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We present an improvement over the nonorthogonal tight-binding molecular-dynamics scheme
recently proposed by Menon and Subbaswamy [Phys. Rev. B 47, 12754 (1993)j. The proper
treatment of the nonorthogonality and its effect on the Hamiltonian matrix elements has been
found to obviate the need for a bond-counting term, leaving only two adjustable parameters in
the formalism. With the improved parametrization we obtain values of the energies and bonding
distances which are in better agreement with the available ab initio results for clusters of size up
to N = 10. Additionally, we have identiSed a lowest energy structure for the Si9 cluster, which to
our knowledge has not been considered to date. We show that this structure (a distorted tricapped
trigonal prism with Cg symmetry) is also a minimum at the Hartr~Fock level and in approximate
density-functional theory, and should therefore be seriously considered as a candidate for the ground-
state structure of the Sie cluster.

I. INTRODUCTION

The study of small semiconductor clusters has been
a very active field of research in the past two decades.
From the theoretical point of view, these systems re-
quire a fully quantum-mechanical description, due to the
strongly directional character of the covalent bond. On
the other hand, accurate, full first-principles calculations
such as Hartree-Fock with correlation corrections, ~ 2 and
the local density approximations (LDA) are extremely
demanding from the computational point of view. In this
context, a number of authors3~ have derived approxi-
mate, semiempirical tight-binding schemes for the calcu-
lation of total energies in silicon clusters. The advantage
of the semiempirical tight-binding Hamiltonians is that
the system is still described in a quantum-mechanical
manner, while the computational effort is kept small,
since a minimal (sp) atomiclike basis is used and the
interaction matrix elements can be parametrized.

Until recently, most of the tight-binding paraxnetriza-
tion schemes proposed for the study of silicon clusters
have assumed an orthogonal basis of atoxniclike states.
This basis is not explicitly known and depends on the lo-
cal environment. This is so because it originates, in prin-
ciple, &om an orthogonalization of the realistic atoxnic
basis, a process that depends on the short and interrne-
diate environment. The Hamiltonian matrix elements
obtained using this orthonormal basis are, therefore, not
readily transferable &om one environment to another.
This is especially important in the study of clusters,
where a great variety of bonding coordinations and con-

figurations can occur. But even for perfectly tetrahedral
bonding, the use of a nonorthonormal basis can have im-
portant advantages, as shown by Verges and Yndurain. r

Mercer and Chous have recently proposed to incorpo-
rate the effects of the local environment in an orthogo-
nal parametrization by including two-center intra-atomic
matrix elements, which depend on the local structure.
Alternatively, in order to circumvent the shortcomings
of the orthogonal formulations, several authors have de-
veloped total energy schemes in terms of nonorthogonal
tight-binding formalisms. Sankey and Niklewski devel-
oped an approximate first-principles method based on the
Harris functional9 version of LDA. The method was suc-
cesfully applied to a variety of systems, including small Si
clusters. m Menon and Subbaswamy~~ recently proposed
a parametrized nonorthogonal tight-binding scheme for
the study of silicon clusters (referred to, in this work, as
the MS model). The main idea is to obtain a trans-
ferable parametrization scheme by including explicitly
the effects of the nonorthogonality of the atomic basis.
These authors have demonstrated that the inclusion of
the nonorthogonality in the tight-binding paraxnetriza-
tion leads to a better transferability, reBected particu-
larly in much better vibrational &equencies, while keep-
ing the number of adjustable parameters to a minixnuxn.
The same method was applied successfully in the study
of carbon clusters and fullerenes. ' In this vrork, we
propose a modification of the MS model, which will al-
low us to obtain ixnproved results for the minimum en-
ergy structures (bonding distances and total energies) of
small silicon clusters, while keeping the same number
of adjustable parameters. More importantly, we show
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that it is possible to obtain improved results even with-
out using any bond-counting term, found necessary in
other works. ' ' Our model describes properly the de-
pendence of energy on the local environment by means
of the quantum-mechanical electronic energy, so that no
further corrections are necessary.

