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Layering transition in confined molecular thin films: Nucleation and growth
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When a fluid is confined between two molecularly smooth solid surfaces (e.g., mica surfaces) it tends to
form layers of molecular thickness parallel to the surfaces. We study the process of the squeezing out of
a monolayer as a function of an applied normal pressure. We estimate the pressure necessary to "nu-
cleate" the thickness transition (n~n —1, where n is the number of monolayers) and study the
"growth" or "spreading" of the removal process after the nucleation has occurred.

I. INTRODUCTION

The properties of liquids confined within very small
spaces, such as narrow pores or thin films, are generally
quite different from their bulk properties. It has been
found that the molecules become progressively more or-
dered in films with thickness less than about ten molecu-
lar diameters. '

The liquid density across molecular thin films is not
uniform but has an oscillatory profile. The periodicity of
the oscillations is close to the diameter of the liquid mole-
cules and reflects the forced ordering of the liquid mole-
cules into quasidiscrete layers between the two surfaces,
see Fig. 1(a). The closer the two surfaces approach each
other, the sharper these density oscillations become. Fur-
thermore, for n -5-10 layers and below, the fluid slab
usually solidifies. This manifests itself through a finite
shear stress r necessary in order to slide the two surfaces
relative to each other.

As a result of the layering of the molecular slab, many
properties of the system exhibit "quantization". A classi-
cal example of layer-by-layer quantization is given by ad-
sorption isotherms at temperatures below roughening. In
the present case, if the normal load or pressure is varied,
it is found that the thickness of the slab changes in a step-
like manner, see Fig. 1(b}. An increasingly strong pres-
sure P is necessary to squeeze out layer after layer of the
"fluid" from the interface and, in fact, it is often not pos-
sible to squeeze out the last layer or two of trapped mole-
cules. During the transition from n~n —1 layers, the
film, or at least the layer being squeezed out, is believed
to be in a melted or fluidized state.

Another quantized property is the yield stress r (the
tangential stress necessary in order to initiate the sliding
of the two surfaces relative to each other}, which depends
on the number of molecular layers in the film. For more
than n —ten monolayers, the yield stress is usually zero,
as expected for a Quid, but for thinner films a finite yield
stress r(n ) is observed; furthermore, r(n) increases mono-

tonically as the number of monolayers n decreases and
may be very high when n =1. The finite yield stress indi-
cates that "inplane" ordering must occur in the mono-
layers, where, in particular, the molecules in contact with
the solid surfaces "adjust" to the corrugated substrate
potentials forming pinned solid adsorbate structures. (If
ideally incommensurate solid adsorbate structures mould
be formed instead, they would experience a negligible
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FIG. 1. (a) A thin molecular slab between two plane surfaces.
The molecules tend to form layers parallel to the surfaces (n =3

in the present case) and the number of layers n depend on the
external pressure I'. (b) The variation in the thickness of the
molecular film depends in a quantized manner on the pressure
P.
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pinning potential resulting in zero yield stress, contrary
to experimental observations. }

As stated above, it is often not possible to squeeze out
the last layer or two of trapped molecules. The reason
for this is related to the solid nature of the adsorbate lay-
ers and to the fact that these are pinned by the substrate
potential. But, if a large enough shear stress is applied
the adsorbate layer may shear melt (in which case the two
solid surfaces would move laterally relative to each oth-
er); in this case, it may be possible to squeeze out the last
one or two monolayers as well. Furthermore, if a given
normal pressure results in, say, n monolayers when the
shear stress equals zero, then if the surfaces are forced to
move laterally relative to each other, one or several fur-
ther monolayers may be squeezed out as a result of the
fluidization of the film during sliding.

The processes discussed above are likely to be of funda-
mental importance in boundary lubrication. ' Since
most macroscopic bodies have a rough surface, at least
on a microscopic scale, when, say, a steel block is resting
on a steel substrate, very high normal pressures will re-
sult in the "contact points" (junctions) between the two
bodies. This will, in general, result in plastic deformation
of the metals at the contact points in such a manner that
each junction will be in a state of incipient plastic flow.
The normal pressure at a junction will, therefore, be close
to the largest compressive stress 0, (the penetration
hardness) that the material can bear without plastic yield-
ing. This, for steel, equals o, —10 N/m . Now, if a lu-

bricant is present between the two solid surfaces, the fun-
damental question is whether the very high local normal
pressures will squeeze out the film completely (which
would lead to a high sliding friction and large wear), or
whether one monolayer (or more) of lubricant molecules
will remain in the contact areas. For many lubricant
molecules, the latter must be the case, since it is known
that the presence of lubricant reduces the sliding friction
at low sliding velocities (boundary lubrication) by a factor
of 10 or so, while the wear may be reduced by several or-
ders of magnitude.

