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Phase diagram of the Ashkin-Teller quantum spin chain
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We study a one-dimensional quantum Hamiltonian which is related to a highly anisotropic ver-
sion of the two-dimensional Ashkin- TeQer model. We explore the parameter region and complete the
ground-state phase diagram. This problem is studied by using duality relations and by series expan-
sions up to seventeenth order. Corresponding critical indices are also calculated. In this parameter
region, a line of continuously varying critical indices is found.

I. INTRODUCTION

The two-dimensional Ashkin-Teller model consists of
two Ising models coupled by a four-spin interaction. The
classical Hamiltonian is given by

a = —) f K,(s;s, + t;t, ) + K,s;s; t;t, ii, (1.1)
(i j)

where s; = +1 and t; = +1 are two kinds of Ising spins
at site i on a square lattice and the sum is taken over
nearest-neighbor pairs. The K2 and K4 denote a two-
spin coupling constant and a four-spin one, respectively.
When K4 ——0, the model reduces to the two decoupled
Ising models with the nearest-neighbor coupling K2. In
the anisotropic case, the Hamiltonian is

) (K2 (srsrpx + trtr+x) + K2 (srsr+r + trtr+r)

+K4srsr+xtrtr+x + K4 srsr+rtrtr+r)& (1.2)

where r = (i, j) is the lattice sites, and x = (1,0) and
r = (0, 1) are nearest-neighbor displacement vectors.

In this paper, a highly anisotropic version of
the Ashkin- Teller model is studied by using the
time-continuum Hamiltonian formalism. The two-
dimensional classical system is reduced to a one-
dimensional quantum system by taking an extreme lat-
tice anisotropic limit. s The transfer-matrix method is
used to convert a problem of statistical mechanics at
a finite temperature in two dimensions into that of a
ground state for a one-dimensional quantum Hamilto-
nian. The Ashkin-Teller quantum chain is obtained
by a highly anisotropic limit K24 -+ 0, K24 + oo.
The parametrization is K2 = rP, K4 = 7PA, K2

(luau

i —ln A)/4, and K4 ——(inr + ln A)/4, and takes
a limit v m 0. The quantum Hamiltonian reads

'R = ) (2(1 —cospi) + A(1 —cos2p~))
2

—P ) (2 cos (8i —8i+i) + A cos (28' —28&+i)).

0, s/2, ir, and 3ir/2. Its conjugate operator p~ changes
the eigenstates of the operator 8i as *e""'~8 )i= ~8~ +
urn/2), where n is an integer. They obey the relation
e'"~"e'"» = e'"» e'" "e'"~ ~~'. For details, see Sec. II of
Ref. 2.

By a nonlocal unitary transformation, this model is
mapped to the staggered XXZ model. 2 The Hamiltonian
1s

'8 = ) (S»S»+i + S»S»+i + AS»S»+i)

+P) (S»,S»+ S»,S»+ AS», S»), (1.4)

where S is the S = 1/2 spin operator. When A = 1 this
model is the S = 1/2 alternating Heisenberg chain. This
alternating model is equivalent to the 8 = 1 Heisenberg
antiferromagnetic chain in the limit p -+ —oo. s Hal-
dane pointed out that there are qualitative differences
between integer and half-integer Heisenberg antiferro-
magnetic chains. s The above unitary transformation was
applied to reveal the hidden Zs x Zs symmetry of the
Haldane-gap problem. s r

In the region P ) 0 the phase diagram was first ob-
tained by Kohmoto, den Nijs, and KadanoH', 2 which was
confirmed by several methods. s It has a rich structure
including a line of continuously varying critical indices.
This line is identified with the Gaussian model universal-
ity class. There are also investigations based on confor-
mal field theory with the central charge c = 1 by several
authors. ~o ~3

The purpose of the present paper is to determine the
phase diagram of the ground state of the Hainiltonian
(1.3) in the region P & 0 quantitatively by a series ex-
pansion and duality relations. The critical lines and the
critical indices are evaluated by the Pade method. The
obtained phase diagram includes a critical line with con-
tinuously varying critical indices.

II. DUALITY'

This section describes the duality of the Hamiltonian
(1.3). This duality is stated as

(1.3)

The operator 8~ acts on a site j and has four eigenvalues
p-=8 —8~+i —vr, 8 =) (pi, +~),

I &~

(2 1)
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'R( P, A; 8, p ) = —P 'R( 1/P, —A; 8, p ). (2.2)

For P & 0, the ground state is mapped to the ground
state in the transformed system. This duality connects
the regions (A, P) and (—A, h). Therefore, if the system

is critical at a point (A, P), the corresponding dual points

(—A, &) have the same critical properties.

