equations take the same form.

We consider a disordered chain, stretching from x =0
to x =L, the ends of which are attached to semi-infinite
perfectly conducting leads maintained at a potential
difFerence, FL, where F is the strength of the applied
field, directed along negative x axis. The model Hamil-
tonian of the disordered system is

a =(—rP/2~)(a2/ax 2)+ V(x),

where V(x) = Fx + v (x)—. u (x) at any point x varies
uniformly randomly about mean zero between —w/2
and +w l2. Therefore, ( v (x) ) =0 and ( V(x) ) = Fx. —

An electron of energy E =kvl2 moving from —ao is
incident at x =L. Solving the Schrodinger equation in
the sample and leads and applying smooth boundary con-
ditions at x =L one obtains a set of coupled differential
equations for the real and imaginary parts of the
reflection coefficient, R

&
(x ) and R 2(x):

dR, (x) k2(x)
R2(x)[R, (x)+1]

dx k, x

+ X X[1—R&(x)+R2(x)]
F

2k[(x)

We have solved these equations numerically for
reflectance, r(x)=R f(x)+R2(x) and transmittance
t (x)= 1 —r (x).

We have studied the conductance in the absence of an
external electric field by making use of generalized ver-
sion of Landauer formula as worked out by Fisher and
Lee. ' When an electric field is present, we have chosen
to emphasize the studies of transmittance.

We present the numerical results for transmittance
fiuctuation ht in the mesoscopic regime of one-
dimensional disordered systems under the influence of
electric field. For the averaging process, we have con-
sidered 200 independent samples difFering only in the mi-
croscopic configurations of the potential v(x). The rms
transmittance fluctuations ht is given by ht
=[(t')—(t)']' '.

For zero electric field, the generalized Landauer for-
mula provides a simple relation for hg in terms of
b, t, hg =26,t. To ensure mesoscopic regime in one-
dirnensional disordered systems, we display in Fig. 1, hg
as a function of sample size L for w =0.1, E =0.125, and
F=0. b,g attains a certain value, 0.54e /A', which
remains constant in the region L =300-700. In an ear-
lier work" we have verified that this value does not
change by changing the degree of disorder, in the weak
disorder limit. Only the extent of the regime, over which

hg remains constant, increases with decreasing disorder.
These are features of UCF, as predicted by ALSF. '

Our value of UCF is in reasonable agreement with those
observed in quasi-one-dimensional system. '

We now proceed to describe the effect of electric field
on mesoscopic fluctuations. For this study, we invoke
transmittance as the physical quantity of interest. In Fig.
2(a) we find that the transmittance fluctuations are re-
duced in the presence of external electric fields. We also
see that the transmittance fluctuations remain invariant
over length scales which decrease as the electric field in-
creases. However, unlike the zero-field results, the finite
field ht in the plateau region is not universal but depends
on the strength of disorder. In Fig. 2(b), we have shown
the transmittance fluctuations plateaus over a fixed extent
from L =300 to L =500 for three different electric fields:
F=0.0, 25X10, and 50X10 with w =0.1 and
E =0.125. For F&60X10, the plateau region disap-
pears due to the presence of nonlinearity and the delocali-

R &(x)R2(x)+
k f(x)

k, (x)+ [1—R, (x)+R2(x)]

where

X [1—R, (x)—R2(x)], (3)

and

k (x)=Qko —2[u (x) Fx]— 0
0 100 200 300 400 500 600 700

LENGTH

k, (x)=Q(k20+2Fx)
FIG. 1. Zero field Lg as a function of length, for w =0.1, and

E =0.125.
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Al'tshuler and Khmelnitskii. ' We think that the results
for transmittance for different disorder configurations
may be used as input to calculate .&he nonlinear
differential conductance and for the Buctuation studies of
the same. This is a formidable task to do in order to
compare with experiments.

Transmittance fluctuations for different electric fields
are not independent of one another. This essentially pro-
vides a long range correlation for transmittance. We
have examined this phenomena by evaluating the normal-
ized autocorrelation function defined as

(t(Fo)t(Fo+F)) —(t(Fo)) (t(Fo+F) )C(F)=
«'(F, ) & -(t(F.) )'

as a function of field. The result is demonstrated in Fig.
4. It is shown in Fig. 4(b) that C(F) drops very rapidly
with characteristic field scale, of the order of 0.00002.
As the field increases further, we observe random fiuctua-
tion of C(F) between the peak amplitudes +0.2 and—0.2. This behavior persists up to the field, of the order
of 0.003. More increase of the field shows much slower
variation of C (F). The behavior of autocorrelation func-
tion in different field regimes in our numerical studies is
indicative of typical one-dimensional characteristics of
the nonlinearity effects in the mesoscopic fluctuations.

The initial drop in the autocorrelation function is very
similar to that found in two dimensions by Tang and
Fu 20

Our numerical results for the effect of vanishingly
small and moderate electric field in the mesoscopic re-
gime of one-dimensional disordered systems exhibit the
nonlinearity of intrinsic origin. This investigation shows,
in a qualitative agreement with the previous studies, that
transmittance is a complicated function of electric field.
The other striking observation is that the nonzero field
transmittance fiuctuations in the mesoscopic regime ap-
pear as a plateau, so long as it is not destroyed by the
delocalizing effect of the electric field and also by the
nonlinear nature of the transmittance.
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