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EfFect of the band structure on charge exchange during atom-surface collisions
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Within the framework of the time-dependent Anderson-Newns model, charge exchange between an
atomic particle and a surface with arbitrary band spectrum during scattering is examined. The charge
state of the scattered particle is shown to be, in general, an oscillating function of its energy. Such
behavior is a consequence of interference effects arising from band finiteness and from the complex struc-
ture of electronic states, which develops when an atomic particle interacts with a surface. The possibili-

ty of a substantially nonexponential law of atomic-state decay is demonstrated. The results obtained are
found to give the account for known experimental dependencies.

Charge exchange between an atomic particle and a
solid surface is one of the most fundamental aspects of
atom-surface interaction. Charge exchange controls
nearly all dynamical processes that occur at surfaces.
The probabilities for charge transfer were first calculated
with use of the time-dependent Anderson-Newns mod-

l
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However, most calculations of the charge-transfer re-
actions have been performed in the "wide-band" limit,
since this approximation allows for analytical solution of
this problem with minimal restrictions on the behavior of
the hopping and the shift of the atomic level. ' This ap-
proximation does not take into account the effect of
band-structure features, especially of the finiteness of the
bandwidth. Meanwhile, real bands are always restricted
to some energy interval and can be described by a specific
function N(s). What is more, the wide-band approach
does not provide for even a qualitative description in the
case when the valence-electronic-state energy of the scat-
tered particle is close to the band edge. Thus, a wide
range of experimental results cannot be described within
this approximation.

In this paper we take into account the effect of the
finiteness of the bandwidth and of the features of N(e) on
charge exchange during atom-surface collisions.

The effects introduced by the finiteness of the band-
width proved to be significant: band finiteness was found
to lead to nonmonotonic dependence of the final charge
state on kinetic energy. This nonmonotonic character is
a consequence of interference effects related both to band
finiteness and to the possible existence of short-living
states similar to that in the wide-band limit. However,
these states decay fast. Therefore, the interference effects
related to band finiteness prevail and might be experi-
mentally observable.

The most recent approach for the problem of electron
exchange of an atomic particle with a solid surface uses
the tunnel Anderson-Newns Hamiltonian:

8[R (t)]=+s(k)c„ck +e, [R (t)]g'tt &

+ A, [R (t)] g ( Vk 8 ck +H. c.),
k,.

where ck, 8 (ck,a ) are annihilation and creation
operators of electrons with a spin o in a Bloch state ~k )
and in the atomic state ~a ), respectively, R (t) is the dis-
tance between the atom and the surface, s, [R (t)] is the
energy of the atomic level at the time t, and A.[R (t}]Vk is
the hopping-matrix element, normalized by the system
volume V.

The problem is to find the value

n(+ m }=+(tt (+ ~ )& (+ w )),

representing the charge state of the atomic particle after
scattering.

Usually the dependence A.(t) is chosen in the form
exp[ —yR(t)]. Such a choice is justified by the fact that
at large distances R the hopping-matrix element is ex-
ponentially dependent on R, while its behavior at small
distances of approach is of minor importance when the
velocity of approach is relatively small (i.e., when the de-
viation from adiabaticity is small}. However, in many
scattering experiments the energy of the valence level is
close to either the upper or the lower band edge. In this
case the entire pattern of the process is changed since,
quite differently from the wide-band case, characteristic
rates of electron transfer emerge from the nonexponential
decay of the state in the vicinity of the band edge. In
most of the scattering experiment the characteristic times
of electron transfer are larger than those of the hybridiza-
tion switching on and off, i.e., a strongly nonadiabatic
process is realized. In this case the deciding role in the
final-atom charge-state formation is played by the region
of small values of R, where electron transition processes
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are most intensive. Thus, the switching on and switching
oK are momentary in the system time scale. The most
simple model dependence A.(t), which describes this situa-
tion, is A(t)=8(t)8{v—t}, where r is the characteristic
time of the establishment of the interaction, r=2alv|
where v~ is the normal component of the scattered
particle's velocity and a is of the order of the valence-
shell radius. At this distance the hopping-matrix element
is saturated and exhibits a weak power-law dependence
on the distance, which allows us to consider it to be con-
stant in this region.