III. PHASE DIAGRAM
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In this section, we describe the phase diagram for neg-
ative values of P obtained by the duality and series anal-
ysis (see Fig. 1). The phase diagram for positive values
of P is described by Kobmoto, den Nijs, and Kadanoff.
Therefore, we do not describe it here. The ground states
are characterized by their expectation value of the two
operators e ' & and e+' &, which are called the polar-
ization operator and the magnetic field operator, respec-
tively. The phase diagram (P & 0) has four regions:

(1) Paramagnetic region, phase I, characterized by (e's)
= (ez's) = 0. At point D' (in Fig. 1) the Hamiltonian
(1.3) is equivalent to the antiferromagnetic Heisenberg
chain with S = 1, '5 and it is believed that the system

has a gap between the ground state and the 6rst excited
state. s (2) Fully ordered region, phase VI, characterized
by (e' ) g 0 and (e2'8) g 0. This phase is the dual phase
of phase I (P & 0) by (2.2). (3) Partially ordered region,
phase VII, characterized by (e's) = 0 and (e '

) g 0. (4)
Partially ordered region, phase VIII, also characterized
by (e's) = 0 and (e2's) g 0.

There is no sign of a "critical fan" in the region P &
0 within this analysis. A critical fan is a region where
a line of continuously varying criticality "fans out" and
becomes an area of critical behavior, for example, phase
V. However, we cannot discuss the existence of critical
fan near point D, because the convergence of the series
analysis is poor for —1 ( A ( —0.9.

The regions are separated by critical lines. Line 9 can
be understood by examining the limit A )) 1, PA = O(1).
The second term in the Hamiltonian (1.3) dominates and
we can treat the other parts as a perturbation. The ef-
fective Hamiltonian is the Ising model in a transverse
magnetic field. Therefore, line 9 approaches P = —

&

in this limit and belongs to the Ising model universality
class. Line 9 is obtained from line 10 by the duality (2.2).
Therefore, the boundary of the phases is P = 2i A, in the
limit !A! )) 1 (A & 0).

When A = 0, the Hamiltonian (1.4) reduces to the
XY model. The Jordan-Wigner transformation maps
this model to that of the free fermion. is Thus, it is solv-
able there and is gapless at P = kl. In the language of
the two-dimensional classical Ashkin-Teller model (1.1),
the Hamiltonian reduces to the decoupled ferromagnetic
Ising models at point A and reduces to the decoupled
antiferromagnetic Ising models at point A'. They have
the same critical properties and identical critical indices
there.

Line 8 is expected to belong to the Gaussian model
universality class. The values of critical indices are sym-
metric under the transformation A ~ —A by the du-

ality (2.2). It is natural to consider that lines 8 and
10 meet at point D, because critical lines are not ex-
pected to have isolate end points and are expected to
be connected to the point with high symmetry, point D
in this case. If they meet there, line 9 and another end
point of line 8 meet at point D' by the duality (2.2) and
the points (A = —1, —oo & P & 0) belong to the same

phase with, a finite excitation gap. It follows that the
system exhibits a gap on its corresponding dual points

(A = 1, —oo & P & 0). Therefore, this result supports
Haldane's conjecture.

FIG. 1. Ground-state phase diagram of the Ashkin-Teller
quantum chain. Estimates of the critical points by a series
analysis are shown with error bars. For those without an
error bar, the error is smaller than the size of the plotted
point. Lines 1 and 8 exhibit continuously varying criticality.
Lines 2, 3, S, and 10 exhibit an Ising transition. Lines 5 and
6 exhibit a Kosterlitz-Thouless transition. Line 4 exhibits a
potassium dihydrogen phosphate (KDP) transition. Line? is
the P = 0 critical line. The coordinates are A.(0, 1), A'(0, —1),
D(—1,0), and D'(1, —oo). Region P & 0 was determined by

Kohmoto, den Nijs, and Kadanoff (Ref. 2). The plotted points

in the region P & 0 are improved estimates kom the series

analysis up to 17th order.

IV. SERIES EXPANSIONS

We make series expansions with respect to P and ob-

tain series for the speci6c heat, the magnetization, and
the susceptibility to estimate the critical points and crit-
ical indices. It is necessary to have long series to extract
reliable estimates of the critical points and critical in-

dices. We use the linked cluster expansion method pro-

posed by Kadanoff and Kohmoto. ~e The method of the
calculation is exactly the same as that of the previous
work of Kohmoto, den Nijs, and Kadanoff. We only de-

scribe the de6nition of the critical indices brie8y.
The unperturbed system [(1.3) with P = 0] has the
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ground state which is a collection of uncorrelated lo-
cal states, ~pz

——0). It is disordered in the sense
that the expectation values of the local order parame-
ters vanish. Thus, we consider the disorder operators

M Q - gs) - cos p and +2
where M is the number of sites, which have nonzero ex-
pectation values in disordered phases and disappear in
an ordered phase. They are the disorder operators
corresponding to the magnetic field operator and the po-
larization operator, respectively. To calculate series for
the magnetization of the operators 0 (m = 6 or 2), we

modify the Hamiltonian to g + hQ . The ground-state
energy in the presence of h is calculated in a power series
of P and h as E(A;P, h) = P„eP eEi" l(A)P h
The specific heat is obtained by C = 8&E(A;P, h = 0).
The expectation value of the magnetization and the sus-

ceptibility is given by (8 ) = B~E(A;P, h)~i, —e and
Bi,(G~) = Bi,E(A;P, h)~i, =e, respectively. We use the
Dlog Pade methodi4 to estimate the critical points P,
and critical indices. The definition of critical indices

, X-) - l~.
&h(&~) ~ ~Pc —P~, (P M P,), where m is + or 2.

