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Nonperturbative scaling behavior of the coherent semiconductor Bloch equations
in the low-density regime
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The set of phenomenological model equations which we proposed to determine the scaling be-
havior of the low-density Rabi oscillations [Phys. Rev. B 48, 17811 (1993)] is jnstiSed from the
coherent part of the semiconductor Bloch equations in lowest order in the light-matter coupling. In
contrast to similar short-time studies, it is shown that for resonant excitation of an excitonic state
the Rabi oscillations can be described by a Ginzburg-Landau type equation which includes only the
exciton-exciton interaction of the resonantly excited state but no state-filling terms or contributions
from detuned excitonic or continuum resonances. Explicit calculations are performed for the bulk
two-band jellium model and for a one-dimensional two-band Hubbard model.

I. INTRODUCTION

In a previous publication~ we proposed the following
set of phenomenological equations to determine the os-
cillation frequency and amplitude of low-density Rabi os-
cillations in a semiconductor instead of solving the full
semiconductor Bloch equations (SBE):

Sq ———[b+ Jq(1+ Ss)] S2,
S2 ——[6+ J2(1+ S3)]S] + J3S3

S3 ——OS2 .

The equations (1) contain only macroscopic variables,
i.e., the polarization components Sq(2) and the inversion
density Ss of the semiconductor, the Rabi frequency 0,
the detuning from the ls exciton resonance b, and a phe-
nomenological parameter vector J = (Jq, J2, Js). In the
limit of low electron-hole pair density, we estimated the
parameters of the J model to be

J3 ——Q. (2)

Here, J~ remains as a fitting parameter. In this regime
of low electron-hole pair density, the inversion S3 can be
approximated with P =

2 (Sz —iS&) by Ss —1+2[P[
and we find an equation for the complex polarization P
alone:

i(b + 2J&IPI') P + iO/2.

We compared this model with the solution of the co-
herent part of the semiconductor Bloch equations (SBE)
for zero detuning b = 0 and showed that in the limit
of small Rabi &equency 0 the &equency and the am-
plitude of the semiconductor Rabi oscillations are well
described by fitting the dynamics with the parameter J.
Only for a simplified model system with large Coulomb
on-site interaction was the parameter J~ determined by

the atomic transition &equency 6, where the semicon-
ductor ground state and the excitonic ground state are
degenerate.

In this paper we show how to calculate the phenomeno-
logical J parameter in lowest order [cf. Eq. (2)] micro-
scopically by applying an expansion of the coherent SBE
for low-excitation processes (see, for instance, Ref. 2). In
addition to this we justify the neglect of nonresonant con-
tributions for the description of Rabi oscillations quanti-
tatively. The applied approach was already used for the
investigation of the short-time behavior of the SBE in the
context of photon echo studies, the optical Stark eRect,
and for traveling wave solutions in self-induced trans-
parency of excitonic systems. 5 ~ Starting with the full
coherent SBE for arbitrary semiconductor structures,
the derivation of a Ginzburg-Landau-type equation for
the polarization with effective control parameters, which
are completely determined microscopically, was demon-
strated.

For the short-time behavior a perturbation theory for
this equation with respect to powers of the Rabi &e-
quency may be applied. This approach breaks down for
the long-time behavior and especially on a time scale
where Rabi oscillations of the total electron-hole density
occur. In contrast to the short-time expansion, where the
leading contribution of the resulting polarization scales
linearly with Rabi frequency, a diferent expansion with
respect to the Rabi frequency for the long time behavior
must be applied. In addition to this, we show explicitly
that for resonant excitation of the 1s exciton nonreso-
nant contributions vanish in the limit of vanishing ratio
of Rabi frequency and exciton binding frequency 0/u .
Furthermore, we will show that for resonant excitations
this expansion yields a scaling of the total electron-hole
density amplitude with the Rabi &equency which indi-
cates that space filling eKects play a minor role in com-
parison to the exciton-exciton interaction. This result
explains our previous results on nonlinear Rabi oscilla-
tions in this regime and justifies the use of the proposed
simplified dynamical system.
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II. EFFECTIVE DYNAMICAL EQUATIONS

In the coherent regime, i.e., neglecting any dephasing
mechanism, the dynamics of the expectation values of the
microscopic polarization functions Pq = (ci c2q) and
the population inversion iraq

= (n2 q
—ni q) is given in

the time-dependent Hartree-Fock approximation by

Q)q= — 1 —4 Pq

= —1+2IPql'+ 2IPql'+ o(IPql').

In this regime, Eq. (5) may be dropped and the SBE
reduce to a set of equations for the polarization alone.
With the help of the eigenstates of the Wannier operator

(H ), = E~+h(b, q
—b,q p)+) Uq q

DP(t) . i 1
~s ).Uq —q'~q'(t) Pq(t)

ql
xSqq —Uq q

ql l

. t'II
i —+ ——) Uq q Pq (t) ipq(t), (4)

defined by P, (H ),nq „=E~"lo.q„, we may ex-
pand the microscopic polarization functions Pq as

P, (t) = ) ~, „P„(t).