In this paper, we study the nature of the film thickness
transition n ~n —1 under the assumption that the layer
to be squeezed out is in a two-dimensional fluid state. We
calculate the "speed" of "squeezing out" and compare it
with the experimental data of Gee, McGuiggan, and Is-
raelachvili. We also discuss the nature of the "nu-
cleation" of the film thickness transition.

II. THEORY

We consider the layering transition n =2—+1 for which
experimental information is available for, e.g., the liquid
octamethylcyclotetrasiloxane (OMCTS) (a silicone liquid
with approximately spherical molecules with diameter
-8.5 A) between two flat mica surfaces. We assume
that the layer to be squeezed out is in a fluid state, which
is the case if the two mica surfaces are in a relative paral-
lel motion. Finally, we assume that the layering transi-
tion is initiated by a nucleation. A small circular region
with n = 1 is assumed to first nucleate somewhere in the
contact region fallowed by a "spreading" or "growth" of
the n=l region and a corresponding decrease of the

n =2 region so that the total area A„,+ A„z=Ao is a
constant. We consider first the nucleation process and
then the growth process.

A. Nucleation

The first term 2n.R I' represent the free energy associated
with the unsaturated bonds of the molecules at the peri-
phery of the hole (I is a "line tension"). The second
term nR po is the change in the interface free energy. If
y„y&„andy, &

denote the solid-vacuum, liquid-vapor, and
solid-liquid interface free energies, then

po y yl y 1 The two-dimensional pressure po is
usually called the spreading pressure. For organic
molecules on metal oxides, one has typically po-4
meV/A . The third term in (1), —aR, is an elastic re-
laxation energy, namely when a hole has been formed, the
two solid confining materials will deform elastically as in-
dicated in Fig. 2; this relaxation energy will tend to stabi-
lize the hole. It will be shown below that the elastic re-
laxation energy scales with the radius of the hole as -R
and will, therefore, for a large enough hole, dominate
over the interface energy term. Furthermore, we show
below that a-Po where Po is the (three-dimensional)
pressure acting on the two solid bodies. The probability
for a hole with the radius R to be formed by a thermal
fluctuation is proportional to the Boltzmann factor

—U(R)/k T
e B

where T is the temperature and kII the Boltzmann con-
stant. If R, denote the critical radius, i.e., the radius for
which U(R) is maximal, the probability rate w of nu-
cleation of the n = 1 "phase" will be (see Appendix A)

—U(Rc ~/k& T
(2)w =woe

From (1), we get

2mI +2m.R,po
—3aR, =0

~~
I
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FIG. 2. A thermal fluctuation has created an n =1 nucleus
(radius R) in an n =2 fluid layer. Because of the external pres-
sure P, the surfaces of the elastic solids expand (relax) into the
hole as indicated.

We consider a perfect system with no imperfections,
e.g., steps, on the two solid surfaces. The two confined
molecular monolayers are laterally in a fluid state, but
normally very well defined. Assume now that due to a
thermal fluctuation a small circular hole is formed in the
uppermost two-dimensional fluid layer. If R denotes the
radius of the "hole" the adiabatic work to form the hole
is the sum of three terms

U(R)=2nRI +IrR po aR—
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and

U(R, )=mR, p /3+4mR, I /3 . (4)

P(r)=P, + 'P,R[(r' R') '-" r']— —

for r &R. If uo and u(x) denotes the normal displace-
ment fields of the "upper" elastic solid at the surface con-
tacting the n =2 layer, before and after opening up the
hole, respectively, then the elastic relaxation energy asso-
ciated with the upper solid body can be written as

U)= —,
' x P x u x —P0u0 (6)

But for an isotropic elastic medium"

1 —o z, P(x')
nE ix —x'f '

where E is Young's modulus and o the Poisson's ratio.
Substituting (7) in (6) gives

In Appendix A, it is shown that in the present context
w0 —10' s ', and if we formally define nucleation to
occur when m-0. 01 s ' (i.e., about one nucleus per
minute) then it follows from (2) that nucleation will occur
when U(R, )/ks T=ii, where a=44.

