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The time-resolved spontaneous emission from a disordered molecular monolayer is calculated using
Green-function techniques. In addition to a fast-decaying transmitted and refiected coherent component
in the forward direction, and a slowly decaying, incoherent, spatially homogeneous background, we pre-
dict a backscattering peak related to weak localization of excitons. Analytical and numerical calcula-
tions of the energy- and disorder-dependent cooperative radiative decay rate, the quantum yield of the
coherent and incoherent components, and the exciton difFusion coeScient are presented.

I. INTRODUCTION

Radiative dynamics of molecular aggregates is an area
of intense current interest. ' In three-dimensional crys-
tals, the radiation modes and the polarization of the ma-
terial system combine to form new normal modes (polari-
tons) which show no radiative decay. s " However,
geometrically confined systems such as two-dimensional
crystals do have radiative decay since photons created in
the material system can escape. ' Effects of radiative de-
cay in the linear'3 as well as the nonlinear' ' optical
response were considered. The fluorescence decay may
be characterized by cooperative spontaneous emission
and the aggregate decay rate is N,zyo, with yo being the
radiative decay rate of a single molecule, and N,z being
the characteristic coherence size. The concept of a radia-
tive coherence size was advanced by Mobius and Kuhn
in analyzing the dependence of fluorescence quenching on
the acceptor surface density for a system consisting of an
acceptor monolayer on top of a J-aggregate monolayer.
The role of disorder on the radiative coherence size has
been addressed in recent experiments involving mixed
monolayers of cyanine dyes (J-aggregates). Disor-
dered aggregates are characterized by several coherence
sizes such as the mean free path connected with exciton
elastic or inelastic scattering, and their effect on the radi-
ative decay should lead to some clear signatures in the
optical response. In particular, scattering on impurities
can lead to the population of exciton states that are
"dark" in an ideal system. These states have long radia-
tive lifetimes since they cannot emit directly, and need to
be scattered again to become "bright" and emit a photon.
This should result in a substantial increase of the emis-
sion time scale of the incoherent component in time-
resolved fluorescence experiments.

In a recent study, ' the time-resolved spontaneous
emission signal of a two-dimensional molecular aggregate
with topological disorder, was calculated using a quan-
tum description of the radiation field, and expressed in
terms of the disorder averaged particle-hole (p-h) Green
function. Using the ladder diagram approximation for
this Green function, the photon emission rate was found
to consist of a fast (coherent) component and a slow (in-
coherent) component. The frequency-dependent radia-

tive decay rate for aggregates with physical size much
smaller than the optical wavelength was calculated nu-
merically. In an ideal two-dimensional monolayer, the
bright excited states, whose momenta are smaller than
the optical wave vector ko ——0/c, occupy a very small re-
gion in the exciton band. In disordered aggregates, dark
excitons (with momentum larger than ko) become weakly
bright due to exciton scattering, and they have long radi-
ative lifetimes.

In the present paper, we extend this work in several
respects. First, we consider a monolayer with Gaussian
diagonal disorder rather than topological disorder which
corresponds to quantum percolation of excitons. Second,
we represent numerical calculation for monolayers whose
size is much larger than the optical wavelength. Third,
we calculate and analyze the quantum yield for the
coherent and the incoherent components. Finally, by go-
ing beyond the ladder approximation and including also
the maximally crossed diagrams, we predict an additional
backscattering peak in the signal. This peak is related to
the exciton difFusion coefficient, which is calculated using
the renormalization-group technique. Such a peak has
been observed in three-dimensional samples in the off-
resonance region, ' where it is related to weak localiza-
tion of light, and to similar effects such as phase conjuga-
tion, long-time decay in transient grating, ' etc. In this
paper, we predict a backscattering peak in the lumines-
cence, following a resonant excitation of a two-
dimensional system, resulting from weak localization of
excitons. The form of this peak reflects the size scaling of
the diffusion coefficient. In two-dimensional systems, this
size dependence is important for suSciently large sizes
even for very weak disorder. ' The magnitude of the
renormalization of the diffusion coefBcient is limited by
the exciton radiative decay, which restricts the range of
parameters for observation of localization effects.

In Sec. II we introduce our model. In Sec. III we
derive a Green-function expression for the fluorescence.
In Sec. IV we calculate the coherent and the incoherent
components of fluorescence. Finally in Sec. V we study
the effects of exciton localization on the backscattering
peak, and discuss the fundamental restrictions imposed
by the radiative decay on observing exciton strong locali-
zation.
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II. MODEL AND HAMILTONIAN

Consider an infinite two-dimensional square lattice oc-
cupied by polarizable two-level molecules with nonover-
lapping charge distributions. The total Hamiltonian in
the Coulomb gauge and the multipolar form (neglecting
magnetic terms) is' '

8 „„=8„+P„d—f dr P(r).D (r)

+2~ r P'r '. (1)

We use a caret to denote operators, e.g., 0 and write 0 (t)
for its expectation value, and set fi= l. 8 „ is the ma-
terial Hamiltonian,

8 „=yn. k.'8 + y J.„S'8„. (2)

Here 0 =0+ U is the transition frequency of mole-
cule at site m, where 0 is an average frequency and U is

a random variable with a Gaussian statistics described by
the correlation function

P(r, co) = f dr'y'"'(r, r', co).E'"'(r', co) . (9)

Chernyak and Mukamel derived a Green-function ex-
pression for y'"' for this model, using equations of motion
in the Heisenberg picture. ' In the rotating wave approx-
imation, the result is

y'"'(r, r', co) = —
pjM g p(r —R )p(r' —R„)G „(co),

m, n

(10)

where the single-particle Green function G is defined
as16, 17

6 „(co)=[co H' (—co)+i0]

with the effective Hamiltonian matrix

F(co)=f dt e' 'F(t) .

