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The effect of a surface on electronic Buctuations in anisotropic metals is studied theoretically. The
Coulomb interaction of the electron-hole excitations is taken into account self-consistently. A system
consisting of the Boltzmann equation for electronic Buctuations and the Maxwell equations for the
interaction Seld is solved with appropriate boundary conditions. The cross section of inelastic light
scattering is calculated. The scattered light observed out of the metal is a result of the collective
electron interaction with radiation inside the metal. The scattering cross section consists of the bulk
contribution of electron-hole pairs and plasmons, which differs from the scattering by an in6nite
metal only in the effect of the penetration of radiation in the skin layer. The surface contribution
to the cross section is attributed to the electromagnetic excitations of the nonradiative into-vacuum
surface plasmons (the sharp peak) and the radiative surface plasmons (the continuum with a peak).

I. INTRODUCTION

Inelastic light scattering is a known method for exper-
imental studies of electronic Quctuations. Recently, the
inelastic electronic light scattering has been observed
in various high-temperature superconductors (HTSC's)
in order to determine the superconducting energy gap
A. It has been found out that there is a peculiarity ap-
pearing below the temperature of the superconducting
transition at a low frequency transfer u 2A 200—
400 cm . However, more surprising is the fact that at
a larger frequency transfer, i.e., ~ 10 —10 cm, the
cross section depends neither on ~ nor on temperature;
on this background there are phonon peaks which are not
considered here. The Hat Raman continuum exists also
in rare-earth metals. 6 According to theory the electronic
contribution to the inelastic light scattering should di-
minish with increasing ~. In a pure superconductor or a
normal metal" s this occurs at ~ & v/b 10—100 cm
if 6 « v/b and at u & 6 if b, && v/b (see Ref. 9), where

b is the skin depth and v is the Fermi velocity. In a dirty
metal the cross section decreases ' at u )& 7 if the
scattering rate ~ ) A. The estimation of 7 based on
various experimental data for HTSC's (see, e.g. , Ref. 12)
gives w 10 —10 s 10 —10 cm for tempera-
ture T 100 K. Thus we should like to find a collisionless
mechanism of such nondecreasing behavior in the range

10 —10 cm, where the superconducting proper-
ties are not essential. The normal properties of the high-
temperature superconductors have been the most basic
problems of theoretical and experimental research.

We note that the abnormal behavior of the cross
section at large frequencies is explained by nesting on

the Fermi surface~s and by the strong electron-phonon
interaction. In Ref. 15 a conclusion has been made that
the Raman continuum is unlikely to come from conduc-
tion electrons because it is observed also in the insulating
phases.

The metal surface was ignored in the above mentioned
papers. However, the typical distances of fluctuations in
the optical frequency range are of the order of the skin
depth. For such distances the presence of a surface is
especially significant, because specified excitations exist
nearby. A contribution of the surface excitations arises
in the observable quantities.

A large number of papers has been devoted to the sur-
face excitations in the electron system. The historical
background of the field is given in a recent review in
the context of electron energy loss spectroscopy. Several
review articles have been published in Ref. 17.

In this paper we focus on the effect of the surface in
Raman light scattering, taking into account the electron-
electron interaction. %e shall see that the bulk and sur-
face plasmons may play an important role apart from the
electron-hole excitations. So far as the plasmon disper-
sion is concerned, our treatment differs &om the known
theories in accounting for the anisotropy of the electron
properties. We are interested in high-frequency trans-
fer 7 « ur and low-momentum transfer k ur„/c «
pz (u„ is the plasma frequency, p~ is the Fermi momen-
tum). For such transfers the dispersion of the surface
plasmons is important. Therefore the retardation of the
Coulomb interaction should be included. Apart from
that we can use the Boltzmann equation in dealing with
the fluctuations.
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The plan of this paper is as follows. In Sec. II we
calculate the modified density-density correlation func-
tion in terms of the generalized susceptibility by applying
the general Huctuation-dissipation theorem. The gener-
alized susceptibility is calculated taking into considera-
tion the electron-electron interaction which is described
by the Maxwell equations. In order to find the gener-
alized susceptibility we will use the Boltzmann kinetic
equation in the collisionless limit, including the scatter-
ing rate only for the estimation of the peak width. On
the electromagnetic field and the kinetic equation we ap-
ply the appropriate boundary conditions leading to all
the surface efFects considered in this paper. The integral
of the correlation function describing the inelastic light
scattering cross section is obtained taking into account
the distribution of the incident and scattered light in the
metal (the connection between this integral and the Ra-
man cross section is given in the Appendix). In Sec. III
the bulk and surface electronic Quctuations are found.
In Sec. IV the contributions of the electron-hole excita-
tions, the bulk plasmons, and the surface nonradiative
and radiative plasmons to the Raman cross section are
discussed.