Let us now evaluate the coeacient a in the elastic re-
laxation energy. We will treat the two solid bodies as iso-
tropic elastic media, which certainly is not a good ap-
proximation for mica but a reasonable approximation for
most practical" cases, e.g., for most metals and metal
oxides. Now, before the hole has been opened up, the
n =2 monolayers must exert a normal pressure P0 on the
upper and lower elastic bodies. After the hole (radius R)
has been opened up, the pressure on the solid bodies is as-
sumed to be zero for 0&r &R, where r =0 is the origin of
the circular hole. For r )R, the normal pressure will be
some function of r, P=P(r) where P(r)~Po as r~ ~,
and with

2n f dr r [P (r) —Po] =nR Po,

so that the total normal force (the "load" ) on the elastic
body is unchanged. In principle, the function P(r) (for
r & R } can be determined from the theory of elasticity.
The solution depends on the boundary conditions for
r &R. In the literature, two limiting cases have been
studied. ' In the present context, we assume that the
parallel (or tangential) stress vanishes everywhere on the
elastic bodies. In this case, P(r) is approximately given

10

a=(1 o)P—sf/E . (10)

In Fig. 3, we show the general form of U(R) for two
different external pressures P, and Pp&P, . If P is in-

creased, from some low value, both R, and U(R, ) de-

crease. The transition n =2~ 1 will nucleate when
U(R, )/k~T=~ In t.he present case, x=44 (see Appen-
dix A).

Using (4) we get the nucleation condition

nR, p /3+4mR, I'/3=zk T

or

R ——2I + 4I +
C

P0 Pp

3~k' T

Kp0

where the + and —sign refer to pp & 0 and p0 &0, re-
spectively. At room temperature (ks T=25 meV) and for
organic molecules on mica (po=2 meV/A ), I'=10O2

meV/A (we estimate I from the product of the liquid-
vapor surface free energy y& and the thickness of a
molecular monolayer layer), we get R, =15 A, which is

large enough for the continuum approximation involved
in the calculation of the elastic relaxation energy to be
valid. Next, using (3}and (10) we get

(2@I +2mR, p )E
(12)

3(1 o)IR, —P0=

Let us tentatively apply this formula to OMCTS between
two mica surfaces. The elastic properties of mica are

where I is a number,

—f "agdg f'"dy +~ ~~ ~ -14
o o (g +g' —2g'cosP)'

However, not only the upper elastic body will relax when
the hole opens up, but so will the lower body. We can
take this into account by doubling I; hence we will use
I=2 8b. elow. Any other reasonable choice of f(g) [i.e.,
of P(r)] would give a small numerical change of the in-

tegral I, but would not change the general form of (9).
Using (9) we obtain

If we write P(x) =Po+Pof (r/R) where

f(g) = —1 for g(1
and

f(g) =
—,
' [(g~—1) '~~ —

g '] for g & 1,
then it is easy to show that (8) reduces to

U,i=(1—o )PiifR /E,

FIG. 3. The dependence of the energy of an n —1 nucleus on
the radius R of the nucleus. As the pressure P increases
(Po )Pl ), the "activation" energy U„which must be overcome
in order to nucleate the layering transition n ~n —1, decreases.
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highly anisotropic; the crystal is monoclinic quasihexago-
nal and has five independent elastic coefficients (in 10'

N/m )

C, ~7.8, C =5.5, C~, ~, =1.2,

For the present problem, the most relevant of these are
C and C„,„,. We can choose the parameters E and cr

to describe these elastic properties correctly; this gives
E=1.75X10' N/m and o =0.44. Using (12) we can
now calculate the "critical" pressure necessary to nu-

cleate the n=1 area; we get PO=7X10 N/m. This
should be compared with the observed critical pressure, 2

(2+1)X 10 N/m, which is a factor of -30 smaller than
the theoretical estimate. This indicates that the actual
nucleation may occur at some "weak" point between the
mica surfaces where "imperfections", e.g., adsorbed wa-

ter molecules or some organic contamination, may occur.
This may locally reduce the spreading pressure (which

may even become negative, i.e., nonwetting) and may
reduce the elastic constant E, both efFect of which would
reduce the critical pressure Po (see below). The situation
is obviously similar to that for three-dimensional systems,
where the centers of formation of a new phase, e.g.,
solidification of an undercooled liquid, usually occur at
various kinds of "impurities" (dust particles, ions, etc.).