This paper is organized as follows. In Sec. II, we briefly
review the main ingredients of the MS model. In Sec. III,
we describe the improvements we propose, and the alter-
native parametrization scheme. In Sec. IV, we present
the results of our work, and compare them with earlier
ab initio studies. ' Finally, we present our conclusions
in Sec. V.

II. BACKGROUND:
THE MENON-SUBBASWAMY MODEL

In their original work, Menon and Subbaswamy
introduced a nonorthogonal tight-binding molecular-
dynamics scheme for silicon clusters. Although the de-
tails of this method are described in Ref. 11, we will
briefly review the main ingredients here. The total en-

ergy of the system is described as the sum of three terms:

U = Ue] + Urep + Ubond

where U, ~ is the electronic band structure energy, de6ned
as the sum of the one-electron energies eg for the occupied
states

(2)

This term describes the quantum-mechanical bonding
energy, and is obtained by diagonalizing the electronic
structure Hamiltonian. The particular way in which the
Hamiltonian is constructed for a given atomic configura-
tion constitutes the main body of the MS method, and
will be discussed in detail later below. U„p is a classi-
cal repulsive term that depends on the distances between
pairs of atoms

(3)

Menon and Subbaswamy take y(r) to be short ranged
and to scale exponentially with distance

Cd; —R)
ns = ) . exp I

~

+ 1

with R, = 3.5 A. and 6 = O. l A. a and 6 are fitting
parameters that are determined so as to bring cohesive
energies of several clusters in close agreement with the
corresponding ab initio values. We will discuss the op-
timum values of a and b in Sec. III. It is worth not-
ing that although previous workers using the orthogonal
tight-binding schemes ' needed a quadratic polynomial
for the 6tting of the bond-counting term, Menon and
Subbaswamy~ found a linear polynomial (Eq. 5) to be
adequate.

We will now focus on how to obtain the Hamilto-
nian and overlap matrix elements in the MS method. A
nonorthogonal basis of atomic orbitals (P;} is assumed,
in which the Hamiltonian and overlap matrix elements
must be computed:

HU =,*H ~d r,

s;, = f p;p, d~r.

The one-electron energies e& are obtained by solving the
generalized eigenvalue equation

(H —sgS)C" = O.

The problem obtaining the matrix elements H;& and SU is
solved using a prescription given by van Schilfgaarde and
Harrison. 4 The essential idea is to use universal orthog-
onal tight-binding parameters (Harrison parameters~s)

VU, corresponding to matrix elements of the Hamilto-
nian in an unknown orthonormal basis for tetrahedral
compounds, and which, therefore, are not directly trans-
ferable between different environments. Van Schilfgaarde
and Harrison proposed to construct the nonorthogonal
matrix elements from V;z using an approximate prescrip-
tion derived Rom the tetrahedral case, in the spirit of
the extended Hiickel theory. In particular, the overlap
matrix elements are given by

2VU

K(e;+ e, )
'

and the nonorthogonal Hamiltonian matrix elements by

Ub „g———N [a(ng/N) + 6], (5)

where P = 4/ro, (ro ——1.12 A, one-half of the dimer
bond length), and do ——2.35 A. (the bond length for the
crystal). Finally, following previous works, Menon and
Subbaswamy introduce an ad hoc bond-counting term
Ubond of the form

where

(S„—2~3S.„—3S~„)

is the nonorthogonality between two sp bonding or-
bitals. The interaction matrix elements, H,-~ and S,~,
thus obtained are more transferable between different en-
vironments than the original orthogonal parameters VU,
since the effect of the different overlaps in different envi-
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ronments is explicitly included.
The overlap and Hamiltonian matrix elements S;~ and