dsp
b'n~(r, t) = p(p)hf„(r, t) (2)

is modified by the vertex factor p(p), and Sf'(r, t) is the
nonequilibrium part of the electron distribution function.
The correlation function (1) determines the cross section
of the inelastic light scattering. The factor

II. THEORETICAL FRAMEWORK

We calculate the density-density correlation function

K~.~(r, t; r', t') = (8n~. (r, t)bn~(r', t')),

where the density Quctuation

Hence the Fourier component of the correlation function
is directly related to the cross section of the inelastic
light scattering. However, if metal occupies the z & 0
half space, the electrodynamic problem should be solved
to connect the incident (scattered) radiation in vacuum
(z ( 0) with the incident (scattered) radiation in metal.
As shown in the Appendix [see (A14) and Ref. 19], the
cross section is expressed by an integral over z and z' of
two functions. One of them is U'(k„z;ur)U(k„z';sr),
determined by the distribution of the incident A~'l and
scattered A~'~ fields in the metal:

A~'l(r, t)A 'l(r, t) oc U(r, t)
= U(k„z; ur) exp[i(k, s —ut)],

where U(k„z;u) is given by (A16) and (A17),
co&'~ —co&'~, and k, = k ' —k,' are the &equency and
momentum transfers, respectively. The second function
is the Fourier transform K~,&(k„z,z', &u) of (1) with re-
spect to spatial coordinates, parallel to the surface s —s'
and with respect to time t —t'. We get the parameters e~'~

and e~'l which are complex and given by (A15). The fac-
tor p(p) could be complex also, since the damping for the
intermediate states can be included in the denominator
of the expression (3). The specific form of p(p) does not
play any important role because its dependence on the
momentum transfer is not essential for our calculations.

In order to calculate the Fourier transform of the cor-
relation function (1), we apply the general fiuctuation-
dissipation theorem,

K~,~(k„z,z'; u) = Im u(k„z, z', tu),
1 —exp —cu T

(5)

where o. is the generalized susceptibility in an external
field U(k„z; u) (4), h = kgb = 1, and

d p(bn~. (k„z;~)) = 2

p'(p)(hfdf(k,

z;(u))
(2vr) s

= —2 dz'a „z,z';u U k„z', u .

in the framework of band theory represents a sum of two
Feynman diagrams describing the light scattering. The
first one is quadratic in the vector potential A in the
Hamiltonian and is taken in the first order of perturba-
tion theory. The second one is calculated in the second
order of perturbation theory on the term linear in A in
the Hamiltonian. The subscript f denotes the index of
the band in which the carriers exist, the transitions hap-
pen into any band n, pf is the electron momentum ma-
trix element, m is the electron mass, and u&'~ and cu~'~

are the &equencies of the incident and scattered light,
respectively. In the expression (3) the light momentum
is neglected in comparison with the electron momentum.

For the infinite space e~'&, e&'~ are the polarization vec-
tors of the incident and scattered light, and the correla-
tion function (1) depends on the difFerences r —r', t —t'.

We calculate the nonequilibrium part of the electron
distribution function by using the kinetic equation

Bbf~ (r, (u)

Br

= [i(up(p) U(r, &u) —ev . E(r,(u)], (7)
d p

dE

where v is the electron velocity and fo is the nonfiuctu-
ating part of the distribution function, which gives the
Fermi distribution function for electrons in the metal
after taking the statistical average. The electric field
E(r, ur) represents the electron-electron interaction. For
a self-consistent determination of the field we apply the
Maxwell equation

2 4'

co�
.rotrotE(r, ur) — — D(r, u) = j(r, u),c c2
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where the electric current density

i(r ~) =, d'»(bf~(r ~))
27r 3

and D (r, ur) = eopEp(r, ~), where mop is the contribu-
tion of the 6lled bands.

