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Flux flow and flux cutting in type-II superconductors carrying a longitudinal current
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A heuristic model of flux flom and vortex cutting that does not imply a buildup of longitudinal flux is

given for type-II superconducting cylinders carrying a current in the presence of an axial magnetic field.

I. INTRODUCTION

The existence of flux-flow resistance in type-II super-
conducting cylinders carrying a current in the presence
of a parallel axial magnetic field (in what has been called
longitudinal geometry) indicates that an azimuthal com-
ponent of flux must be moving inward toward the center
of the cylinder in order to generate the observed electric
field. Brandt' has argued that since the longitudinal flux
must remain constant, the moving transverse component
must somehow interpenetrate the longitudinal com-
ponent of magnetic flux, and that flux cutting must there-
fore occur. Clem~ has published a proof showing that "so
long as the specimen remain in the mixed state, the pro-
duction of longitudinal voltage by a succession of
inward-collapsing helical vortices leads inevitably to an
ever-increasing longitudinal flux through the cross sec-
tion. " He maintains that this is true even if vortex cut-
ting occurs. Kogan has argued that, for a stationary
current flow in a cylindrical sample of homogeneous ma-
terial, the basic relation E=BXv used to derive the elec-
tric field is incorrect. He points out that this relation
could continue to hold if there were a breakdown in

homogeneity as reported by Ezaki and Irie, but that
such a breakdown is not confirmed by the experiments of
Cave and Evetts.

A. Clem's proof

Clem uses the basic relations

VXE'=— 8 E'=BXv,

where E' is the "efFective electric field" defined by Joseph-
son and E', B, and v are averaged over a few intervortex
spacings. Using Clem's notation, define the helical vortex
at the surface of the cylinder by B,=B,&P+B„z and the
inward velocity of the vortices as v, = —rv, . Then the
electric field 8,' at the surface is given by

E,'=BXv,= B„v,g+B,~v, z=—E,'~P+E,',z .

Integrating the first of Eqs. (I) over the surface of the
cylinder and using Stokes' theorem on the left-hand side
gives

f E,'~df= —4 . (3)

Clem now assumes a steady-state value of E,' so that E,'&

is constant and 4 is therefore a constant times the time.
Thus, the longitudinal flux increases without bound.

However, assuming a steady-state value of E,' is a very

strong condition. It means that the spiral vortex as a
whole is moving inward toward the axis. In particular, a
nonzero E,'& means that axial flux is continually crossing
the surface into the superconductor thus increasing the
axial flux; the proof" therefore assumes its conclusion.

B. Kogan's proof

Kogan assumptions are

VXE=O,

E= IO, E~(r),E,(r)I .

Carrying out the indicated operation leads to
r

dE, dg
VXE= — P+ F. +r —=0.

dr & dr r

(4)

Thus, E, is constant and E& must vanish. But since

B,AO, E=BXv implies that E& cannot vanish and Ko-
gan concludes that E=BXv cannot be correct, subject to
the condition that there is no breakdown of homogeneity.

The "proof" fails, however, because the assumption
that VXE=O means that BB/Bt=0 and therefore that
no flux is moving into the sample so that v =0.

H. FLUX-FLOW AND CUl 11NG
IN LONGITUDINAL GEOMETRY

Three fundamental flux regimes will be taken as typical
for the purposes of discussion. They are defined as a
function of transport current: (A) a nonlinear region of
increasing paramagnetic moment; (8) a linear region of
increasing paramagnetic moment where flux flow is
present; and (C) a second linear region of increasing
paramagnetic moment where large-scale flux flow occurs.
These regions are shown in Fig. 1 superimposed on data
abstracted from Vfalmsley and Timms.

For the case of longitudinal geometry, it is usually as-
suxned that the vortices form a helical array so as to ac-
count for the observed paramagnetic moment. It is often
further assumed, particularly before flux-flow voltages
are observed, that the array takes a force-free or nearly
force-free configuration following the suggestion of
Bergeron. In the case of a transverse field, the model