Bipq(t) . , f 0 1= 2iP'(t) —+ —) Uq q Pq (t) +c.c.

The Rabi &equency 0 = "&' ' is determined by the
interband dipole matrix element p and the slowly vary-
ing amplitude of the external electrical field t(t)
Ep(t)e ' &~. The electron-hole pair dispersion relation
Aq, as well as the Fourier transform of the Coulomb in-

teraction Uq
——

& f U(x)e 'q'"dsx, depends on the spe-
cific realization of the semiconductor model.

Now the main steps of the reduction of the SBE, which
can be found, for instance, in Ref. 3, are brieQy reviewed.
In the weak nonlinear regime, the density of the opti-
cally excited electron-hole pairs is assumed to be small
or equivalently the inversion ipq(t) is almost —1. It was
shown2 that using the constants of motion of the SBE
(probability conservation), it is possible to expand the
inversion in terms of the polarization with the condition

Inserting this ansatz in Eq. (4) and multiplying both sides

with+ a~& onefinds with+ a' zcxq, q = hqq aset of
equations for the coefficients P&. Etesides the low-density
expansion ~Pl,

~
&& 1 another essential approximation,

which underlies the reduction of the full set of SBE, is the
restriction to an excitonic bound state in the case of near
resonant excitation, i.e. , if the laser central &equency is

tuned at a selected exciton resonance sr~ = E "
/h and(n)

the Rabi &equency 0 and the spectral pulse width are
much less than the energy spacing of the neighboring
levels. It is well known that for resonant excitation with
bp ——E /5 —ur„= 0 the polarization distribution is()
shown to exhibit the characteristic behavior of the exci-
ton ground state wave function Pq aq pPp(t) during
temporal evolution under weak optical excitation. At
the critical point bp = 0, the fundamental resonance is
separated by the order of the exciton binding energy bur,
Rom the higher excitonic resonances. We will demon-
strate how this fundamental frequency enters the scaling
of the reduced equation, and that in the long-time behav-
ior the nonresonant contributions really vanish not only
due to the decreasing density of states but due to a dif-
ferent scaling with respect to the Rabi frequency. With
the approximation aq „=aq „b„g Eq. (4) is simplified
to

I

"(t) = -i(@.'"'/~- ~.)P~(t)+ —) U — ~ (l~,~l'l~, ~l' —l~,~l'~;,.~,~) IP~I'P~"
q, q

+i— ) ~,*,~ -2) l~q, ~l'~;, ilP~I' —2) l~q, ~l'~,*,ilP~I'

+—) Uq-q (l~q~l'l~q ~l' —l~q~l'~' ~~q ~) IP~I'P .

P(t) = P„(t),1

q q, A

(10)

Furthermore, in the limit 0/u « 1, which we discuss
here the phase space filling term O~P~ in Eq. (9) can
already be neglected in contrast to the contribution
Uq~P~ . Introducing a rescaled polarization variable

I

we 6nally get the following expression, using bp

E.'"'/a

P = ibpP+i (1 —p2p(p( )— —.0 2

i (P „)P( +P (P[ ) P, —
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with the parameters aq = P a' z and

2lagl'pii= ) Uq q

X Q& g Q ~Q&~ g —Q&p Q&i p

p2,i = 2~i)
Q

(i2)

(13)

Ps&= ) Uq q

X Q&p Q&~Q&~ p —Q&g Q&~ p (14)

Equation (11) is a Ginzburg-Landau-type equationis for
a macroscopic variable of the system. Similar equa-
tions have been derived in the context of self-induced
transparency of Wannier excitonss s s i4 is and Frenkel
excitons. is The control parameters in Eqs. (12)—(14) are
microscopically well defined and can be calculated even
analytically in some cases where the exciton ground state
wave function is known.

Now the J~ parameter may be calculated by compar-
ing Eq. (3) with Eqs. (11) and (12) for different semicon-
ductor systems rigorously. In principle, higher order cor-
rections to the full parameter vector J in Eq. (1) can be
derived in a similar fashion, but the calculation becomes
somewhat involved. It is therefore more appealing to in-
troduce J a posteriori as a phenomenological parameter
vector, to be determined, for instance, experimentally.

In our previous paperi we discussed two general cases
with respect to the fundamental 18-exciton resonance

i i,O ~

(i) ho P 0. Slightly off-resonant but still fulfilling ho «
the polarization is of order P = O(0). This was

checked numerically and can be estimated by inspecting
the stationary solution of Eq. (9). In this case

PslPI'P = o(101')

and it is sufficient to retain only Pi and P2 to include the
6rst nonlinear corrections because both contributions are
of the same order O(l0l ). However, the leading contri-
bution is the linear term, which introduces the detuning
frequency bo as the fundamental frequency in the system.
In this case the semiconductor behaves like an atomic
system and the linear perturbation theory in the Rabi
frequency remains valid.