To solve Eqs. (7) and (8) we take the Fourier transform
with respect to spatial coordinates parallel to the sur-
face s (the x axis is directed along k„k„=O): E(r, u) ~
E(k, z;u). Conservation of tangential components of
the electric and magnetic fields implies boundary condi-
tions at the surface z = 0 for the Maxwell equations (8).
We apply the boundary condition for the kinetic equation
(7) in the form of the specular reflection of electrons,

[bf (r, ur)]„=[bf (r, ur)]

(10)
e(p, ) v, ) 0) = e(p, ) v, & 0),

for z = 0. A more realistic boundary condition for the
distribution function (see Ref. 20) does not essentially
afFect the final results.

We can use the even continuation in the z & 0 half
space for the component E (k, z; u) parallel to the sur-
face and for the field U(k, z, u). For the perpendicular
component E,(k, z; u) we apply the odd continuation.

The solution of the kinetic equation (7) has the form

be(k, (u) = [ip(p)~U(k, (u)

—ev E(k, ur)]

One can immediately see that the expression (11)satisfies
the boundary condition (10) since

be(k, z = 0, (u) = 'be(k, k„&u)
dk,
27r

and we can change the signs of v, and k, conserving the
value of the integral (12). We assume that the coordinate
planes described above are the symmetry planes of the
crystal Hence . p(p) does not vary if the component v,
changes its sign.

By using Eq. (11) we obtain the current density

c j

UI' —2—H„(k, z = 0; ~), (16)

k—k, E +~ k ——e„~E,= UI'„
(u' & 4vri ~

(17)

4+i(u de(k, z = 0;(u)
UI'y —2

C dz

where e p(k, u) is linked to the conductivity tensor,

4+i
e p(k, u)) = e p+ o p(k, ur). (19)

c227(k, ur) 'i * c2 "

For simplicity, we assume that e p has the diagonal form
in the coordinate system connected with the metal sur-
face plane (z, y) and the scattering plane (z, z) and we
omit in (16)—(18) the arguments k, ur of E,I', U, and
C~p.

Before the Fourier transformation (with respect to z)
the Maxwell equation (18) contains the second deriva-

tive —&,E„(k,z;u). After the even continuation this
term reveals a b-like singularity at z = 0 and the
additional last term of the right side appears in the
Fourier transform (18). Also in the coordinate rep-
resentation of Eq. (16) the derivative term has the
form —&",E (k, z; ur) + i k &" E,(k, z; ur) and it gives

2&~ E (k, z—= 0+;u) + 2ik E,(k, z = 0+;ur) for the
Fourier transform (16). By means of the Maxwell equa-
tion one can see that the derivative term gives the mag-
netic field on the right side of (16).

We find the solution of the Maxwell equations (16) and
(17):

j (k, (u) = o p(k, (u)Ep(k, (u) +I' (k, (u)U(k, (u), (13)

where

+k k, I', (k, u))

2i(uH„(k, O;(u) ( 2 cu
(20)

2ie2 dS v vpo.~p(k, (u) = (14) with

(15)

CO

17(k, ~) = — ~~~(k, (—u)~, ~(k, (u)
C C

—k'e~~ (k, cd) —k.'eg, (k, ur) (21)

Here the integration is taken over the Fermi surface, since
we assume T (& e~.

Substituting (13) into the Maxwell equation (8), we
arrive at the equations determining the electric field in a
metal:

and an analogous expression for E . The axes of our
coordinate system are chosen along the crystal symmetry
axes and k„= 0; hence I'„(k,~) = 0 and E„(k,u) = 0
[see (15) and (18)].
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In vacuum (z & 0) the electric field E (k, z;u)
E (k, z = 0;~) exp( —iq, z), q = [((d/c)2 —k2]~, and
the electric and magnetic fields are interrelated by the
expression

dz dz'U'(k, z; (u) U(k, z'; ~)K~,~(k, z, z'; (u).
0 0

(2S)

E (k, z = 0; (d) = q—,—H„(k, z = 0; (d).
4)

(22)
According to (5), (15), and (26), this integral is propor-
tional to

The fields E (k, z; u) and H„(k, z; ur) are continuous at
the surface z = 0. Hence by using the Fourier transform

dk
Z(k, ~) = —Im U'(k, co)Is(k, ~).2' (29)

E (k, z =0;(d) = 'E (k, ur)
dk,
2'

and the formulas (20) and (22), we find

H„(k, z = 0;(u)

where

Il(k, (d) ! iq. —+ 21z(k, (d) !, (23)c

Ii(k, (u) = ' '
! k ——„(k,ur) !