As another application of (11) and (12), consider a met-
al block on a metal substrate with a lubricant Quid. As-
suming that the spreading pressure po =4 meV as is typi-
cal for organic fluids on metal oxides, Eq. (11) gives

R, =12 A. For steel, E-1X10"N/m, and (12) gives
PO=2X109 N/m . This is similar to the pressure that
occurs in the contact regions between the steel surfaces,
which is of the order of the plastic yield stress (the
penetration hardness), i.e., of order 10 N/m . Account-
ing for the imperfect nature of the real contact areas it is
very likely that if the lubrication layer is in a fluid state it
will be squeezed out from the contact areas. On the other

hand, if the lubricant layer is in a solid state even this
high pressure may not be able to remove the last layer or
two of lubrication molecules from a junction region. But
as the temperature increases, the lubrication film will
finally melt (two-dimensional fluid) and the lubrication
Quid can be squeezed out from the contact regions, as is
indeed observed in many sliding systems. For example,
Fig. 4 shows the temperature variation of the sliding fric-
tion coefficient f and the amount of metal transfer (the
"pickup") from one metal surface to another, as a cadmi-
um block is slid over a lubricated (palmic acid) cadmium
substrate. ' The metal transfer is measured by making
the block radioactive and detecting the amount of ra-
dioactive metal transferred from the block to the sub-
strate. Note that in a narrow temperature interval, from
110 to 130'C, there is an abrupt increase in the sliding
friction (by a factor of —10) and an increase in the
amount of metal transfer by almost a factor 10 . This can
be explained if it is assumed that the palmic-acid film
melts in this temperature interval, and if the melted film
is squeezed out from the contact regions between the two
surfaces. In fact, since above —130'C the sliding friction
and the metal transfer are essentially identical to those
for clean surfaces, this is very likely the correct explana-
tion.

It must be pointed out, however, that the squeezing out
of a lubrication film may occur very slowly (see next sec-
tion) so that, during sliding, if the transition n =1~0
would nucleate somewhere in the contact region, the nu-
cleus may not have enough time to grow before the two
contact areas have passed each other. [The overall diam-
eter of a contact area (junction) is not large, typically of
order 0.01 mm. ] This is also probably the reason why
during sliding of lubricated surfaces the metal fragments
transferred from one of the sliding surfaces to the other
are usually very small compared with the case of unlubri-
cated surfaces, where the metal fragments are of siinilar
size as the contact area itself, as shown by radioactive
tracer experiments.

In Fig. 5 we show the critical pressure Po and the criti-

07- 100000

05—
0

~A

V
~ t+I
~Ca

O

e 03-
8
0
U

01— smooth

riction

—100

—10

—01

V

b0

I

CO

S4
q

A
V
F4

—10000

A
—1000 I

0

FIG. 4. The temperature dependence of the
friction coefficient and of the metal transfer
("pickup") for cadmium surfaces lubricated
with palmitic acid. The amount of pickup is
deduced from the radiograph shown at the
bottom (from Ref. 12).

l

40
I

60
I

80
l

100
I

12,0
I

140

temperature ( c)



5594 B. N. J. PERSSON AND E. TOSATTI

-1

' ~ I ",
' j

l~
x~

2— C

I

gal P

10

FIG. 6. Schematic picture of the layering transition
n =2~1. The lubrication film is assumed to be in a fluid state.

2 3 4

po (trvr1 jul )'

FIG. 5. The critical pressure Po and the critical radius 8,
[Eqs. (11) and (12)] as a function of the spreading pressure po.
In the calculation, I = 10 meV, kz T=25 meV, and
E/(1 —o ) =10"N/m, are assumed, as reasonable values for a
generic situation.

cal radius R, as a function of the spreading pressure po.
In the calculation we have taken I =10 meV, k~T=25
meV, v =44, and the elastic constant
E, =E/(1 rr )—=10" N/m . (The results for other
values of E, can be obtained from the fact that Po -E,'
while R, is independent of E„.) Note that Po vanishes

for po & —3I /(mwks T), i.e., for po & —0.3 meV in the
present case. Hence, if the spreading pressure is negative,
the layering transition may nucleate spontaneously (i.e.,
without an external pressure). This may be the case, for
example, for most Quids between two teflon surfaces, or
between two metal-oxide surfaces covered by fatty acid
monolayers.

dimensional pressure takes the value po &p„which is a
constant (the spreading pressure) determined by local
equilibrium between the fluid and the adsorbed mole-
cules. Because of symmetry

v =rv(r, t),
p=p(r, t) .