Besides, it was supposed that a, could be shifted only
as a result of the interaction with band states. Hence,
s, (t) =const for the model in question. It is the suggest-
ed type of the A,(t) dependence that allowed us to derive
an analytical expression for n (+ 00 ) without any restric-
tions upon the behavior of N(s) and

I Vk(, )I.
Within the accepted model of the interaction the occu-

pation of the atomic state is constant in the time intervals
t&0 and t)r. Hence, n( —0())=n(0) and n(+()())
=n(~). Thus the charge-exchange process is restricted
to the time interval 0&t &r Withi. n the specified time
interval the Hamiltonian (1) is time independent (A, =—1),
so equations for the 8(t) and ck(t) operators in Heisen-
berg representation may be written as

The set (3) must be complemented with boundary condi-
tions:

&(t) I, =()=&(0),
(4)

Assuming that for t &0 the electronic system of the solid
was in equilibrium with temperature T, the initial occu-
pation of the atomic level being given by n ( —0() ), the
initial conditions are determined as follows:

&& (0)& (0)&=n (0)=n ( —~),
1

k, tr ~k, n k [P(k) P)/T+—
1

(ck (0}ck. (0) ) =0, k, trek', o',

(ck (0)&(0)) =0,

k
l

Bt
1=s(k)ck(t)+ Vk tt(t) .v'V

i =s,1{t)+ g V&~ck(t),
. aa(t) 1

t
(3)

where n ( —oo) and n (+Do ) (o =kl) are occupation
numbers of the atomic states defined by (2). Resolving
the set (3) as written and for the conjugated operators
with use of the initial conditions, (5) yields the desired
value of n (+ ()0 }:

n(+an)=n(e)=[n, (
—ao)+n, ( —ao)] f e ' 'G,'. (ao)

+—gI vkI nk I e '"'6,', (co)Gkk~~ (co)

where 6„(co)is the equilibrium retarded Green function,

6,",(a))=
co —s, +i5

V k to e(k}+i5—
(0)

(5 is a positive infinitesimal}, Gkk ((v) is the unperturbed
Green function of an ideal Fermi gas,

,(0)

co —s(k)+i5
To separate out the efFects due to band finiteness, the
cases of empty (nk =0) and filled (nk =1) bands will be
considered first. For those cases expression (6}yield

Expressions (9) and (10) imply that the dependence of
n{+()0) on the interaction time r is regulated by the
singularities of 6,",(z) in the lower half of the complex Z
plane. Therefore, the problem is reduced to the task of
the determination of analytic continuation of 6 (co) into
the complex plane with subsequent integration. The con-
tour of integration must be passed so as to avoid possible
singularities.

Now let us apply the technique of analytic continua-
tion of 6„(z) requiring only slightly restrictions upon
N(s) and Vk(, ). Namely, the N(s) and Vk(, ) functions
wi11 be assumed to be analytic in the upper half of the Z
plane and bounded in in6nity. Consider the mass opera-
tor

n(+ 00 )=n( —0() )IG;,(r)I, nk =0,
n(+ ~ )=n( —00 )IG,",(r)l'+2[1 —IG,",{&)I']

nk=l .

(9)

(10}

k2 N(e)I Vk( )I dE 2 N(g)l Vk(g)l dg'
M(co) =

E) co s+E5 ( co
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where integration is along segment 12 (Fig. 1)
([E, —i5,E2 —i5]). E, and E2 are the bottom and the
top of the band. Let us assume that co ERe. Then the in-
tegrand in (11} is analytic within the semi-infinite strip
enclosed by line segment 12 and half-lines C& and C2.
Therefore, contour 12 can be transformed as shown in
Fig. 1 (12~1342). When segment 34 is moved down, its
contribution becomes infinitesimal, so we have

M(z)= f, + f (12)

Now values of z with a negative imaginary part, including
the interiors of the C, C2 strip may be allowed. There-
fore, (12) defines an analytic function in the entire lower
half-plane (excluding half-lines C, and C2, where the
function is discontinuous).