H,~ depend explicitly on the distance between the atoms
through the dependence of the»niversal parameters V;~.
These are two-center interactions, which are calculated
within the Slater-Koster scheme, as a function of the
interatomic distance and the direction cosines of the bond
angles. The scaling of the Slater-Koster parameters Vpp~„
is taken to be exponential with the distance d between
the two atoms gp(K) = —0.398K + 2.428K —2.693 (14)

available for 6tting in U ~ and U„~are the overlap pa-
rameter K [see Eqs. (10) and (ll)] and the coeflicient of
the repulsive term go [see Eq. (4)]. We follow the same
procedure as in Ref. 11. We determine K and yo by im-
posing the condition that both the correct bond length
(2.24 A.) and the vibrational frequency (511cm i) for the
Si2 dimer be reproduced. The 6rst condition is fulfilled
for every K if yo is given by

&ii „(d)= &ii ~(do)e

where o. = 1/v'e. This exponent o. is taken to repro-
duce the slope of the Harrison's d 2 scaling lawis for
distances close to the equilibriura distance of Si in the
bulk diamond structure. This simple exponential scaling
is found to be adequate for the clusters we have studied
in this work. As in the work of Menon and Subbaswamy,
we use Harrison's universal parameters in the context of
the Slater-Koster scheme for silicon: e, = —13.55 eV,

—6.52 eV, V„=—2.37 eV, V,„=2.52 eV,
V~ ——3.32 eV, and V„„=—1.07 eV.

III. THE NEW PARAMETRIZATION SCHEME

We now describe the proposed improvement over the
method used by Menon and Subbaswamy, sketched in
the preceding section. It is clear from Eq. (10) that the
overlap matrix elements S;~ must have the same scaling
with distance as the Harrison's parameters V;z, since they
are proportional. However, the Hamiltonian matrix ele-
ments H;~ themselves will have a different, more complex
scaling, since they also depend on the nonorthogonal-
ity parameter S2, which in turn depends on the overlaps
through Eq. (12). Menon and Subbaswamy neglect the
effect of distance dependence of S2, evaluating it at the
crystal bond length (do), and assume the distance depen-
dence of H;~ to arise solely &om Vi in Eq. (12). This de-
pendence of S2 on the distance, however, can have impor-
tant effects, especially in clusters where the bond lengths
are significantly different from those in the bulk crystal.
Therefore, the correct treatment of the nonorthogonality
for any arbitrary bonding environment requires S2 to be
computed at the actual atomic separation, so that there
be no corapromising of accuracy and transferability of
the Hamiltonian matrix elements. With this in mind, we
incorporate the distance dependence of S2 explicitly in
the formalism. As will be shown in Sec. IV this will im-
prove the results significantly, both for the energies and
the equilibrium distances of the clusters considered.

Since the details of the scaling of the Hamiltonian ma-
trix elements are di8'creat &om the work of Menon and
Subbaswamy, we had to reoptimize the electronic inter-
action parameters and the repulsive energy. The scal-
ing exponents of the repulsive energy (P) and the in-
teractions (n) are unchanged. The interaction param-
eters Vpp ~ which are derived &om Harrison's universal
scheme, also remain unchanged and not used in the op-
timization. Thus, the only two adjustable parameters

where yo is in eV. Imposing the second condition 6xes
the value of K at 1.903, which in turn leads to yo ——0.486
eV.