Substituting these Eqs. in (13) and (14) gives

BU U+—=0
Br r

T

1 Bp r} Bv+ v+V + 'QU

mn, Br dr Br r

(15}

(16)

where we have dropped the nonlinear term in (14} since
the velocity U is very small in the present applications.
Note that because of the continuity Eq. (15), the viscosity
term in (16) vanishes, i.e., the spreading does not depend
on the two-dimensional viscosity. The relevant solution
of (15) is of the form

B. Growth v (r, t)=8 (t)/r . (17)

We now study how the n =1 region will spread after
the nucleation has occurred. Let v(x, t) be the two-
dimensional velocity field of the monolayer being
squeezed out. Assuming an incompressible two-
dimensional fiuid, the continuity equation and the (gen-
eralized) Navier-Stokes equations take the form

V' v=0
v +v.Vv= Vp+vV v —qv

1 2

r}t mn,

(13)

(14)

where p is the two-dimensional pressure and v the kine-
matic viscosity. The last term in (14}describes the "drag
force" by the substrate acting on the fluid. ' Equation
(14) has been studied earlier in the context of two-
dimensional (2D) hydrodynamics by Ramaswamy and
Mazenko' and a similar equation was used by de Gennes
and Cazabat' in a study of the spreading of a wetting
drop.

We assume that the contact area between the two solid
surfaces has a circular shape with radius ro. Assume first
that the initial nucleation occurs at the center of the con-
tact area. Hence, by symmetry the n = 1 region has a cir-
cular shape with the radius r, (t) (see Fig. 6). Let p, be
the two-dimensional pressure for r =r „which will be dis-

cussed below. At the boundary r =ra, the two-

Substituting this in (16) gives

dp/"dr = mn, [B(t—)+ re (t)]/r,

where 8 =dB /dt Using th. e boundary conditions

p (ro ) =po, this equation has the solution

p(r) =po mn, [B(t)+—rIB (t)]ln(r/ro) .

Now, at the leading edge r =r, (t) of the n =1 region, the
pressure p =p, so that from (18) we get

[8(t)+riB(t)]ln(r& /ro) = —
(p&

—po)/mn, .

But we must also have

r, = v (r„t)=8 (t) /r,

so that (19) can be written as

(19)

dr1
+rtr~~ ln(r, /ro)=—2(pi —po}

121ng

For "large" times, r, varies slowly with time (see below),
and we can neglect the second time derivative term in the
expression above. Furthermore, if we introduce the area
A (t) =mr, (t) Eq. (20) becomes.
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dA A(t)
dt Ap

4n.(p, —pii)

gmn,
(21)

If we assume that p, is independent of r„i.e., of A (t},
then (21) can be integrated analytically.

A(t) A(t)
1n

Ap Ap

4m (pi —
pii )t

mn, gAp
(22)

The time t ' it takes to completely squeeze out the layer is
obtained from (22}by putting A (t*)= Ao, which gives

mn, gApj*=
4~(pi —po)

(23)

Let us now discuss the two-dimensional pressure p&.
We will show that p, =p»+aPO, where a is the change of
distance between the confining solid surfaces as one
monolayer is squeezed out, i.e., roughly the diameter of a
molecule. The easiest way to obtain p, is to evaluate the
adiabatic work to squeeze out one monolayer, which
must equal (p, —po)A where A is the surface area. But
the adiabatic work is also equal to the change in free en-

ergy resulting from the squeeze out of the monolayer,
which is given by [(2y,i+ Vii) 2y, i+P»—a]A —ViiA. In
this expression, the term [. . . ] is the change in the free
energy in the contact region, while the last term is the
binding energy of the squeezed out layer material to the
bulk of fluid outside the contact region ( V» A describes
the attractive van der Waals interaction, which occurs if
we bring into contact two fluid slabs}. Hence, we get
p, =p»+Poa. Since in a typical case Po-10 N/m and
a —10 A, the term P»a-6 meV/A, i.e., this term is of
similar order of magnitude as pp.

We can now use (23) to estimate the sliding friction ri
from the observed squeeze out time t *. Using

p&
—pp=Ppa gives

1
Vp —gv=0 .

mn,

From this equation it follows that

v= VP,

and the continuity Eq. (13) gives

(25)

(26)

V /=0. (27)

Substituting (26) in (25) gives

P= —p/mn, ri . (28)

to n =1.
(c) In the calculation above it was assumed that the nu-

cleation of the n =1 region occurred at the center of the
contact region. If the pressure P(r) were constant in the
contact region, one would expect the nucleation to occur
with equal probability anywhere within the contact re-
gion. But even if P(r) varies with r as indicated above,
the nucleation will, in general, occur some distance away
from the origin; in fact a simple analysis based on (2} in-
dicates that (r ) =0 2r». , where (. . . ) stands for averag-
ing over the spatial probability distribution of nucleation.
Taking this into account is unlikely to change t' by more
than a factor of 2 or so, but it has a drastic efl'ect on the
qualitative picture of how the monolayer removal occur,
as we will now discuss.