The linear susceptibility g'"' with respect to external field
E'" is defined as

U U„=U()5 „,
U =0.

(3a)

(3b)

H'„(co)=n 5 „+J „
+fdr f dr'p(r R—)

We denote configurational averaging with an overbar,
and Uo is the magnitude of the transition frequency fluc-

tuations. J „ is the dipole-dipole interaction, and 8
(k ) are creation (annihilation) operators of an exciton
at site m, which satisfy the commutation relations

[S,B„+]= (1—28+8 )5 „. (4)

P(r)=)Lcgp(r —R )(8 +8 ) .

Here R is the position of the mth lattice point, and
pp(r —R ) is the dipole density distribution of a mole-
cule at site m, normalized as

fdrp(r —R )=1 .

Note that 8 „conserves the number of excitons. This is

the result of the Heitler-London approximation, which
holds for n»/ „.A'„z is the free radiation field Hamil-

tonian, and D (r) represents the transverse electric dis-
placement. Both P„o and 8 (r } are field operators which
commute with all material operators. The transverse elec-
tromagnetic field E (r} is related to the electric displace-
ment operator D (r) by

E (r)=D (r) —4mP (r), (5)

where P (r) is the transverse part of polarization. The
polarization operator P(r) is

Xp(r' —R„)p 9'(r —r', co)y, . (12)

Note that H' (co) is non-Hermitian. 9 is the vacuum
Green function of the transverse electromagnetic field

2 i(co/c )r

+VV
C r

q'(q, er)= 1 d'r g'(r, er)e

9 (r,co)=—

47TCO

co gc +l0
(13b)

H„"„(~) Hg(n)=n 5 „+J„tr „. —(14)

We adopt the fo11owing convention of spatial Fourier
transform for any function F „ that depends only on

R —R„,

The last term in Eq. (12) is the retarded correction to the
dipole interaction. Its real part adds a radiative shift to
the Coulomb interaction J „, and its imaginary part
represents radiative decay. We make the Markovian ap-
proximation by replacing H' (co) with H' (n). This is
valid as long as the wave vector of the incident light is
not nearly parallel to the plane. ' The effective Hamil-

tonian can also be derived using projection operator tech-
niques. ' For n/c «1/a (a being the lattice con-
stant), the real part of the retardation correction is small,
and we may keep only the imaginary part,

F(p) = g F „exp[ —ip (R —R„)] . (15)

III. GREEN-FUNCTION EXPRESSION
FOR FLUORESCENCE

We adopt the following convention for a temporal
Fourier transform throughout this paper:

Here p is a two-dimensional, in-plane vector, and the
summation is over all lattice points. The spatial Fourier
transform of 1 „, I (p), is the total momentum-

dependent decay rate
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I'(p)—:I,(p)+ r„,(p), (16)

where I, and I „,are the radiative and nonradiative de-

cay rates. We assume that p(r} is localized in space with
size much smaller than the lattice constant; we can there-
fore use the point dipole approximation for intermolecu-
lar interactions, setting

p(r)=5(r) . (17)

Keeping the lowest order in Qct /c, we have'

2n kop, —(p p ) —(ko —p )(p )
r„(p)=, 8(k —p ),

a Qk2 2

(18)

Xexp( —icot) . (23)

For R much larger than the optical wavelength A, and the
lattice size, we have from Eq. (13a)

where P =R/R, and E denotes the scattered field. We
use ( ) to denote the quantum-mechanical expectation
value for a given realization of the disorder, and an over-
bar to denote the average over disorder. In Eq. (22), we
have factorized the quantum-mechanical average and
thus neglected quantum fluctuations of the field. In the
far zone where R »A, (A, —:2n/ko is the optical wave-

length}, the field is purely transverse and we have

E„(R,t)= —f fdr 9 (R—r, co) P(r, co)

where ko =Q/c is the optical wave vector, and 8(ko —p )

is the Heaviside step function

1, p(ko
8(ko —p)= '0 p& p

ikpR —ikpP r9' (R—r, co)= —ko(1 PP}e—' e ' /R .

The external field is taken to be of the form

E'"'(r, co) =E(co)exp(iz r)e, ,

(24)

(25)

We denote the projection of a vector A parallel or nor-
mal to the lattice plane by A l and A, respectively. Note
that I „satisfies the following sum rule:

M, " (2~)' " 2

' yr(p) ",fd, r(p)=",
with the single molecule radiative decay rate

y0=4p ko/3 .

(20)

(21)

The difFerential emission rate of radiation energy per
solid angle, detected at position R far from the lattice, is

R cI(k, t)= (E+(R,t)E„(R,t))

R c ~(E„(R,t) ) ~', (22)

with ~=Q/c and e, being the unit vector of the polariza-
tion direction of the field (e, iic}.