Let us consider the following function G,",(z):

6.",(z) = 1

e) —e, +i 5 M(z—)
(13}

Since the mass operator M (z) is discontinuous at the rays
C& and C2, the function 6,",(z) is discontinuous there,
too. Above that, G,",(z) has poles with coordinates given

by the equation

Z —E, =M(z) . (14)
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FIG. 1. The integration contour for the mass operator M(z)
(solid line) and the contour bypassing the singularities of G„(z)
{dashed line).

As an example, let us consider the case when there is only
one pole in the 12C& C2 strip with a finite nonzero imagi-
nary part, corresponding to a quasistationary atomic
state with coordinates z =0 iI (—I')0}. There also
might be two poles out of the 12C& C2 strip with
infinitesimal imaginary parts, corresponding to split-off
levels near the band edges. For these poles, which corre-
spond to levels located out of the band (y, ), Eq. (14) ar-
rives at the following:

E2
I &k(, ) I

'N( & )d &

E,g
=

E y —g

Note that level splitting of the band edge is a rare case
with real-band spectra, occurring only if the electronic
density of states has a finite nonzero value at the band
edge.

Let us consider now the time dependence of 6,', on ~.
The integration over co is reduced to bypassing the poles
and cuts in the lower half-plane (Fig. 1).

The result of the integration in case in question may be
presented as

(15)

6,",(r ) = i —[ exp( i y—,r ) A, +exp( i y
—2r ) A 2

+exp( i Q—r)exp( —I r) A 3 ]

+exp( iE, w—)f) (r)+exp( —iE2&)f2(r), (16)

where A&, A2, A3 are the residues in the poles of the

G,",(z) function. The last two terms in (16) describe the
contributions from the contours L, and L2 designed to
bypass the cuts C, , C2. Note that f, (r) and f2(r) decay
slower than e ' (nonexponential decay). For the three-
dimensional spectrum, as an example, with the Van Hove
peculiarities on the band edges being of square-root char-
acter, the above-mentioned behavior functions are like
1/r for large r and are linearlike for small r. Note that
the last two terms in (16) may be interpreted as being re-
lated to effective states with energies equal to those of the
band edges. The important point is that these states are
long lived compared to the quasistationary states and
thus may play a leading role in some processes, including
the charge-exchange process. This always-present effect
is the most dramatic among those arising from the finite-
ness of the bandwidth.

The final result of the interaction is the charge state of
the atomic particle [as given by (9) and (10)] being found
as interference of these states, with long-lived states
predominating. As a result of this, the dependence of the
atomic-state population on time or on reverse velocity
will have a nonmonotonic oscillating shape. The frequen-
cies of the constituent harmonics of this function will be
given by the differences between the energies of the corre-
sponding peculiarities.

The results obtained allow one to account for the
variety of the experimental data, including the complicat-
ed data on ion scattering. The authors of the latter have
studied the changes of the charge state of N+ ions scat-
tered from the surface of NaC1 crystals. The unpopulat-
ed 2p level of N+ (E, =14.7 eV) falls within the filled 3p
surface band of Cl near its lower edge E, (E, —c, —= 1

eV). The width of the band is E& E2 —=7 eV. An ex—am-

ple of the dependence of the intensity of N+ ions scat-
tered elastically from Cl atoms on N+ energy is given in
Fig. 2.

The emergence of the oscillations in the N+-ion yield,
which are considerably different both in magnitude and
frequency, may be explained as follows: The level Q orig-
inating from the atomic level c, is pushed out of the band
and becomes localized, that is, the 6,",(z} function has no
poles corresponding to states which fall within the band.
In this case, splitting of a level off the upper band edge
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h n

amplitude of both these states is small, therefore these
components will not be observable. The oscillations
Q E—2, Q —y, and E, E—

2 have high and nearly equal
frequencies. Thus, for the probability W of the survival
of the initial N+-ion state we have
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FIG. 2. The energy dependence of the relative yield of the
N+ ions elastically scattered from Cl atoms of an NaCl crystal.
Solid line, experimental data. Dashed line, calculation using
(17) with parameters 0—E& = 1 eV, E, —E2 =7 eV.