(ii) ho = 0. The more interesting case is exact reso-
nance, where we observed Rabi oscillations nonlinear in
amplitude and frequency with respect to the Rabi &e-
quency. Here, the polarization shows a diferent scaling
behavior and nonlinear corrections become important.
From the stationary solution of Eq. (11), one finds for
a small Rabi frequency

III. TWO-BAND JELLIUM MODEL

The two-band jellium model is commonly used in the
study of optical properties of semiconductor bulk or
quantum well systems. The model contains the two pa-
rameters of the exciton binding frequency u and the

2
Bohr radius ao ——2~ of the ground state wave function
of the Wannier operator Eq. (7). For the bulk system
the Fourier transform of the Coulomb potential and the
hydrogen wave function for the 18 exciton are given by

span.

a',

V V [1+(q")']"
4me 2

Vq2

With this information, the microscopic parameters Eqs.
(12) and (13) can be calculated analytically for ao ——

QV/(iras):

pi = s~a)26
p2 ——7.

The additional parameter Ps can also be calculated an-
alytically and we find Ps ——i4&o~ . This term together
with Pz are the first ls corrections in the reduced dy-
namical system Eq. (11). It has to be clearly pointed out
that corrections from higher excitonic states as well as
the continuum states contribute at this order concerning
the expansion parameter 0/u .

IV. TWO-BAND HUBBARD MODEL

remains in the limit 0/Pi « 1. At low densities, the ne-

glect of state-filling terms at exact resonance is therefore
well justified. This explains the correct scaling behavior
of the nonlinear electron-hole pair oscillations in opti-
cally excited semiconductors as shown previously with
an effective nonlinear dynamical system.

The contribution of any nonresonant term which scales
like 0/~ can be neglected in comparison to Eq. (16).
This reveals a diferent quality in contrast to the pho-
ton echo studies for the short-time behavior, where the
nonresonant terms are neglected only due to their smaller
density of states, whereas these contribution really vanish
in the discussed limit of Rabi oscillations for very small
Rabi frequency. The discussion of the two different cases
shows that the exciton-exciton interaction of the resonant
excited state contributes at higher order in 0 to the sig-
nal amplitude than the state-filling and the off-resonant
excited states. We present some results for the micro-
scopic parameters of two semiconductor systems, where
the integrals Eqs. (12)—(14) have either been calculated in
a different contexts' is or can be calculated analytically
as in the case of the one-dimensional Hubbard model.

+ o(10l'~')
2pl (1+~lPl2 j 2pi

(16)

The scaling behavior shows clearly that the contribution
P2 is of the same order as the term Ps. The lead-

ing term of course is the dynamical detuning Pi which

In order to cover a one-dimensional exactly solvable
semiconductor model as well, we give the results for a
two-band tight-binding Hubbard model with on-site in-
teraction energy Uo and band parameter B. In this case,
the system has only one bound state with wave function
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= 1 Up

v V QUoz+ B2 —Bcosq
Up

y

/B11+] —
I

I, Uo)

(19)

and exciton binding energy fur = QUo2 + B2 —B. The
control parameters are given by

t'B)'
cro ——vV 1+

i

—
i

&Uo)
(20)

Uo ( B l ' ( B t'
Pi = —

/

—
1

1+
I

—
I

qUo) gUo)

(Bl'
p2 ——3 — 1+

(Uo)
(22)

In the limit of large on-site interaction B &( Up, the
exciton-exciton interaction parameter Pq is asymptoti-

Q2
cally given by Pq = &+& . This result can be related to the

0

critical atomic energy separation hA ~ &&, where the2 0
intrinsic ground state of the semiconductor, i.e. , the com-
pletly ulled valence band state, and the exciton ground

state are degenerate. In Ref. 1, the value of the param-
eter 2J~ = Pq was estimated to be 4 in the strong
coupling limit, as can now be proved analytically, too.

In conclusion, we have justified the usage of the simpli-
fied J model from the reduction of the SBE to a simpli6ed
dynamical system, which is estimated to be valid in the
limit of low electron-hole density for near resonant exci-
tation of the fundamental exciton resonance. At exact
resonance, i.e., ~„=E, only one control parameter(p)

Pq is sufficient to yield asymptotically exact results in the
limit 0/Pq « 1 and confirms previous results on nonlin-
ear Rabi oscillations in semiconductors. ' In addition,
we have shown that not only phase space filling contri-
butions P2 but also higher exciton-exciton corrections

Ps are of the same order of magnitude at exact reso-
nance, which has not been noted in earlier results. s
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