Substituting Eq. (25) into Eq. (9) and then into Eqs. (23)
and (22},and using Eq. (24), we get

I(k, t )= A f f dcod co2$(k', k, q= 0; co„co2)

XE(co, )E*(co&)exp( ico,2t) . —(26)

We have set t —R /c ~ t and use the point dipole approx-
imation Eq. (17). Here

MQ (p e, ) (p ez)A—: (27)
8~ c

M is the number of molecules, k and k' are the in-plane
projection of ~ and kok, e2 is the unit vector of the polar-
ization direction of E„with e2lk, and co&2

——co&
—

co&.

The particle-hole Green function P is defined as

1P(k', k, q;~~, ~2) = g G, ,(co~)G', , (co2)
m), m2, m3, m4

Xexp[ —i(k'+q/2)R +i(k+q/2) R +i(k' —q/2) R —i(k —q/2} R ] .

Equation (26) coincides with the result of Wang,
Muenter, and Mukamel' which was obtained by calcu-
lating the photon emission rate using a quantum descrip-
tion of the radiation field. Here the radiation field is
treated classically and the fluorescence signal is obtained
by solving the Maxwell equations [see Eq. (23)].

8afo= «1,
m'D ( coo coo }p( coo }

(29)

1
p(coo) = ——ImG„„(coo), (30)

where coo is the excitation frequency, p(coo) is the density
of single exciton states

IV. COHERENT AND INCOHERENT COMPONENTS
OF FLUORESCENCE

In the preceding section, we expressed the fluorescence
signal formally in terms of a p-h Green function [see Eq.
(26)] P, which is the disorder averaged product of two
single-particle Green functions [see Eq. (28)]. In this sec-
tion, we will evaluate P in the weak disorder limit

4'=4. +6+kb.
I(k, t)= A [$,(t)+$,(t)+$„(t)] .

(31}

(32)

and D(coo, coo) is the exciton diffusion coefficient defined
later. In this case, the p-h Green function
P(k', k, q;co„co2}(and the fluorescence signal) is given by. a
sum of three terms
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P, (k', k, q;co„coz)=G(k'+q/2, co, )G*(k—q/2, coz)

X (2n /a ) 5(k' —k ), (33)

S„SI,and Sb, denote the coherent, the incoherent, and
the backscattering components, obtained by substituting
]I]„gt,and Pb, into Eq. (26), respectively.

In the absence of disorder, Pt and Pb, vanish, and the
signal consists of the coherent component alone. P, is

simply a product of two averaged Green functions

4t(k', k, q;co„coz)=G(k'+q/2, co])

XG(k+ q/2, co])G'(k' —q/2, coz)

X G '(k —q/2, coz)2)(q; co„coz)

and

St(t) =f dco, f dcozG(k', co, )G'(k', coz)G(k, co, )

X G '(k, coz }2)(0;co],coz)E(co] )

(40)

and the coherent signal, which is strongly peaked in the
forward direction k'=k, is given by

2f dco G(k, co)E(co)e '"' 5(k —k') .

XE'(coz)e (41)

0
2)(q; co],coz) =

1 —U]]L(q;co„coz)
(42)

In Eq. (40) S is the diffusion propagator which has the
following form in the ladder approximation:

U2

(34)
with

This signal represents the transmitted and the reflected
waves. In Eq. (34), G(k, co) is the disorder-averaged
single-particle Green function in momentum space. We
assume

Q
L(q;co],coz)= dp G(p+q/2, co, )G'(p —q/2, coz) .

4m

(43)

G(k, co) = 1

co —e(k) —X(co)+il (k) '

with e(k) being the exciton energies:

e(k)—:0+J(k) .

(35) In the small-q limit, we have (see Appendix A)

Uzo [co],—X(co])+X'(coz)+ iy(co], coz) ]
$(q;co„coz)=

co]z+]y(co], coz)+]'q'D(co], coz }
(36)

(44)

The self-energy X(co} will be determined by the follow-
ing self-consistent equation:

where D (co, , coz) is the bare exciton diffusion coefficient,

U2g 2

X(coo) = fdk G(k, coo),
4m

(37)

l
D(co, ,coz) =—Uo [—co,z+X(co, )—X'(coz) —iy(co], coz) ]

2

X f dp~v(p}~ G (p, co]}G' (p, coz),
which holds for weak disorder. The single exciton density
of states is related to the imaginary part of the Green
function,

a 1
p(co) = — f dp ImG(p, co) = — ImX(co) .

m. UO
(38)

Under impulsive excitation, E(t)=5(t},S,(t) decays ex-
ponentially with the rate —ImX„+I'(k}, where
Xk ——X[co=e(k)]. Note that ImX(co) is negative, and
—ImXk is the scattering rate of excitons with momentum
k by impurities. Once scattered, the exciton no longer
contributes to the forward coherent signal. I'(k} is the
superradiant decay rate of a regular lattice ( Uo =0}. For
normal incidence, i.e., k=0, we have

I (0)= y (A, /a) (]]c"/]I)
3

Sm
(39)

where A, =2m. /ko is the optical wavelength. This is
enhanced by a factor of (A, /a) compared with the single
molecule decay rate yo.

contributes an incoherent component SI to the
fiuorescence signal, which shows up as a homogeneous
background in its angular dependence. In the ladder ap-
proximation, we have

(45)

with the exciton velocity v(p) =V J(p}—iV I'(p), and

2 pl pGp, co, G'p, m2

y(~] ~z)= f dp G(p, co])G'(p, coz)
(46)

The bare exciton diffusion coefficient for a topologically
disordered system is calculated previously. Since the
incoherent component St is related to 2)(q, co],coz) with

q =0 [see Eq. (41)], the diffusion coefficient D in Eq. (44)
does not affect SI.