We assume for simplicity that the pressure in the con-
tact region is constant (equal to P»); the qualitative pic-
ture presented below does not change if the pressure
varies with r as discussed above. Neglecting the non-
linear and the viscosity terms in (14) and assuming that
the velocity field change so slowly that the time deriva-
tive term can be neglected gives

4m. t *Ppa
71=

mn, Ap
(24)

From the measurements of Gee, McGuiggan, and Israe-
lachvili for OMCTS between mica surfaces, Pp=2X10
N/m, t ' =120 s, a = 10 A, and A» =7X 10 m2 giving
g=6X10' s '. This value is quite reasonable but not
very accurate for the following reasons.

(a) The three-dimensional pressure in the contact area
is unlikely to be constant but will instead take its highest
value in the middle and vanish at the periphery. If
we assume" that the pressure depends on r as
P(r}=(2PO/3)[1 (r/r») ]', wher—e Po is the average
pressure, then (21) can no longer be solved analytically
but a numerical integration shows that the expression
(23) for t is increased by a factor 1.84 and g now takes
the value 3X10' s

(b) It is not obvious that the fllm to be squeezed out
remains in a fluid configuration during the whole time
period but may oscillate between a pinned solid state and
the fluid state; this result is suggested by the stick-and-
slip oscillations exhibited by the experimental friction
force (see Ref. 2) even in the transition period from n =2

Now, from (27), we see that the velocity potential P can
be interpreted as an electrostatic potential. Furthermore,
since the pressure p is constant at both the radius r =rp
of the contact area as well as at the periphery of the tran-
sition region n=2 —+1, the problem of finding P is
mathematically equivalent to finding the electrostatic po-
tential between two conducting cylinders at different po-
tentials, Po= polmn, ri a—nd P, = —p, /mn, rI The.
outer cylinder has a circular shape (radius r»), and the
inner cylinder an unknown (time dependent) shape to be
determined. Now, suppose that the initial nucleation of
the n=1 region occurs some distance away from the
center of the contact region, as indicated by the small cir-
cle in Fig. 7(a). The lines between the two circular re-
gions in this figure indicate the velocity field of the two-
dimensional Quid at this moment in time, constructed by
analogy to the electrostatic field lines between two
cylinders at different potential. Now, a little later in
time, this velocity field will result in a larger n =1 region
(dotted area) as indicated in Fig. 7(b). Figures 7(c) and
7(d) show the further spreading of the n =1 region as
time increases, constructed on the basis of the analogy
with electrostatics.
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FIG. 7. Snapshot pictures (schematic) of the time evolution
of the squeeze out of a monolayer, n ~n —1, in the slow (Lapla-
cian) limit of Eqs. (25)-(28). The dotted area denotes the n —1

region. Lines of force coincide with the velocity field.

III. SUMMARY AND DISCUSSION

In this paper we have used the weil-known fact that a
liquid close to a rigid surface is strongly layered perpen-
dicular to the surface, to explain the recent experimental
observation of n ~n —1 layer transition of a thin fluid

film between two flat solid surfaces, when pressure is ap-

plied between them. Nucleation theory is applied to cal-
culate the critical pressure, while 2D hydrodynamics
makes interesting predictions about the spreading dy-

namics of the (n —1) "island. " The predictions resulting
from the present modeling will, hopefully, stimulate fur-
ther experimental work.

A fundamental problem, which we have not addressed
in the present paper, is how the layering transition occurs
when the molecular layer between the mica surfaces is in

a solid state rather than in fluid state. (In the present
study we assumed that the two mica surfaces were in

parallel motion relative to each other so that the molecu-
lar layer was in a fluidized state. ) It is found experimen-

tally that in this case a larger normal pressure is neces-

sary in order to squeeze out one molecular layer
(n~n —1); it has been suggested that the critical pres-
sure may now be determined by the pressure necessary to
induce the transition (solid layer ~ fluid layer). But, it is

not obvious from theory how a pressure (i.e., normal
force per unit area) can fluidize the molecular layer.

The class of phenomena involving liquid layering by
proximity to a rigid substrate is very large. ' For exam-

ple, strong layering features in adsorption isotherms of
fluids of inert atoms and molecules on substrates such as
graphite have been the object of intense work for the last
40 years. ' The spreading kinetics of a nucleation island
in the n ~n+1 transition caused by thermodynamic dise-
quilibrium during adsorption and/or desorption may fol-
low a similar 2D hydrodynamics to that described here.