0163-1829/94/5+1)/571(4)/$06. 00 50 571 1994 The American Physical Society



572 BRIEF REPORTS 50

50

150

I
I I I

300 j 400
I I (Aj
I

I I

I I

I I

I 4 I I

II
500

I

C I~

A. Nonlinear region of increasing yaramagnetic moment

Assuming here, and in what follows, that the transport
current flows along the vortices comprising the flux-line
lattice, the nonlinear increase of the paramagnetic mo-
ment with increasing current, as shown in region A of
Fig. 1, implies that the angle the helical flux-line lattice
makes with the symmetry axis must, on the average, be
increasing. That is, the lattice must alter its geometric
configuration so as to give rise to a greater current-
induced magnetization than would result from only an in-
cremental increase in current. This must be true regard-
less of the model used for the flux-line lattice. It is, of
course, clear that since the applied longitudinal field is
constant, and the azimuthal field at the surface of the
sample increases with the current, the angle nucleating
vortices make with the axis must also increase with the
current. But because the flux is not necessarily pinned at
the ends of the sample after nucleation, this does not con-
strain the model used for region A, since one cannot ar-
gue that helicity' is conserved over the length of the
sample.

B. Linear region of increasing paramagnetic moment

FIG. 1. (A) is a nonlinear region of increasing paramagnetic
moment, (B) is a linear region of increasing paramagnetic mo-
ment where flux flow is present, and (C) is a second linear region
of increasing paramagnetic moment where large-scale flux flow
occurs. [Shown superimposed on data taken from D. G.
Walmsley and W. E. Timms, J. Phys. F 7, 2373 (1977)].

often used tacitly assumes that current flows throughout
the whole body of the metal and that this transport
current interacts via the Lorentz force with the magnetic
flux associated with the normal cores of the vortices. If
this model is extended to longitudinal geometry, the
Lorentz force on the vortices would only vanish if the
vortices were parallel to the symmetry axis, and it would
not be possible to account for the observed paramagnetic
moment.

If, on the other hand, one assumes that the current
flows along the vortices, it is possible to argue that the
lattice assumes a force-free configuration, and that the
transport current could be carried without pinning while
producing a paramagnetic moment. However, for this to
be true, either the density of vortices, the longitudinal
current carried per vortex, or both would have to vary so
as to satisfy the force-free relation V XS=aB, where a
is, in general, a scalar function of position. While some
experimental results are not inconsistent with the as-
sumption that the flux-line lattice adopts a force-free
configuration, ' there seems to be no compelling experi-
mental or theoretical reason for this to be true. A num-
ber of alternative models have been given by Timms and
Walmsley. "

The term "force free" is also sometimes applied to the
following case: Assume the De Gennes-Matricon' model
of a vortex; if it is further assumed that current flows
along the vortex parallel to the field lines, the Lorentz
force between the current and field would vanish. Such a
configuration is incorrectly called "force free."

(c)

Vortex Instability Flux Cutting
& Reconnection

Nucleation Helical Flux-Line
Ejection 8 Contraction
of Vortex Ring

FIG. 2. Idealized representation of the proposed model for
vortex nucleation, instability, flux cutting, and flux ejection.
The energy of the vortex per unit length is conserved.

This region begins where the onset of flux-flow resis-
tance is first observed. The linear increase in paramag-
netic moment with increasing current, as shown in region
8 of Fig. I, implies that the angle the helical flux-line lat-
tice makes with the symmetry axis must, on the average,
be constant. This does not mean that the lattice cannot
change its configuration, but only that any change must
average out over the lattice so there is no net additional
geometrical contribution to the paramagnetic moment.
As the transport current increases over region B, vortices
continue to nucleate at the surface making an increasing-
ly greater angle with the axis. Although helicity need not
be conserved over the length of the sample, the model
proposed here to maintain the geometric stability of the
flux lattice as a whole over region B relies on restraints
due to the elastic properties of the lattice, ' and on the
supposition that vortices nucleating on the surface of the
sample are susceptible to a kink instability followed by
flux cutting.

A highly idealized representation' of the sequence is
shown for a single vortex in Fig. 2. The axial flux associ-
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ated with the vortex is quantized and is consequently
conserved during this process. The energy per unit
length of the vortex is therefore also conserved.