We next define

M~+CO2

2
6)~2=CO~ 602 . (47)

When the total population decay rate y(coo, coo) is much
smaller than the inhomogeneous broadening ~lmX(coo)~
and the spectral width of excitation pulse, the long-time
behavior of Sl(t) [Eq. (41)] is determined by the poles at
~]z= —iy(~] ~z»

$,(t)= —4m. U0 f d coo~ G(k', coo) ~zI G(k, coo) I'

X lmX(coo) ~E(coo) ~
e ', (48)
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where

2g r(p) I G(p, ~p) I'

y(~p)=y(~p ~p)= P (49}
g IG(p, top) I'
P

is the energy-dependent exciton decay rate. '

Our model does not allow for relaxation among the
various exciton states in the band, and thus the energy-
dependent decay rate can be measured experimentally by
applying a pulse with linewidth much narrower than the
inhomogeneous dephasing rate —ImX(top) and much
larger than the total population decay rate y(cop).
Then the incoherent signal decays exponentially—y(~0)tSt(t} e-, with top being the excitation frequency.
By tuning ep, one can measure the energy-dependent ex-
citon decay rate y(top). In practice, neglecting relaxation
among the exciton states is justified only for very low
temperatures and relatively short times. As relaxation
takes place, emission will be dominated by the lowest
states in the band, and the frequency dependence of
y(Cpp) may not be readily observable.

We next calculate the total emitted energy

and

C2

e2P, tS, t

8
3 cop Y ct)p Im '"',cop E cop 50

IM kp

C2

e2P

where

0 I 0 ~ 0 0
p kp

I', (k)
Y, (tpp) = —ImX(top)+ I'{k)

is the quantum yield for the coherent signal,

—ImX(cop} y„(top}
Y —ImX{cop}+I{k) y(cop)

is the quantum yield for the incoherent signal,

Imp'"'(k, cop) =p [—ImX(cop)+ I (k) ] ~ G(k, top) ~

{52}

(53)

(54)

is the linear absorption coeKcient, and y, (cop) is the
energy-dependent radiative decay rate

Jdkg Jdtl(t),
Cg

where fdk denotes integrating over the solid angle, and

implies summation over the two possible polariza-
2

tions of the scattered field. In Appendix B, we prove the
following sum rules:

2 y r, (p) lG(p, top}l'

y, (happ) =
g ~G(p, top)l'

(55)

The total incoherent signal given by Eq. (51}is an observ-
able, while the total coherent signal given by Eq. (50) is
not, since the coherent signal in the transmitted direction
mixes with the incident field. However, the total
reflected signal is an observable given by (see Appendix
B)

I

'—(V t, )'
Y„(top)= 2 2 2 Y, (top) .

2p (p t}— (It, tt„—)
(57)

If p is in-plane, Y„=Y, /2, i.e., half of the coherent signal
is reflected (transmitted).

The temporal profile of the spontaneous emission can
be interpreted using the following simple picture: Excita-
tion with a short resonant pulse creates excitons with
momentum k equal to the projection of the incident wave
vector onto the lattice plane. Subsequent evolution of
these excitons is caused by three mechanisms: the exci-
ton can either decay radiatively with rate 2I,(k)
(coherent radiative decay with photon emitted in the for-
ward direction), decay nonradiatively with rate 2I'„(k),
or be scattered with scattering rate —2lmX(cop). The
coherent component is generated when a photon is emit-
ted prior to the first scattering even; the exciton momen-
tum is conserved and the signal is emitted in the forward
direction. The incoherent component results from emis-
sion after at least one scattering event. When the excita-
tion frequency top is not too close to the band edge, the
exciton becomes nonradiative after scattering. To emit a
photon, the exciton needs to be scattered back to the ra-
diative region. The low probability of this process due to
the small relative volume of the radiative region, leads to
the long emission time scale of the incoherent com-
ponent. Since the momentum of the final exciton state k'
prior to emission is confined in a small region k & kp, the
last scattering process is virtually independent on k'.
This leads to the homogeneous angular distribution of the
incoherent component.