The quantities calculated by series expansions are the
specific heat (15 terms), the magnetization (17 terms),
and the susceptibility (15 terms). The estimates for the
quantities are obtained by averaging the three or four
highest-order elements [n —1,n], [n, n], and [n+ 1, n] of
the Pade tables. Error bars are set to include these three
or four values.

For —1 ( A ( 1, the best estimates for the critical
points are obtained &om series for (Gz). They show good
convergence in almost all of this region. The poor conver-
gence near A = 1 is due to the large values of P, . Phase I
is the disordered phase and phase VI is the fully ordered
one. In general, it is possible that a partially ordered
phase exists between these phases. For example, see the
relation among phases I, II, and III. At a fixed value
of A, an analysis of the series for (G~) and (Q2) shows
that there is one critical point, their values are same, and
these values are the same as that of —at —A within the

Pc
error bars. Therefore the above possibility is denied and
we conclude there is one critical line.

For A ) 1, the best estimates for the critical points are
obtained from the series for (Cl~). As A becomes large
the Pade tables become extremely stable. For example,
at A = 4 we estimate P, = —0.506385 75(l). The series
analysis shows that line 9 approaches the line P = —

&,
which is consistent with the results in Sec. III.

For A ( —1, we determine line 10 &om line 9 by the
duality (2.2).

In Figs. 2 and 3, the critical indices Ig~ and py are
shown, respectively. The critical indices P2, p2, and o.
are shown in Figs. 4 and 5, respectively.

At A = 0, the system reduces to decoupled Ising mod-
els. Therefore, we know the exact critical indices o. = 0,
P~ = s, aiid P2 ——

4 which is due to two pieces of Ising
models. We obtain the values p~ = 4 and p2 ——

2 with
the help of the standard scaling relations. These val-
ues are also obtained from those at point A (see Ref. 2
and references therein). We know the exact critical point
P = —1. Instead of evaluating residues at the poles, we

~ 20
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FIG. 2. Critical index P~ as a function of A on lines 8 and

can improve the estimates of the critical indices by eval-
uating the Pade approximants at P = P . The estimated
values of the critical indices fmm the series analysis are
a = 0.18(5), Py = 0.122(2), py = 1.74(2), Pz = 0.246(1),
and p2 ——1.43(2).

For —1 & A ( 1, the critical indices vary continuously.
They show good convergence near A = 0, for example,
P~ = 0.1285(6) at A = 0.4. However, we cannot deter-
mine the values accurately near A = —1 and 1 due to the
poor convergence of the critical points there.

For A ) 1, line 9 belongs to the Ising model univer-
sality class (see Sec. III). Therefore, the critical indices
a, P~, and py must be 0, s, and 4, respectively. The
critical indices Py and p~ obtained from series analysis
show good agreement with the Ising value, for example,
P~ = 0.12507956(4) and py = 1.736(3) at A = 4. The
convergence becomes poor around A = 1 due to the poor
convergence of the critical points.

V. DISCUSSION AND SUMMARY'
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FIG. 3. Critical index 7~ as a function of A on Iines 8 and

We studied the ground-state properties of the Ashkin-
Teller quantum chain in the region of P ( 0. The
ground-state phase diagram is obtained by series expan-
sions and the critical indices on the critical points are also
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FIG. 4. Critical indices Ps (a) and p2 (b) as a function of
A on line 8.

evaluated. In the region P & 0 and ~A~ & 1, we find the
critical line of continuously varying critical indices (line
8). This line is expected to belong to the Gaussian model
universality class. A more detailed investigation on line
8 will be reported elsewhere. 2o For A ) 1 and A & —1,
each region has one critical line and these lines belong to
the Ising model universality class. In the region P ) 0,
there is a critical fan2 (phase V in Fig. 1). On the other
hand, there is no sign of a critical fan in the region P & 0
within our analysis.

At A = 1 the Hamiltonian (1.3) is mapped to the
8 = I/2 alternating Heisenberg chain by a unitary
transformation. 2 This alternating model is equivalent to
the S = 1 antiferromagnetic Heisenberg chain in the limit

p m —oo.4's On the line A = 1 (—oo & p & I), it is
expected that the system belongs to the same phase as
the Haldane phase. ' The series analysis here shows
that the system is in the same phase on the line A = 1

FIG. 5. Critical index a as a function of A on lines 8 and 9.

(—oo & P & 1). It supports the results by several
authors. 4' '

Several authors discussed the Haldane-gap problem
with the Hamiltonian (1.4) in the limit P -+ —oo.
We can view it &om another standpoint. The duality
(2.2) tells us that the phase structure around point D'
is mapped to that around point D. It is expected that
the critical line does not cross the line A = —1 (P & 0).
Therefore the system has a finite excitation gap on the
line A = 1 (P & 0). This observation provides support of
Haldane's conjecture.
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