We next discuss the bond-counting terra given by Eq.
(5). As described earlier, this term was introduced a pos-
teriori as a correction to the cohesive energies of clusters
of difFerent sizes in order to obtain good agreement with
the ab initio values. Although several authorss'4'ii have
made use of this bond-counting correction to the cohe-
sive energy, its physical origin seems somewhat unclear,
if not unjustified. Moreover, its usage in molecular dy-
namics is particularly awkward, since the magnitude of
the correction depends on the number of neighbors of
each atom, defined by a somewhat arbitrary cutoff [for
example, in Eqs. (5) and (6) the range of the term is
given by R,] In an a.priori sense, all the effects of local
coordination should already be present in the electronic
energy term in Eq. (2). Menon and Subbaswamy found
the optimum values for the parameters entering in the
bond-counting term [see Eq. (5)] to be a = 0.75 eV and
b = —0.25 eV in their scheme. The relatively large value
of a indicates that, in the MS model, the correction to
the cohesive energy is largely dependent on the local co-
ordination. Ideally, one would like a to be small, since
that would indicate that the electronic energy is accurate
enough to describe all the bonding effects. Note that b is
an additive constant that only shifts the cohesive energy
by the same amount for all systems.

In order to determine the values of a and b in our
parametrization scheme, we follow the same procedure
as outlined in Ref. 11. We calculate the minimum energy
structures of silicon clusters of size up to ten atoms, opti-
mizing the interatomic distances to minimize the energy
(the results of this study will be analyzed in Sec. IV).
We next determine the optimum values of a and b that
will bring the cohesive energies of all the clusters in close
agreement with the ab initio values. ' We find that the
best fit is obtained with a = 0.08 eV and b = —1.4 eV.
We see that these values are quite different f'rom those of
Menon and Subbaswamy. In particular, a is very small,
suggesting that the correction to the cohesive energy does
not significantly depend on the local coordination, and its
main eKect lies in merely shifting the zero of energy of the
atomic states. In fact, we find that very good agreement
can also be obtained using a = 0 eV and b = —1.4 eV. In
Table I, we show our results for energies using both sets
of parameters, and compare them with the correspond-
ing ab initio values, ' and the values obtained by Menon
and Subbaswamy

As can be seen, there is excellent agreement between
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N

2

3
4
5

6
7
8
9
10

Ab initio
1.56
2.54
3.17
3.3
3.6
3.8
3.65
3.6
3.82

Set 1
1.49
2.53
3.23
3.4
3.61
3.73
3.67
3.61
3.78

Set 2

1.65
2.66
3.33
3.43
3.63
3.75
3.67
3.63
3.78

MS
1.8
2.63
3.08
3.43
3.74
3.85
3.62
3.55
3.87

TABLE I. Cohesive energies (in eV/atom) for Si~ clusters .
Values under Set 1 correspond to our results with a = 0.08
eV and 6 = —1.4 eV. Values under Set 2 correspond to our
results with a = 0 eV and b = —1.4 eV. MS correspond to the
results of Menon and Subbaswamy.

(aq), 560 (b2), and 582 (aq). Whereas the frequencies are
clearly underestimated in our calculation, the agreement
is acceptable, specially if we notice that the orthogonal
tight-binding theory gives &equencies about a factor of
2 larger than the ab initio results. Moreover, our results
show the correct ordering of mode symmetries (aq, bq,

aq) whereas in the nonorthogonal model of Menon and
Subbaswamy the order is incorrect (aq, aq, bq), although
their values are slightly more accurate.

For the Si4 cluster, the minimum energy structure cor-

TABLE II. Optimized molecular geometries (A.) for the
SiN clusters from N = 3 to N = 10.

References 1, 2.
Reference 11. Cluster

Sip

Structure
(Cg )

Geometrical
parameter

Si-Si
8

Ab initio
2.179

77.2'

Present
work

2.239
77.4'

our calculated cohesive energies and the ab initio results
for all the clusters. We obtain overall improvement over
the results of Menon and Subbaswamy, the maximum
error being only 0.1 eV for the case a = 0.08 eV, and
0.13 eV for a = 0 eV, compared to 0.24 eV for MS. The
rms deviation is 0.06 eV for a = 0.08 eV and 0.09 eV for
a = 0 eV, coxnpared with 0.12 eV for MS. We stress that
improved results are obtained even without the bond-
counting term (a = 0 case).