The temporal profile of the coherent component de-
pends on the radiative and scattering rates. A radiative
exciton created by the excitation pulse can leave the radi-
ative region in two ways: it can either emit a photon or
scatter to the nonradiative region. The first process is ir-
reversible and contributes to the coherent component. In
the second case, the exciton goes through a long and ran-
dom walk of multiple scattering events, before it returns
to the radiative region, where it emits a photon and con-

e2P tS, t
2

8 2

3 ct)p Y ci)0 Imp ct)0 E Q)p 56
p kp

where f„tdP denotes integration over the solid angle in

the vicinity of the reflected direction P=8„=k' t,z, —
and Y„ is the reflection yield
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tributes to the incoherent component. According to this
picture, if the radiative decay rate (the super-radiant rate
of radiative excitons} is much larger than the scattering
rate, the coherent component time scale will be dominat-
ed by the super-radiant lifetime, and almost all photons
will be emitted in the coherent channel so that the quan-
tum yield Y, [Eq. (52)] approaches unity (assuming no
nonradiative damping}. In the opposite limit, the
coherent component time scale is determined by the
scattering time, and most photons are emitted in the in-
coherent channel, setting YI to unity. Note that in the
absence of nonradiative damping [I „,(k) =0) ],
y(pip)=y„(cop), and Yz+Y', =1. For a regular lattice

( Up =0 ) YI( cop ) =0, and the homogeneous background
scattering vanishes.

As will be shown in the next section, the backscatter-
ing signal Sb, is peaked in the backward direction and its
peak intensity has the same magnitude as the incoherent
signal. Therefore the backscattering quantum yield is
negligible compared with the incoherent signal, and it
may be safely neglected in the above expressions.

We have calculated the time-resolved spontaneous
emission of a molecular monolayer with Gaussian diago-
nal disorder whose physical dimensions are much larger
than the optical wavelength and the exciton mean free
path. In the following numerical calculations we
modeled the aggregate as a square lattice with unit cell
vectors ax and ay. The transition dipole p is taken to be
in-plane,

J(p) = —W[cos(p„a )+cos(p a }], (58}

4W is the bandwidth of a regular lattice (Up=0), with
W =p /a . For the present geometry, the nearest-
neighbor interaction is negative (J aggregate).

2n/kp=10—3a. The momentum-dependent decay rate
is I'(k)=l', (k)+i), with I'„(k) given by Eq. (18) and
g=10 8' is a constant. 2g represents a nonradiative
decay rate.

The energy-dependent inhomogeneous dephasing rate
'= —2 ImX(cop) as a function of cop, obtained by solv-

ing Eq. (37) for various values of Up, is displayed in Fig.
1. From bottom to top, Up/W=0. 01,0.02, 0.03. r ' in-

crease with the degree of disorder Up. Equation (37)
shows that in the weak disorder limit, X- Uo. As can be
seen from Eq. (38), the frequency profile of [r(cop)] ' is
identical to the density of states. The density of states of
a regu1ar two-dimensional lattice with nearest-neighbor
interaction has a logarithmic singularity at the band
center, ' ' and the peak at the band center in Fig. 1

reflects this singularity. Our theory holds only when

p, = (x+y) .
2

We further assume nearest-neighbor interactions, so that

2500

2000—

1500—

i000—

500—

0—3

FIG. 1. Disorder-induced dephasing rate [~(cop)] divided

by the nonradiative decay rate 2g as a function of exciton
energy coo. g = 10 W. From bottom to top, Uo /8'
=0.01,0.02,0.03.

For the parameters used in our numerical calculation, the
nonradiative decay rate is much larger than the radiative
decay rate, and y(cop)=2i)=2X10 W. (2rir) ' and

fp as a function of cop are displayed in Figs. 1 and 2, re-

spectively. The figures show that both conditions Eqs.
(59) and (60} are satisfied provided cop is not too close to
the band edge.

The frequency-dependent radiative decay rate y„(rap)
(in units of the single molecular radiative decay rate yp) is
shown in Fig. 3. From left to right, Up / W
=0.01,0.02,0.03. We stay away from the band edge to

500

400—

300—

I

C)

200—

100—

and

[y(a)p)~(cop)] ')) 1

AD(ro, ro)p(ro)
p »1.

8a

(59)

(60)

—1 0

(~,—0)/W

FICs. 2. fo
' as a function of exciton energy coo. YJ 10 W.

From top to bottom, Uo/8'=0. 01,0.02,0.03.
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0.03

0.085—

Pb,(k', k, q;co„coz)=G(k'+q/2, co, )G(k+q/2, co, )

XG'(k' —q/2, coz)G'(k —q/2, coz)

XX)(k'+k;co„coz) . (61)

0.02—

~0. 015

In the ladder diagram approximation, S is given by Eq.
(44). Therefore its contribution to the fluorescence signal

Sb, is peaked in the direction opposite to the incident
light (k'= —k),

0.01— Sb,(t)= f dco, fdcozG(k', co, )G'(k', coz)G(k, co, )

X G'(k, coz)$(k+k';co&, coz)E(coi)

0.005— 4

XE (coz)e (62)

0—2 -1.6 -1.4
(u), —0)/w

FIG. 3. Exciton radiative decay rate y, (~o) (normalized to
the single molecular radiative decay rate yo} as a function of en-

ergy mp. g =10 W. From the left to the right,
Uo/8'=0. 01,0.02,0.03.

keep [7'(cop)«cop}] ' ~ 10 and fp
' & 10. In this frequen-

cy region, the excitation pulse creates an exciton with
momentum k & kp, which is nonradiative [see Eq. (18)].
However, due to disorder, the exciton has finite probabili-
ty to be scattered back to the radiative region (k & kp).
The exciton radiative decay rate is therefore finite but
very small (even smaller than the single molecular radia-
tive decay rate yp), since the radiative region occupies
only a very small part of the Brillouin zone, and the prob-
ability of the exciton to be scattered to the radiative re-
gion is low. y(cop) increases with disorder since exciton
scattering is enhanced.