Layering is also important for a fluid in contact with

its own solid phase. In a bulk solid-liquid interface at
thermodynamic coexistence, the layer structure of the
solid is well known' to extend into the liquid according
to exp( —z/lo), with a decay length lo=(5Q) ', where

ACKNOWLEDGMENTS

B. Persson would like to acknowledge the warm hospi-
tality at SISSA where part of this work was performed.
E. Tosatti acknowledges support from the Istituto Na-
zionale Fisica della Materia (INFM), from the European
Research Office, U.S. Army, and from the EEC Human
Capital and Mobility scheme, under Contract Nos.
ERBCHBGCT920180, ERBCHRXCT920062, and
ERBCHRXCT930342.

APPENDIX A

In this appendix we derive the prefactor wo occurring
in formula (2) for the nucleation rate. Assume that the
contact area between the two solid surfaces has a circular
shape with radius ro and that the initial nucleation occur
at the center of the contact area. We consider only radial
fluctuations of the hole [radius R =R (t)] and neglect the
nonlinear term in the equation of motion for the two-
dimensional fluid. For radial fluctuations the viscosity
term vanishes (see Sec. II B) and we have

V-v=0

Bv

c}t

1 1
Vp —gv+ —f,

Pl ng m

(A1)

(A2)

where f(x, r) is a stochastically fluctuating force, which is
assumed to satisfy

(f, (x, t)fi(x', t') ) =K5(x x')5( t t—')5;. , —(A3)

where, in order to satisfy the fluctuation-dissipation

5Q is the width of the main peak in the liquid structure
factor, S(Q). The advancing or retreating of the solid
into the liquid caused by either thermodynamic interface
fluctuations, or by an added external chemical potential
imbalance, may be approached microscopically with
some of the concepts elaborated above.

Close to the triple point T„alsothe solid-vapor coex-
istence interface (i.e., the ordinary solid surface) is in
most cases wetted by a thin film of liquid (surface melt-
ing), which often is strongly layered, as shown, for exam-
ple, by numerous simulations. ' Chernov and Mikheev
pointed out that precisely this layering may be responsi-
ble for the nonwetting of the close-packed metal surfaces.
Simulation work as well as further theory is in agreement
with this idea, but also shows that the opposite is true for
a poorly packed surface, where the liquid and the solid
layering periodicities disagree. '

The process of advancing of the melting front from a
solid surface inwards normally takes place after roughen-
ing, since the step energy can be argued to fall very steep-
ly with temperature as the liquid film grows. In this
case, layering is destroyed by roughening. A more in-
teresting case is, however, incomplete surface melting,
which may occur without roughening. Here a thin
strongly layered liquid film forms, and only grows to a
finite thickness for T~T, . This process of limited
growth in the absence of roughening may in the future be
addressed with similar ideas to those developed here.
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theorem,

K=2mqks T/n, . (A4)

determined below. This gives

Mx+Mgx =—U'(x)+F, (A12)

(f(x, t}f(x', t')) =K5(x—x')5(t —t'} . (A5)

Now, if f(x, t)=x.f/r denote the radial component of f,
then (A3) gives

where (with R =R,&x )

2M[p(ro) —p(R)]U'(x)=
mn, R, ln(rz/R)

(A13)

Next, note that in polar coordinates

5(x—x') =5(r —r')5(y —y')/r .

and

2M fpF= dr f(r, t) .
mR, ln(rv/R)

Substituting this in (A5) and integrating over qr and p'
gives

(f(r, t)f(r', t')) = 5(r r')—5(t t')—,
217K

where

f(r, t)= fd q&f(x, t) .1

2'
Hence, using (A4),

mqksT
(f(r, t)f(r', t')) = 5(r r')5(t —t') —. (A6)

mn, r

Following Sec. II B, the solution to (Al) is of the form

In the present application the friction g is very large and
it follows that R(t) is a slowly varying quantity while

f(t) fluctuates rapidly. Averaging first over the rapid
time variation we get, using (A6),

(F(t)F(t')) = 4M2 'gkaT
5(t t'}-.

m nn, R41nrv R

Now, although R(t} is a fluctuating quantity, in the ex-
pression ln(rv/R) we can neglect this fluctuation and re-
place R(t) with the critical radius R, . This is a good ap-
proximation since ro/R is very large and ln(ro/R) will,
therefore, vary very little as R(t} fluctuates. Next, let us
choose Mso that

v(r, t) =B(t)/r .