I' (k, )
dk, U(k, (u) )'

~

III. THE BULK AND SURFACE
CONTRIBUTIONS TO THE ELECTRONIC

FLUCTUATIONS

A. The bulk excitations

Zi(k, ~) =2 '!U(k, ~)l
dkg

ds
x l7(p)l k vz6((o —k v). (3o)

The first term of the expression (29) [see (27)] rep-
resents the bulk unscreened electron-hole fiuctuations.
Separating the imaginary part we get this contribution,

+k.k.r, (k, ~),

I2(k. , ~) = ~ k I k. ——,e..(k, ~) I.dk. 1 (,

(24)

(25)

The imaginary part appears because (d in (29) contains an
infinitesimally small imaginary quantity. An expression
similar to (30) has been obtained for superconductors by
applying the Green function method in Ref. 7 (see also
Ref. 8).

The integral over the Fermi surface in (30) differs from
zero if (d & max(k v) on the Fermi surface. If (d « kv,

As long as the field H„(23) is known, we can find the
field E (20) and calculate the generalized susceptibility
(6):

lp(p)l~z6((d —k v)f

ats
(6n~. (k„z;~)) = 'e* *'Is(k, ~),

dk, ;~,
2' (26) = -„I~(n)l*~ '&(r ) / 2,„, (»)

dS p'(p)
Is(k, (d) = 2

( )s
x [~p(p)U(k, (u) + iev E(k, ~)], (27)

where E(k, u) is given by (20) and (23). As mentioned
above [see text before Eq. (4) and (A14)], we are inter-
ested in the integral

where p, = cos(k, v), and the bar denotes averaging over
the Fermi surface,

dS ( dS
6 =

(2z') v ( (2n) v) !6 p

For normal incidence and scattering by using (A17) we
obtain the following asymptotic form of (30):

d,'S
~i(k- = o ~) = 21~(p)I'v '6(v)

(2z)sv
X g

c. )
(in Icl + c'

l
for vl('I » cu

for vl(l « ~,
(32)

where ( = A&*i + A~'l = (i + i(,'2 [see (A10) and (All)
with k = 0].

The second term in the parentheses of the upper for-
mula in (32) becomes important at small absorption g2
of the incident and scattered light. The expression (32)
has the form of a wide maximum with a height given by

the upper expression in (32) at ru vl(,'l.
If in the field E(k, ur) (20), only terms proportional to

U(k, (d) are left, the second term in the square brack-
ets in the expression (29) represents also the bulk effect.
To analyze this term we consider normal incidence and
scattering, i.e., k = 0. Hence I' (k, ur) = 0 and
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Z2(k = 0, (u) =—

where

Im f *]U(k„~)]'

I', (k„(d) dS p' (p)v,
e„(k„(d) (27r)sv (u —k v,

(33)

16m 2e2

m vu ~ „(0)p2/2r,

I', (k„)= 2e(d
(2m)sv &u —k, v,

' (34) &(~) = —.f *]0(k*,~)]*k.'4(~* —~.*..(k*)) (4o)

See dS v
ezk (kz & (d) e (35)

~0= ';[~'-~,'..(k )l (36)

where the dispersion relation for bulk plasmons

(u„'„(k,) = ur„'„(0) + u'k,' (37)

is introduced. The formula (37) determines the electron
plasma &equency

2

and the dispersion parameter u,

dS 4 (dS
tL

v ) v )
which is of order of the Fermi velocity, u v, .

In the same limit k, v (( u we have

Let us consider two limiting cases. If k, v )& ~, the
imaginary part (33) appears due to (~ —k, v, ) in the
denominators of (33)—(35), giving the h function. This
is the contribution of the electron-hole excitations. Ex-
tracting the imaginary part and performing the integra-
tion we arrive at an expression similar to (30) and (31).
As a result we obtain for Zq(k = 0, (d) + Zz(k = 0, (d)
the expression (32) in which the substitution!p(p)!
!p(p) —p(p)! should be made. This means that in the
range ur v!(! (32) the density fluctuations are screened
due to the Coulomb electron-electron interaction. Hence,
Raman scattering by electron-hole excitations exists only
if p(p) is anisotropic. A similar result was obtained by
the Green function method in Ref. 21.