The backscattering signal carriers information on the ex-
citon diffusion coefBcient D.

It is well known that in two dimensions the diffusion
approximation breaks down for sufficiently large dis-
tances {or equivalently for small wave vectors} even for
weak disorder zz T.his leads to the strong decrease of the
diffusion constant D with decreasing wave vector, which
should show up in the angular profile of the backscatter-
ing peak. Formally, the behavior of the Green function
for small wave vectors ean be described by considering
the interaction of excitons with diffusion modes, whose
dynamics are described by a nonlinear supersymmetric
sigma model. Then Eqs. (61) and (62) still hold if we
treat the diffusion propagator S as a correlation function
in the sigma model. The ladder approximation then cor-
responds to a complete neglect of the nonlinear interac-
tion in the sigma model, i.e., the interaction of diffusion
modes. Assuming y(cop, cop)r « 1, and using the
renormalization-group technique for the sigma model, we
can evaluate the infrared asymptotics (small co,z) of the
diffusion propagator and obtain (for derivation see Ap-
pendix C)

V. SACKSCATTERING PEAK AND
%EAK LOCALIZATION OF EXCITONS

Up [«cop}]
$(q, co), coz) =

ico&z+y—(cop)+q D„(q,co„coz)
(63)

We next consider Pb, in Eq. (31), which is given by the
sum of maximally crossed diagrams

where D„ is the renormalized diffusion coefficient. For
small q and co&z,

Q
2 1

D„(q,co„coz)=D(cop,cop) 1 — ln
4m D(cop, cop)p(cop) [ icoiz+7'(cop)—]«cop)

(64)

and we have used the notation of Eq. (47).
For a continuous-wave incoming field with frequency cop, i.e., E{cop}=Ep5(co cop) the signal in the vicinity of the

backscattering direction (k' = —k) is

SJ+Sb =IG(k cop}l IG( k cop}l I&pl Uo[«cop}] ' +
) {~p) y(~p)+ lk+k'IzD„(~, ,~z)

(65}

with k' being the projection of signal wave vector kpP on the lattice plane. Equation (65} shows that the signal at the
exact backscattering direction k'= —k is twice the background signal. Since in the present approximation, the renor-
malized diffusion coefficient does not depend on q=k+k' [see Eq. (64) and Appendix C], we use the abbreviated nota-
tion,D( &co, co)z:D„(q,co&,coz) in Eq—. (65) and hereafter

In a time domain experiment, when the total population decay rate y(cop} is much smaller than the inhomogeneous
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broadening 2ilmX(cop) i and the spectral width of excitation pulse, the total signal near the backscattering direction is

I 2

St(t)+Sb, (t)=2m Up Jdtop~G(k, cop)i G( —k, cop)i [r(Iop)] 'iE(top)~ e [1+e ' '
] . (66)

Assuming that the excitation pulse linewidth is much
smaller than the exciton bandwidth [but still much larger
than the decay rate y(cop)], the time- and angular-
dependent signal near the backscattering direction is

where coo is the central frequency of excitation pulse. The
signal is peaked in direction k = —k, and the spatial
width of the peak 5k' is determined by
5k' =[D„(top,cpp)t] '. As time increases, 5k' decreases
and the backscattering peak becomes sharper.

The energy-dependent bare diffusion coefficient
D (cop cop ) is displayed in Fig. 4. From top to bottom,
U p/W=0. 01,0.02, 0.03. D decreases as the disorder in-
creases. The dip at coo=0 rejects the maximum of the in-
homogeneous dephasing rate r ' at top=0 (see Fig. 1). D
has then a minimum, since the exciton is more effectively
scattered.

D„/D as a function of exciton energy cop at various
values of Uo and g are displayed in Fig. 5. The figure
shows that D, /D decrease with increasing disorder or de-
creasing nonradiative damping g. It is believed that in
two-dimensional systems, all states are localized. How-
ever, excitons have a finite lifetime v&=1/[2rt+y(cp)].
Localization effects are negligible if v~& is much smaller
than the localization length (v is the velocity of exciton).
When vv is comparable to the localization length, the lo-
calization effect is important and D„becomes smaller
than D. As g decreases, the exciton lifetime increases.
As the disorder increases, the exciton localization length
decreases. This leads to the reduction of D, /D as rt de-
creases and Up increases. Figure 5 shows that D, /D is

smallest in the vicinity of the band edge where the locali-
zation length is the smallest. However, it is still very
close to unity.