IV. RESULTS AND DISCUSSION

Si4

Sis

Si6

1, (Dsg)

8, (Dsg)

16, (Cz„)

Sip-Sig
Sip-Si3

Sip-Si4
Siq-Siq
Si4-Si5

Sip-Sjg
Sig-Si3
Sig-Si4
Si2-Si5
Si4-Si5

2.303
2.401

2.338
3.256
2.782

2.323
2.651
2.435
2.442
2.364

2.336
2.516

2.356
3.253
2.845

2.370
2.868
2.506
2.432
2.473

In this section, we present the results for SiN clusters
obtained in our study. We will discuss the minimum en-

ergy structure for each cluster, as well as the energy dif-
ference with other low energy con6gurations, comparing
our results with the ab initio values. In order to find
the minimum energy structures we perform molecular-
dynamics simulations for all the clusters. We start with
several different sets of random atomic positions and use
a simple quenching method, setting the atomic velocities
to zero whenever the temperature reaches a maximum.
In this way we can also obtain metastable structures.
In all cases, we are able to recover the minimum energy
structure by annealing and quenching the cluster. In
soxne cases, and in order to compare our results with the
ab initio values for metastable clusters of certain sym-

metry, we start with atomic coordinates with the appro-
priate symmetry. The results for the geometries of the
lowest energy structures &om N = 3 to N = 10 are suxn-

xnarized in Table II. The xneaning of each of the entries
will be explained in the following discussion.

For Si3 we find that the minixnum energy structure is
an open triangle with C2„symmetry, in agreexnent with
the ab initio results. We obtain accurate values for both
the bond distance (Si-Si entry) and the bond angle (8),
as shown in Table II. We have also calculated the vibra-
tional &equencies of the cluster and obtain the following
values (in cm ): 130 (a~ mode), 427 (b2 mode), and
531 (aq mode), compared to the ab initio values~ of 206

Sip 7a', (Dsg) Sip-Si3
Si3-Si4
Srg-Srg

2.472
2.478
2.582

2.527
2.474
2.799

Si8 8b', (Csg) Sip-Sip
Sip-Si3
Sip-Si5
Sip-Sis
Sip-Sip
Sip-Si7

2.523
3.144
2.479
2.431
2.231
2.529

2.602
3.995
2.548
2.477
2.410
2.523

Sig Fig. 1, (Cs„) Sip-Si3
Sly-S14
Syg-S)3
Si3-Sig
Si4-Sip

2.689
2.557
2.416
2.329
2.742

2.726
2.526
2.439
2.310
2.708

Sicko 10c', (C's„) Sag-Sag

Sip-Si4
Si4-Si5
Sip-Sip
Sip-Si8

i4-Sis

2.751
2.552
2.540
2.352
2.445
2.543

2.907
2.606
2.562
2.430
2.489
2.550

The entry under "Structure" correspond to the 6gures of
Refs. 1 and 2 (except for Sig, which corresponds to Fig. 1 of
the present work), and the point group of the structure (in
parentheses) .

Reference 1.
'Reference 2.



50 IMPROVED NONORTHOGONAL TIGHT-BINDING HAMILTONIAN. . . 5649

responds to a planar rhombus (symmetry D2&). This
result is in agreement with the cb initio calculations,
with very similar values of the bond distances (see Table
II).

In the case of the Si5 cluster, the minimum energy
structure is found to be a compressed trigonal bipyra-
mid with Dsg symmetry (see Fig. 8 of Ref. 1), again
in agreement with the ab initio results. The bond dis-
tances obtained with our method are excellent, as shown
in Table II. We have also calculated the difference in en-
ergy with other low energy structures considered in Refs.
1 and 2. In particular, for the face-capped tetrahedron
(C2„)considered in Ref. 2, we obtain an energy difference
with the Dsg bipyramid of 0.628 eV, compared with 0.608
eV from the ab initio calculations. The square pyramid
(Fig. 9 in Ref. 1), with C4„symmetry, is found to have
an energy 0.53 eV higher than the D3p bipyramid, again
in excellent agreement with the ab initio value of 0.45
eV.