Assume [Fig. 2(a)] that it is energetically favorable for
additional flux to nucleate on the surface of the sample. '
To prevent the increase in axial flux with continued nu-
cleation, the following mechanism is envisioned: Because
the energy of the helical flux line (per unit length) is un-

changed during the vortex instability [Fig. 2(b)] and flux-
cutting phases [Fig. 2(c}],it is not energetically favorable
for the flux line and the vortex ring to remain in the sam-

ple; the helical line is ejected [Fig. 2(d}], thus precluding a
build up of axial flux, and the ring vortex contracts. ' If
the assumption is made that the axial vortex current is
conserved, the contracting ring vortex will itself have a
circulating current and therefore make a time-dependent
contribution to the paramagnetic moment. Such time-
dependent behavior was, in fact, observed by Walmsley
and Timms. After the ring vortex contracts, it is again
energetically favorable for additional flux to nucleate on
the surface of the sample, and the cycle is repeated.

It has been suggested' that "nascent vortices" of zero
order parameter are formed at the surface as part of the
nucleation process. If the concept of instability is appli-
cable to such vortices, it is possible to argue that only the
ring vortex itself nucleates. Consequently, there is again
no build up of axial flux. On the other hand, if the mag-
netization oscillations observed by Walmsley and Timms
are indeed related to the formation of a ring vortex carry-
ing a circulating current as a result of vortex instability
and subsequent lux-cutting processes, nucleation of only
the vortex ring would seem to be ruled out since there
would then appear to be no necessity for a circulating
current.

The process whereby the ring vortex contracts by cut-
ting through sequential annular layers of decreasing radii
has been discussed by Campbell and Evetts. ' They note
(attributing the observation to Frank) that the absorption
of a perpendicular vortex implies that there is a critical
angle between vortices at which the interaction becomes
attractive. This angle must be less than m/2 radians.
The reason for this can be seen in Fig. 2(b) where it is ap-
parent that the angle between nucleating vortices in the
layer exhibiting instability and neighboring layers of
smaller radii is always less than n. /2 radians. Frank's ob-
servation addresses the argument by Josephson that
while the free energy can be lowered by untwisting the
Seld lines, a large "activation energy" prevents the cut-
ting of flux lines.

The magnetic Seld and current associated with a new
model or an isolated vortex carrying a longitudinal
current has been given elsewhere. ' They are

B= [O,cEi(r), —Eo(r)],
J= [0,—E,(r), —cEO(r)],

where the E„are modified Bessel functions of the second
kind and c is an arbitrary constant proportional to the
longitudinal current. When c vanishes, this solution to
the Ginzburg-I. andau equations reduces to that given by
Abrikosov. This vortex model becomes unstable with
respect to a kink instability for very small amounts of
twisting, although there may be stable intermediate states
having a slight corkscrew form. For values of r large
compared to unity, J and B are perpendicular. Since the
vortex is subject to a kink instability for very small values
of c, the azimuthal flux will be small compared to the
quantized axial flux. Note also that the azimuthal flux is
not quantized.

The interaction between two Abrikosov vortices,
whose axial current vanishes, is repulsive if the vortices
are aligned so that their flux is in the same direction, and
attractive if they are aligned so that their flux is opposed.
The critical angle is m /2 radians. If the vortices are those
represented by Eqs. (6), the interaction becomes attrac-
tive at an angle y =m /2 —2p, where tanp =J, /&~
=cEo(r)/E, (r)~c for r &) l. This model therefore
satisfies the condition that the interaction be attractive
for an angle between vortices of less than m. /2 radians, al-
though c, and therefore p, might be quite small, con-
sistent with the analysis given by Campbell and Evetts.

C. Second hnear region of increasing paramagnetic moment

This region is characterized by the large step increase
in the voltage associated with flux flow. Such a large in-
crease indicates that there must be a new flux-flow mode
for this region. The linear increase in paramagnetic mo-
ment again implies that, on the average, the angle the
flux-line lattice makes with the symmetry axis must
remain constant.

In region B, it was suggested that nucleating vortices
were unstable and through subsequent flux-cutting gen-
erated the observed voltages. Because the elastic proper-
ties of the flux lattice within the body of the lattice itself
help maintain stability with increasing current, vortex in-
stability was restricted to those nucleating at the surface
of the sample. Here, at least a portion of the flux lattice
itself must become unstable. Since the outermost cylin-
drical layer of the flux lattice is constrained by intervor-
tex forces only on the "inside" of the layer, it is suggested
here that this layer becomes unstable resulting in the
large step increase in flux-flow voltage. Such a collapse
also eases restraints on the next adjacent layer which may
also become unstable with increasing current. The basic
sequence of Fig. 2 is still assumed to be valid.
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