The backscattering peak is usually attributed to weak
localization of light and is described by the maximally
crossed diagrams, ' which go beyond the ladder diagram
approximation, (i.e., regular diffusion}. However, due to
time-reversal symmetry, ' the sum of the maximally
crossed diagrams can be expressed in terms of a sum of
ladder diagrams, which are related to diffusion properties
(we can denote it diffusion in the cooperon channel}, i.e,
the bare diffusion coemcient D( top, top.}Here, we went

beyond the diffusion approximation in the cooperon
channel and looked for the scaling dependence of the
diffusion coefficient. This scaling shows up in the back-
scattering form in the following way: The intensity in the
direction forming the angle 8 with the exact backscatter-
ing direction is determined by excitons which experi-
enced diffusion on the length scale L -A, /8, A, being the
optical wavelength. Therefore the dependence of the
diffusion coefficient on L can show up in the angular
profile of the peak. Note that the form of the back-
scattering peak from a two-dimensional structure differs
from that from a semi-infinite medium even if we neglect
the decrease of the diffusion coefficient with size. Howev-
er, the size scaling of the diffusion coefficient is an effect
of strong localization since it shows up when the length J
approaches the localization scale.

Finally we discuss some limitations imposed by radia-
tive decay on observing strong exciton localization in
two-dimensional molecular aggregates. It is believed that
in two dimensions, all states are localized even for

1
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FIG. 4. Bare diffusion coefficient D(coo, coo) as a function of
energy coo. g = 10 W; From top to bottom, Uo /$V
= 0.01,0.02,0.03.

FIG. 5. Renormalized diffusion coefficient D„(normalized to
the bare diffusion coefficient D) as a function exciton energy coo.

Solid lines g = 10 8, from top to bottom, Uo /8
=0.01,0.02,0.03. Dashed line q = 10 W, and Uo/8 =0.03.
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mp(cop)D(coo, coo)f—i- ln
8a 32ir y(coo)r(coo)

(68)

Since radiative decay is always present in a two-
dimensional exciton system, we will apply Eq. (68) for ra-
diative damping, i.e., replacing y(cop) by y, (cop). If cop is

not too close to the band edge, we can set

G(p, coo) =G(O, coo) = I /[coo e(—0)], (69)

in the numerator of Eq. (49), since I'(p) are nonzero only
in a small region of the Brillouin zone (p &kp). Setting
co, =co&=coo, i'd=0 in Eq. (A2) and using the inequality
—2 ImX(coo) ))y(coo), we have

L(O, coo, cop)= Q~G(p, coo)~ =Up1

p

(70)

Substituting Eq. (70) into Eq. (55) and using the sum rule
Eq. (20), we obtain

U y
2

y, (cop) = (71)
[coo—e(0) ]

Using Eqs. (68) and (38), we have

n D (coo, coo)p(coo)
ln[2irp(coo)[coo —e(0)] /yo] .

(72)
Note that the rhs of Eq. (72) approaches a constant in the
weak disorder limit. Since p(~0)- W-l, yo- W(koa)3
[due to Eq. (21)] and putting ~coo

—e(0)~ —8', we can re-
cast Eq. (72) in the form

'irD(cop coo)P(coo) 1 27rfo'= ln
8a 32m (koa }

and for koa -2n X 10 we obtain

(73)

infinitely weak disorder. However with finite exciton
lifetime, localization effects can only be observed provid-
ed the localization length is shorter than the mean free
path associated with damping. A criterion can be easily
obtained from Eq. (C7). Since localization implies van-
ishing of the renormalized diffusion coefficient f ', and
the modulus of the logarithm in the right-hand side (rhs)
of Eq. (C7) cannot be larger than in[1/y(coo)r(coo)], this
criterion implies

observe effects of strong exciton localization in two-
dimensional molecular aggregates, one should go to the
region of strong disorder. We expressed the backscatter-
ing signal in terms of the exciton diffusion coefficient,
which is calculated using the ladder diagram approxima-
tion and the renormalization-group technique.

ACKNOWLEDGMENTS

The support of the National Science Foundation
Center for Photoinduced Charge Transfer is gratefully
acknowledged. Useful discussions with the restricted
geometry group at the Center are most appreciated.

APPENDIX A: THE LADDER AND
MAXIMALLY CROSSED DIAGRAM APPROXIMATION

FOR THE p-h GREEN FUNCTION

-iy(~i ~2)l (A2)

where L (0;co„co2) and y(co„co2) are defined in Eqs. (43)
and (46). Substituting Eq. (A2) into Eq. (42), we obtain
Eq. (44) for q =0. Expanding L(q, coi, co2) in Eq. (42) in
powers of q to second order, we finally obtain Eq. (44)
for small q, where the diffusion coefficient is given by Eq.
(45).

In this appendix, we derive expressions for the p-h
Green function {{}, including ladder and maximally
crossed diagrams. Using the perturbating scheme for
weak Gaussian diagonal disorder (see, for example, Ref.
27) and taking into account the ladder and the maximally
crossed diagrams only, we obtain Eq. (31) with $„$1,
and P» given in Eqs. (33},(40), and (61), and the diffusion

propagator 2) is given in Eq. (42). Note that the sum of
maximally crossed diagrams can be obtained from the
sum of ladder diagrams. To obtain Eq. (44) we first put

q =0. Integrating the identity

G(p, co, ) —G*(p, co2) = [co2—coi+X(co, }—X'(co2)

—2il (p)]G(p, co, )G'(p, co2),

(Al)
over p, making use of Eq. (37},we obtain

X(coi)—X'(co2) = U0L(0;co&, co2)

X [—co,2+ X(coi )
—X*(cop)

nD(coo, cop}p(cop)
fo ' —= &0.2 .