In the second limiting case k, v « u, the imaginary
part (33) appears due to the zero of e„(k„ur). It is
related to excitations of the bulk plasmon. Near zero the
dielectric function (35) has the known form

8vre2 dS 2 ( k, v, )
e„(k„(u)= e;, —, s v,

I
1+

2m sv ( u )

At this point we need to remember that a plasmon has
damping. For weak scattering (1/7 &( u) by a short-
range impurity potential, it is easy to see that damping
can be accounted for by the substitution (d -+ ur + i/~ in
the kinetic equation (7). Hence the plasmon dispersion
law has the form ur = sr~„(k, ) —i/2w and the 8 function
in (40) is replaced,

b(~' —ur', (k, ))

(41)
4+7~~.,(0) (]~ —~~„(k,)] + (2v)

—')
where u~„(k, ) is given by (37).

The integral (40) with (41) and U (A17) can be eval-
uated explicitly. Its value is determined by the relation
between the widths of the integrand functions. In the
case when the width of the function U (A18) is less than
the width of (41), i.e. , u2!(!(2 (& u„„(0)/7', we must
integrate in (40) only !U!2 taking the other factors at
k, = (q. We obtain

2

~(~) =
4m~~..(0)74' {]~—~~..(k)] + (27) )

(42)

2 !(!'k,
2r(d2„(0)u2 (( (' k ) + 4q (

(43)

where k, = (2(d~ (0) [u —(d„,(0)]) ) 2/u. The expression
(43) has the form of a sharp peak. The maximum value
of (43) is equal to C!(!/22ru (d„, (0)(z, C = 1 for (z » (2
and C=3 ~ /4 for(q &&(2.

Here the location of the maximum ur = (d„„(0) +
u2(~2/2(4)„„(0) is determined by the condition that the
plasmon wave vector equals the sum of the incident and
scattered light vectors. The maximum value of (42) is

/2~~„'., (0)4
In the opposite case, i.e., u2!(!2(2 )) u„„(0)/r, the

width of U is larger than the plasmon damping. Then
the integral (40)

2ek, dSr, (k„)= ', ~(p)v,'. (38)
B. The surface excitations

Substituting (36)—(38) into (33) we obtain

Z2(k = 0, (u) = Mg((d)sgn(u,

where

(39)

If we substitute the terms proportional to H„(20) in

(29) for E(k, (d) we obtain the surface contribution of the
electronic fluctuations. The imaginary part (29) arises in
the parentheses of (23) at kv « ur, as we will see. Putting
k = 0 in e p [(19) and (14)] we integrate (25):
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c2 (k' —e„(0,id)id2/c2't

2id2 ( e (O, id)e„(0, id) )
(44)

where e„(0,id) is given by Eq. (35) with k, = 0, and e

is obtained &om e„by the substitution v -+ v . The
expression in the parentheses in (23) is proportional to

g(k, id) = i
~

——k(c )

06—
CP

3

(k2 —e„(0,id)id2/c2i

( s~~(0)id)e„(0, id) )
(45)

03

Now we substitute in Eq. (29) for E(k, id) the terms pro-
portional to H„(20) with I' (k, ~) given by an expression
similar to (38). We obtain

Zs(k, id) =—xe2
Img(k, id)~ J(k, ~)~

( dS)
4~") '

dk, U(k, (d)

2x 17(k, id)

x k ——e„(0,id) p(p) v2
C

(46)

0
0

ckx ~eV

1.0

pole on these branches actually:
For low frequencies id « id', where id' u~ is the

lowest zero of the denominator of (47),

FIG. 1. The dispersion (47) of the surface piasmon for
s&(0, rd) = 3 —(1.5/u) and s„(0,td) = 3 —(0.6/rd) .

+k2p(p) v2 .
id f ~2

k (cd)= —i1-
c ( 2id„2 (0)eo )

' (49)

The imaginary part of g(k, rd) arises under the condi-
tion id2/c2 —k2 & 0, which means that the electric field of
the electronic fluctuations is nonradiative into vacuum.
Then g(k, id) has a pole which determines the dispersion
law of the surface plasmons:

4f egz (0) id) [I —e~~(0) td))
c2 1 —e (O, id)e„(0, id)

(47)

In the isotropic case Eq. (47) gives the well known dis-
persion relation

(d 6 4) (d p —
c2 1+ e(rd) c2 (u2 —2id2' (48)

where the plasma &equency of electrons is
(4vr p, ie2/m) i/2.