For the Sis cluster, the ab initio calculations~ predict
two lowest energy Cz„structures to be nearly isoener-
getic. These are a face-capped trigonal bipyramid and an
edge-capped trigonal bipyramid (Figs. 15 and 16 of Ref.
1), the energy difference between them being only 0.04
eV. We also Bnd a very small energy difference between
these two structures (0.006 eV), with the face-capped
being the most stable (whereas in the ab irutio results
the edge capped is lower in energy). We, therefore, con-
clude that our calculation describes properly the energies
of this cluster, since such small difFerence is clearly be-
yond our accuracy limits. In Table II we compare our
results for the optimized geometry parameters for the
edge-capped structure with the ab irutio values. The
agreement is again excellent.

For Sir we Bnd that the pentagonal bipyramid (Fig.
7a in Ref. 2) with Dsq symmetry is the lowest energy
structure, and the tricapped tetrahedron with Cs„sym-
metry (Fig. 7b in Ref. 2) is 0.993 eV higher in energy.
There results agree with the cb initio calculations, which
give an energy difference of 0.952 eV between the two
structures. In Table II, we show the bond distances for
the minimum energy structure. We also find that a face-
capped octahedron (Cs„)and a edge-capped octahedron
(C2, see Figs. 7c and 7d in Ref. 2) are stable structures,
their energies being 0.739 and 0.823 eV above the pen-
tagonal bipyramid, respectively. The ab initio energies
for these structures are about 2 eV higher than for the
pentagonal bipyramid.

In the case of the Si8 cluster, the energy minimum
corresponds to a distorted bicapped octahedron with C2p,
symmetry (see Fig. 8b of Ref. 2), 0.554 eV lower than
the undistorted Ds~ bicapped octahedron (Fig. 8a of
Ref. 2). Our results agree with the ab initio calculations,
which predicted an energy difference of 0.56 eV between
the two structures. In Table II, we compare our bonding
distances with the ab initio corresponding values.

The case of Sig deserves some discussion. Raghavachari
and Rohlfing performed ab initio calculations on three
possible structures of Sig.. the tricapped octahedron with
C3 symmetry, a distorted form of the former, with C,
symmetry, and the tricapped trigonal prism, with D3p,

symmetry (see Figs. 9a—9c in Ref. 2). At the Hartree-
Fock level, the most stable of these structures is a triplet
state of the undistorted tricapped octahedron, followed
by a singlet state of the distorted tricapped octahedron
(0.60 eV higher), and by a triplet state for the tricapped
trigonal prism (0.84 eV higher). Inclusion of correlation
efFects make all the three structures to be almost isoen-
ergetic, with a difference of only 0.1 eV between them.
The results of our simulations suggest that the lowest en-
ergy structure of Sis is none of the above, but rather a
distorted form of the tricapped trigonal prism with C2
symmetry (see Fig. 1), with an energy 0.9 eV lower than
the other structures. The origin of this structure is a
Jahn-Teller distortion of the singlet state of the Dsp, tri-
capped trigonal prism. Since this structure was not con-
sidered in the ab initio works, we have performed an unre-
stricted Hartree-Fock calculation of the energy of the sin-
glet state of our structure, using the same 6-31G*basis
as Raghavachari and Rohlfing. We have optimized the
bonding distances to minimize the energy. The result is
that, at the Hartree-Fock level, the Cq„distorted form of
the tricapped trigonal prism is a stable structure for Si9,
with an energy lower than the other structures, except for
the Cs„tricapped octahedron which is only 0.4 eV lower.
Since, as we have mentioned, the correlation effects are
important in this cluster, we are unable to decide if our
new structure is the ground state of Sig at the corre-
lated level, but it is clear that it should be considered as
a candidate. To further clarify this issue, we have per-
formed an approximate LDA calculation using the non-
self-consistent Harris functional. s As we mentioned in the
Introduction, this formulation has proven accurate in the
description of silicon systems. ' At this level of the the-
ory, the undistorted Cs„and Dsg structures are metalic,
and are, therefore, higher in energy than the distorted
clusters. We have relaxed the distorted structures using
the approximate LDA forces. The agreement with our
predictions is embarrassing with an energy difference of
0.94 eV between the distorted C, tricapped octahedron
and the distorted C2 tricapped trigonal prism, the latter
being the most stable. We conclude that the Cl„struc-
ture is most likely the ground-state structure for the Sig
cluster.