8a
In this appendix, we derive Eqs. (50) and (51). We use

spherical coordinates with the z axis normal to the lattice
plane, and assume t=(1,80,yp), and P =(1,8,y), wheret and P are the direction of incident and scattered field.
Since k' and k are the projections of kok and kok in the
lattice plane (ko=Q/c), we have

All our results are obtained in the weak disorder limit

fp « l. Equation (74} implies that effects of strong exci-
ton localization, though in principle present for any dis-
order strength, cannot be observed in practice for weak
disorder due to the Snite radiative lifetime. In particular,
the decrease of the diffusion coefficient, which can show
up in the form of backsattering peak, is a very small
effect, as illustrated in Fig. 5, which shows that D, =D.

In conclusion, we have shown that for a two-
dimensional molecular aggregate with weak disorder, the
localization length is always much larger than the mean
free path associated with radiative damping. In order to

5(kpsin80 —kosin8)5(po —
qr )5(k' —k)~

kosin8o
(B1)

Using Eqs. (34}and (Bl) and the relation

g(e, p)'=p' —(p.k)', (B2)

(74) APPENDIX B: SUM RULES FOR RADIATIVE DECAY
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we have

f dR g fdt(e2 p) S,(t)

8
[2p —(p k) —(p.ic„) ]

a k p l cos8p l

X f dcoplG(k, cop)E(cop)l

where 0 and 0'„are the transmitted and reQected direc-
tion, k=ic~+cos8~, k, =k~ —cos8pz. Using Eq. (18), we

get Eq. (50). The total refiected and transmitted coherent
signal can be obtained from Eq. (B3} by replacing the
term in square brackets by [p —(p.k„) ] and

[p —(p k) ], respectively, resulting in Eq. (56}.
Substituting Eq. (41) into the left-hand side of Eq. (51),

we obtain

fdk P fdt(e2 I ) St(t)=2mfdc. olG(k, co)E(co)l fdR[p, (p4—) ]XlG(k', co)l Up[ —21mX(co)+y(co)]/y(co)

=2~f dcol G(k, co)E(co)I'f dP [p' (p —~ )']
I
G(k', co) I'

X
—ImX(co) y„(co)

(2n) a f dp I'„(p) G(p, co) y(co)
(B4)

We have used Eq. (A2). Both k' and p in the above equa-
tion are confined in a small region k' & kp and p & kp, and

l6(p, co)l change very little in this region. We thus ap-
proximate it by a constant. Thus

l
G(k', co) l and

lG(p, co)l in the above equation cancel. Using the sum
rule Eq. (20}and the relation

f(A)=
~D.(q coi co2)p(cop)

1 1

f(A) fp
ln(Ap/A )

pends on the renormalized parameter:

(C3)

(C4)

p pe 3

we finally obtain Eq. (51).

(B5) Ao is the high-frequency cutoff, which is the momentum-

space scale where the renormalization of the diffusion
coef6cient becomes important, i.e.,

APPENDIX C: LOW-FREQUENCY ASYMPTOTICS
OF THE DIFFUSION PROPAGATOR

Ap2= [D(cop cop)r(cop)] (C5}

In this appendix, we derive an expression for the
diffusion propagator in the low-frequency (infrared) re-
gime [Eq. (63}]. As indicated in Sec. V, the diff'usion

propagator D can be treated as a two point correlation
function in the nonlinear sigma model (see Ref. 22). The
parameters of this model are the dimensionless inverse
diffusion coefficient defined as follows (we will use nota-
tion of Ref. 22 except that t is replaced by f to avoid con-
fusion with the time variable):

y(p) i12
A =

D (cop, cop)

Combining Eqs. (C4}—(C6), we obtain

(C6)

The parameter A generally speaking depends on q and

y(cop} ico, 2
—To ob.tain this dependence we can use the

result of perturbative calculation of the transverse Green
function in the sigma model which leads to the follow-

ing definition of A:

8a
n.D(cop, cop)p(cop)

' (Cl) 1 1 1
lnf fp 321T [y(cop) icoi2]1 (~p)

(C7)

and y(cop) —i co iz. In the weak disorder limit, the
renormalization-group equations describe the scaling
properties of the parameters. The parameter y(cop) i co,2—
as well as the Careen function itself are not renormalized,
which is a consequence of the supersymmetry. The equa-
tion for f(g) has the form

(C2)

where g is the scaling parameter. It follows from Eq.
(C2) that in the region f ( g) « 1, the renormalized
diffusion coefficient D„(q;co„co2) for small q and co,2 de-

Substituting f from Eq. (C7) into Eq. (C3), we obtain the
renormalized diffusion coeScient. Substituting it instead
of the bare difFusion coefficient into Eq. (44), we obtain
the expression of Eqs. (63) and (64}for the difFusion prop-
agator.

Note that Eq. (C6) is valid in the region
D (cop, cop)q -y(cop), i.e., in the region of the peak. Equa-
tion (C6) leads to the form of the renormalized diffusion

coefficient being independent on the momentum q. This
breaks down for D(cop, cop)q »y(cop), but in this region
the value of the backscattering signal is small.
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