We do not know reliable experimental data about
e p(id) for HTSC's in the interesting frequency inter-
val cu = 0.01—1 eV. For example, we have taken the
parameters id~ (0), id„„(0), 2, P„&om Ref. 23 for
YBa2cu30y g. The experiments in the cited papers
were interpreted by the 1—2 Drude and the 7—13 Lorentz
terms In Figs. . 1 and 2 the function (47) is shown
for two cases: Fig. 1 for e (O, id) = 3 —(1.5/id) and
e, (0, id) = 3—(0.6/id) 2; Fig. 2 for e (0, (u) = 3—(0.6/id)
and e„(O,id) = 3 —(1.5/w) . The first set corresponds
to the c axis orientation along the normal to a metal sur-
face. In the second case the normal is directed the along
the a axis. The upper branches existing in the expression
(47) are not shown since the Green function (45) has no

c ' (e (0, id)e„(0, id) —1)
Due to the small factor v/c, the expansion in powers of
k v/id, applied above, is valid outside the very narrow
region near (dy.

Separating the imaginary part at the pole of g(k, ur)

0.3
4l

3
015

Q5

ckx teV)

I

1.0

FIC~. 2. The dispersion (47) of the surface plasmon for
e (O, id) = 3 —(0.6/id) and e, (0, ~) = 3 —(1.5/id) .

Near the threshold (d —+ (dq

X/2

k. (~d) = —
(

id i ( (di
(50)

C (idi —id )
In the integral (25) and (44) the essential value of k, is
of the order of
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(45) we get

(O, id)e„ (O, id)[1 —~„(0, (d)]'~2

[c (O, id)e„(0, u)) —1]

xeric(k —k (id)), (51)

IV. SUMMARY AND CONCLUSIONS:
THE RAMAN SCATTERING CROSS SECTION

By using (5), (6), (26), and (29), the Raman cross
section (A14) can be rewritten in the form

where k2(id) is given by (47).
Damping of the surface plasmon can be accounted by

the collision &equency v . Thus we get the shape of the
peak (51):

d-(k. , -)=I' "" 'I
(mchid ~'l ) 1 —exp( —id /T)

k,' ~'~ d ~'~ dn~'~
x

c(2m)s
(57)

h(k,' —k'(id)) m (52)
xvg k2 —k2 u)

where for u & ~q

1 7C2 ~2 ~2 2'

The surface plasmon is the well deined excitation at
small damping

T (( 4(idi —ld). (53)

The imaginary part of g(k, id) (45) arises also at the
condition id /c —k2 & 0, which means that the electric
field of the electronic fiuctuations is radiative into vac-
uum Rom the metal surface. In Figs. 1 and 2 this region
is on the left side of the dashed line. In a metal the elec-
tromagnetic field decreases for the same f'requency range
~ & ~q. We de6ne this excitation as the surface radiative
plasmon. Here the imaginary part

8
1 —exp( —id/T)

(58)

where

~ = ~' =
I

~—+ &i
I l~(p) —~(p) I' (59)

Let us discuss the frequency dependence of the cross
section taking into account the results of Sec. III. Be-
low we will discuss only the Stokes case id & 0; however,
the consideration can be transferred for u ( 0 keeping in
mind the Bose factor in (57). If the incident and scat-
tered light frequencies are in the optical frequency range,

id~'l, the parameter ( [see (15), (A10), and (All)]
has the value I(I id''l ge(ui'l)/c The .electron-hole
excitations give a continuum around the low-&equency

transfer id „vl(l (v/c)id~'l ge(u~'l) [see (32)] of a
width Au'" u1~~. The maximum in the cross section

(57) is determined by

4 fe2v l did ~'l dna'l
d+(~dmax) c 4J

—Img(k, id) =
I

——k

(id2 2
k2 —e„(0,id)A&2/c2 )

c e*~( '(d)e

Xsgnu.