W=B, (r}cos[(Q—E, )~+y, ]

+B2(r}cos[(E, E2 )r—+y2],

where B, &By 0 E& &E] E2 ~ This is just the depen-
dence that was observed in the experiments mentioned.
The calculated function W [~ (being the kinetic energy)]
is presented in Fig. 2 (dashed line).

Finally, let us deal with the case of the partially occu-
pied band. To separate out the effects associated with
partial occupation of the band, we will now set aside the
effects resulting from band finiteness. Thus, we may use
the wide-band approximation,

N(s)=const=Np
I VkI =const= Vp .

And for the mass operator

(y =Ez ) also—occurs. Above those mentioned, the G;, (~)
function will contain terms corresponding to effective
states E, and E2. Note that the weights of the y and E2
states in G,",(r) will be small in proportion to the value of
N(s)IVk~, ~I /(s, Ez). The—charge state of the atomic
particle will result from the interference of the terms list-
ed in (16). Consequently, the resulting dependence n(~)
will have oscillations with frequencies Q —E„Q—E2,
0—y, Ei E2, and y —E2. However, y=—E2 and the

M(co)= —g IvkI
1 2 1

k

we have M(ro) = it, w—here I =m VpN
Then for G,",(co) we have

(19)

G,",(co)=
co —c, +iI (20)

Substitution of (20) into expression (6) for n(+ oo ) yields

2I +~ de, 1
n (+ oo )=n ( —oo )exp( —2I r)+ e' +1 (s —s, ) +I

X (1+exp( —21'r) —exp( —I r) {exp[i (s —s, )r]+exp[ —i( s —s, )r] ] ), (21)

where energies are reckoned from the Fermi level.
In the T» I' case, (21) arrives at

n(+ oo)=n( —oo)e

+2[exp(s, /T)+1] '(1 —e ') . (22)

n(+oo)=n( —oo)e "'+(1—e ') . (23)

In the case c, » I & 0 we have

n(+ oo ) =n( —oo )e

+ 2P 1+e

+ cos(g) d2e Ba
c r (24)

Note that (22) may be deduced from the classical rate
equation.

In the T« I' case, to make the analysis of (21) easier,
let T =0. In the case c, =0 we have

From (24) it is seen that once the interaction time is
sufficiently large (r&A'/s, ), in the n(+ oo) dependence
on r an oscillating term e sin(s, r)/s, r emerges. Simi-
lar results are realized in the case s, &0, Is, I

» I . Note
that the emergence of oscillations in n(+ oo ) dependence
on ~ is a manifestation of the efFect of the quantum in-
terference of the amplitudes. The presence of a sharp
cutoff in the Fermi distribution and the difFerence be-
tween the energy c, and the Fermi energy lead to incom-
plete compensation of probability amplitudes, which
leads to the resulting phase shift. That is, the resulting
oscillations are of the same nature as those of the
density-correlation function in the degenerate case or
Friedel oscillations.

In summary, the most dramatic effect among those due
to the finiteness of the bandwidth is the occurrence of
"efFective states" with energies equal to those of band
edges. The charge state of a scattered atomic particle is
the result of the interference between these effective states
and quasistationary and localized states, which arise from
the interaction of the particle with the solid surface. It is
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this interference that leads to oscillations in the depen-
dence of the charge state of the scattered particle on its
kinetic energy. The oscillations of the charge state due to
the presence of a sharp cutofF in the electronic distribu-
tion at the Fermi level in the degenerate case (which are
essentially similar to Friedel oscillations ) seem most un-

likely to be observed experimentally, since they are a
fast-decay function of the interaction time, in contrast to
those mentioned above, which are due to band finiteness.
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