For Sicko, the calculated minimum energy structure (a

FIG. 1. Minimum energy structure (distorted tricapped
trigonal prism with C2„symmetry) of the Sig cluster
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tetracapped trigonal prism with C3 symmetry, Fig. 10c
in Ref. 2) is 0.67 eV more stable than the Tg tetracapped
octahedron (Fig. 10a of Ref. 2). These results agree with
the ab initio calculation, which shows the same minimum
energy structure and an energy difference of 1.04 eV. The
bond distances are also in good agreement, as shown in
Table II.

We have also considered the Siq3 cluster, which has re-
cently received considerable attention, ' mainly due to
the fact that it is very stable against chemical reactions.
Empirical potential calculations suggest that the most
stable structure for this cluster is the icosahedron. The
LDA calculations, however, find the ground state to
be a capped trigonal antiprism with C3„symmetry, with
an energy 5.3 eV lower than the icosahedral structure.
Quantum-mechanical effects are, therefore, essential in
properly describing this cluster. We have performed a
calculation of the energy of each of these structures of
Siqs, relaxing the bond distances (preserving the appro-
priate symmetry) to obtain the minimum energy. We
6nd that the capped trigonal antiprism is about 2.2 eV
lower in energy, in reasonable agreement with the LDA
results.

A detailed study of the performance of the present for-
rnulation for bulk silicon is presently underway. The main
difBculty in extending the application to solid phases is
the absence of any cutoff in the interactions with the
distance. This is appropriate for clusters, since the
number of atoms is 6nite, but clearly it is not desirable
for the bulk material. With the present parameters, the
results for silicon in the diamond structure converge only
when the cutoff imposed is larger than 9 A, which indi-
cates that the interactions in the present parametrization
are quite long ranged. We obtain a first neighbor distance
of 2.45 A, in reasonably close agreement with the exper-
imental value of 2.35 A. For the metalic silicon phases
the errors are larger due to the close packed nature of
the structure, which indicates that the present parame-
ters should be refined to provide accurate results when

a cutoff is imposed, making the interactions decay more
rapidly.

V. CONCLUSIONS

We have presented an overall improvement over the to-
tal energy tight-binding model proposed by Menon and
Subbaswamy for the study of silicon clusters. By tak-
ing proper account of the variation of the overlap ma-
trix elements with the interatomic distance, and its effect
on the nonorthogonal Hamiltonian matrix elements, we

have been able to generate an improved parametrization
scheme which produced signi6cantly improved results.
The most important feature of our scheme is that we can
avoid the necessity of an environment-dependent bond-
counting term, which was necessary in former works. All
the dependence of the energy on the local atomic configu-
rations is correctly described by the quantum-mechanical
electronic band structure.

We have studied the stable configurations of silicon
clusters with size up to N = 10, and also Si~3. In all
cases we obtain excellent agreement with earlier g,b ini-
tio calculations, both for the con6gurations with lowest
energy and its energy difference with other structures,
as well as for the geometrical parameters de6ning each
structure. In addition, we have identified a lowest energy
structure for the Sig cluster, as a Jahn-Teller distortion
of a structure considered in Ref. 2, and shown that this
structure is also a likely candidate at the ab initio level.
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