If ~ &( ~q we obtain

—Img(k, (u) = (~d /c —k )'~

((d ld

(54)

and Cz is of the order of unity.
In the range of a large &equency transfer, ~

there is a contribution of the bulk plasmons, which has
the form of a sharp peak [see (39)—(43)]. The function

g(u) (40) possesses the following maximum value and
width A~:

~(~ -) = IIl'~/2~~,'..(0)&2

and

b,(u = id „—(u„(t,'i) 1/2~

Using D(k, id) (21) with e p(0, id) and U(k, u) (A17)
we integrate over k, in (46),

for u'I(l(2 « id'„(0)/~,

&(~--) = I&l/2«'~,'..(o)&'

J(k., ~) =
I

——
I
(a. —iqg-.„)'Ca2 l

V ".)
where

(56)
and

&~"= ~-- —~~(&i) = u'lt'1&2/~~-(0)

(61)

C c2
ai ———(k —e„~ /c ) 7(p)v, a2 = —p(p)v„

QJ (d

for u l&l(2 » id -(0)/~.
The maximum value of the bulk plasmon peak is given

by (58), where

(~2 ) 1/2

as =
I

—, e~~e,.—k'e
( c j

v
l~(p) I'.

n.Q id~, (0)
(62)

and arguments of e p(0, id) are omitted. g is given in
(A16), (A10) and (All).

There is a surface plasmon contribution in the cross sec-
tion. Consider for simplicity normal incidence of light.
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The wave vector transfer k is determined by the scat-
~(&)

tering angle, k = sin 8. The surface plasmon gives a
~(~)

sharp peak at 0 defined by the condition sin8
k (ari), where k (u) is given by (47), (49), and (50). For
&equencies ~ (( ~q the peak is situated at

J(k, ~) = c &(p)v /(u (64)

Estimating (46) we get the height of the surface plasmon
peak in the form (58), where

2(u„ (0)e )
The shape of the cross section (57) is described by (46),

(51), and (52), where J(k, u) (56) depends on ( weakly:

(62), (65), and (68) implies the small factor v/c. For
the scattering by the bulk plasmon this factor can be
compensated, increasing the incident and scattered light
frequency since ( oc (u~'l + u&'l)/c. Inelastic scattering
of x rays by the surface and bulk plasmons has been
theoretically investigated in Ref. 24. The scattering cross
section by the surface plasmon excitations includes the
factor (v/c) [ui/(uri —&u)]i)'2 which does not exceed unity
[see (66)].

The observation of Raman light scattering by the elec-
tronic excitations is preferable in the resonant conditions
for p. Due to a large difference between the scattering
cross sections by the electron-hole and plasmon-type ex-
citations, the Raman continuum is unlikely to come from
plasmons. The consideration of other collective bulk and
surface excitations is currently under way.

(65) ACKNOWLEDGMENTS

and the width b, res = A&2/2ru2 (0). At the threshold
~ ~ ui the peak height (65) is limited by the condition

(4)i —4P )
sin8 &g 2 7'~

'U
(66)

which means that the surface plasmon damping is small
and the expansion in powers of kv/u is valid.

The line shape of the surface plasmon peak for u «
u('~ is described by the expression

(67)

where do P(sr~ ) is given by (58) and (65).
Now we consider the contribution of the surface radia-

tive plasmons for small frequency transfer ck & u &( ~i.
In this case the cross section (57) is described by (46)
and (55). This contribution exists for the scattering an-
gles 0 & ~&') sin8 ( ~ and reveals a sharp maximum at

= (~/u~'l) [1 —u /u~'lu (0)e ]. The maximum

value of the cross section do +P(u ) by surface radiative
plasmons is given by (58), where

8 = S 3~2— ~p(p)~'c ~yam(0)Ca
(68)

and the width b,~ P = ~ /ur„(0)e . The angular and
&equency dependence of the surface radiative plasmon
continuum has the form
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of the manuscript. This research was made possible in
part by a grant from the International Science Founda-
tion. One of us (S.K.) thanks the Polish Research Com-
mittee of Science for financial support (Grant No. 2 1299
91 01).