The radial component of(A2) has the form

Bv 1 Bp 1—qv+ f-
Bt mn Br m

or, using (A7),

(A7) 4M gksT
=2Mgk~T.

men, R, ln(rv/R, )

This gives

M=mn, R, —ln
4m ~O

C

(A14)

Bp B B 1
mn, ——+g—— f-

Br 'r r m
(AS)

and

(F(t)F(t') ) =2Mgk&T5(t —t') . (A15)

x=2B/R, ,

and (A9) takes the form

(Alo)

where B=dB/dt. Considering now a fluctuating hole
with radius R(t). Using (AS} we get

PO

p =p pp pR
R Br

ro
mn, (B+gB)ln—(rv/R)+n, f dr f(r, t),

(A9)

Now,

R =v(R, t)=B(t)/R

and introducing x =R /R„we get

We can interpret (A12} as describing a point particle
[at x =x(t)] with the mass M moving in an external po-
tential U(x), and under the influence of a friction force
—Mgx and a fluctuating force F(t), which is related to
the friction g and the temperature T via the fluctuation-
dissipation theorem (A15). The external force —U'(x) is
proportional to the pressure difFerence p(ro) —p(R) [see
(A13)]. Now, p(rv)=p~ is the spreading pressure while

p(R) is the pressure exerted on the fluid at the periphery
of the hole, by the elastic media and by the line tension.
This quantity is easily obtained from the free energy
2m.R I —aR as follows. A small change in the radius R
of the hole, R~R+hR, changes the free energy by
(2n.I' —3aR )hR, which must be equal to the work
—p(R)2mRER. Hence,

x+qx =—2[p{r~)—p(R)]
mn, R, ln(ro/R}

2 Pp

dr f(r, t).
mR, ln(ro/R)

{All)

p(R) ={3a/2w}R —I /R

=(3aR, /2m)x' —(I /R, }x

Next, using (A13), (A14), and (A16},

U(x)=U (gx '+bx —cx3')

(A16)

(A17)

««s multiply this equation with a constant M, to be where
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6z 3 2+2]c
1+4m ' 1+4)c ' 1+4m

(A18)

where a = I /p0R, and where R, and U, are given by (3}
and (4). The effective potential (A17) is shown in Fig. 8.
According to (A12) and (A15), the original problem of
deriving the rate of nucleation of the layering transition
is reduced to the calculation of the rate for a particle
(with mass M) to be thermally excited over the potential
barrier U, in Fig. 8. But this is a standard problem,
solved more than 50 years ago by Kramers. In the
present case we need his "large-friction" result where the
chance per unit time for the particle, which originally
was caught in the region x & 1, to escape to x & 1, is given
by
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FIG. 8. The efFective potential U(x) as a function of the par-
ticle coordinate x.

n= 1
dx e

—P[U(x) —U(0)]f d PU(x)

MPq. o 0

With (A17) we get

(A19) z( 1 +2 )(/z 5 6(PU )5/2

(1+4tr) n, R, ln(r0/R, )

and

f —P[U(x) —U(0)] f0 0

=2(PU, a)

f PU(x) eP c f e 1/2PU"(1)(x —) )

0 (X)

(A20)

Furthermore, with g=3X10' s ' (see Sec. IIB), m —103

u and R, -10 m we get at room temperature

BT —1X10 s
mgR,

i.e.,
' 1/22' PU

—PU"(1) (A21)

where U"(1)= —(3U, /2)(1+2m. )/( I+4tr) from (A17).
Substituting (A20) and (A21) in (A19) gives

n= pU, e
( I+4tr)' ' ~ Mrl

or, using (A14),

tr&(1+2tr))/2 5.6(pU, ) kp T pUn= e
(1+4tr) n, R, ln(r0/R, ) mrlR,

In the present applications pU, =44 (see below), n, R, 1-
(see Sec. II A), a.-0.5, and ln(r0/R, )-10 so that

ri -(1X10 s ')e8 —1 I c

But the nucleation can occur at roughly nr(IVER,. .
difFerent places in the contact region, so that the "total"
nucleation rate will be

w =itr /0R, ,
2 2

and with R, —10 m and (from experiment}
r0-3X10 m, we get finally

w=(1X10' s ')e

If we somewhat arbitrarily "define" nucleation to occur
when w —10 s ' (i.e., about one nucleus per minute)
then nucleation will occur when exp( —PU, )=10 ' or

PU, =44.
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