APPENDIX: RELATION BETWEEN THE
RAMAN CROSS SECTION AND THE
GENERALIZED DENSITY-DENSITY

CORRELATION FUNCTION

We write the Maxwell equation for a scattered field in
the metal as

1 B2D 4~ BjrotrotE+-
c2 Bt2 c2 Bt

(A1)

where the part of j proportional to the scattered field
is included in the induction D. On the right side of
(Al) only the part proportional to the incident field is
retained. By using the efFective Hamiltonian

2 3

mc 27r s

&&& p(p)| (r t)

which describes the scattering, we find the electric cur-
rent

disap(e, ~) j (r, t) = -c = — bn p(r, t)A&' (r, t),
bA mc

where
d p~~-p(' ') =
2 .& p(p)~&p(r t)

(A2)

(A3)

A comparison between (59), (62), (65), and (68) shows
that the scattering by the volume excitations (59) and
(62) increases at (2 m 0. If the sample thickness d &(

should be substituted by d. It that limiting case
the scattering cross section is proportional to the sample
volume. The scattering by the plasmon-type excitations

K()z(') z;z(')) —
J d z J d(z'(, ' ')K(z Z) (A4)

and the tensor 7 p (p) is given by the expression in square
brackets in (3).

For the Fourier transform with respect to the coordi-
nates s parallel to the surface and time t,
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the Maxwell equations have the form (z ) 0)

(~(s) ) 47r,~(s)
+ k:

dz dz ( c j c

(A5)

~(s)
ik(') * + k(') —

~
~
e„E,=

z & c j C
gZ)

(A6)

d2E ~(s)

Ec)
(A7)

d Ez (s)z 4~&~

dz' ' * c' (A8)

(A9)

where the z axis is directed along k,' and we omit the

arguments (k('), z;u(')) of E and j . If the frequency
ur(') is in the normal skin range, e p depends on ~(') only.

Determining E, from (A6) and substituting into (A5),
we get an equation for the parallel polarization [E =
(E,O, E,)] of the scattered field,

half space z ) 0.
The normal component of the scattered energy Bux

into vacuum is proportional to ~D~z&u(')/ck,
' for the par-

allel polarization and to ~D~2ck, ') /ur(') for the perpendic-
ular polarization. The current density (A2) entering in
(A12) is proportional to the incident field in the metal
A('~. For the normal skin range we have A('~ = Be'
Here A(') is given by (A10) or (All) depending on the
polarization of the incident field with the substitution
cu('~ ~ ~('~. Relating the constant B to the amplitude
of the incident field in the vacuum and dividing by the
energy Bux in the incident Geld. , we obtain the Raman
cross section

do. = dzdz'K~, ~(k„z, z'; u)) U'(k„z; (u)
0

2 k( ) (s)~(s)dQ(s)

(ck(s) /~(s) )
1/2

( ) ( )es,s (cks /(d )

At + e~~k.(~)

(~(s)k(s) /c) 1/2

(A15)

where K~,~(k„z, z';sr) is the Fourier transform of (1)
with respect to s —s', t —t'. The components e ' are
given by

( ') —k'~(e) ~(s)

c ) e„(~('))
(A10)

The equation (A7) for the perpendicular polarization

[E = (0, E„,O)] has the form of Eq. (A8) with A&' sub-
stituted by

for the scattered &equency ~('~, where e p

e /i(u(')), A~
——AI', and Aq

——A,
' . The components

are obtained by the substitution u('~ ~ u('~.
In (A14) U(k„z;u) denotes the product of two ex-

ponents describing the distribution of the incident and
scattered Gelds in the metal,

~(s)
( ()) k()

c )
(A11)

U(k„z; (u) = exp(i(z), ( = (i + i(2 ——A(*) y A('),

(A16)

The solutions of Eqs. (A7) and (A8) decreasing for z ~
+oo are of the form

2~(u('~
E(z) = |"e'"'— dz' J'(z')e'"~' ' '.

Ac2
(A12)

For both polarizations the scattered Geld in vacuum

(z & 0)

E(z) = D exp( —ik,' z), (A13)

with k(' = —k '

The constants C and D are determined kom the con-
ditions of continuity of the tangential components of the
electric and magnetic Gelds at z = 0. They are expressed
by the integrals of the current density operators over the

and has the Fourier transform

U(k, ur) = dzU(k„z; u) (e'"*' + e '"*') = 2i(
0

(A17)

If the incident and scattering &equencies are below the
transparency threshold, then (i (( (2 2/8, where b

is the skin depth for the &equency ~('~. If the incident
and scattering frequencies are in the transparency range,
then (i )) I,"z and the expression (A17) has a pole if the
momentum transfer k equals the sum of the wave vectors
of the incident and scattered light in the metal I,'i. Near
the pole the expression (A17) takes the form

U(k„(u) = (A18)
(i —k, + i(2
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