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Electronic shell and supershell structures in spherical multiple-shell and liquidlike clusters, taking into
account the electron-ion interaction through usual empty-core pseudopotentials, have been investigated
for trivalent and alkali species and compared with the conventional jellium model. In the case of
multiple-shell structures we find that the jelliumlike electronic shell structure is clearly developed, in
spite of the strong inhomogeneities in the ion density. The supershell pattern is, however, strongly
dependent on the geometrical structure and pseudopotential parametrization. In the case of a homo-
geneous ionic distribution, the overall effect of the non-Coulombic behavior of the pseudopotential at
short range is reflected through a softness increase of the effective electronic potential, acting as a diffuse
jellium. Results about the shell and supershell structures are in better agreement with experiments, as
compared to the standard jellium-model predictions. This effective surface softness, arising only from
the finite size of the ionic cores, could also partially correct the present disagreement between experi-
ment and jellium calculations with regard to the cluster polarizabilities and surface plasmon frequencies.

I. INTRODUCTION

Since its experimental evidence by Knight et al.,! the
electronic shell structure of valence electrons in simple
metal clusters has been the subject of a prolific litera-
ture.* This shell structure is of primary importance in
the physics of metal clusters because the size dependence
of numerous cluster properties is governed mainly by the
change in the density of states of the valence electrons at
the Fermi level, as in solid-state physics. The major
features of the electronic shell structure emerge naturally
from simple cluster models based on mean-field concepts
disregarding the discrete structure of the ionic back-
ground. Basically, the valence electrons are supposed to
move freely in a structureless flat potential well, assumed
to have a spherical shape with a radius RNe=rSNe1/ 3

where r; is the Wigner-Seitz radius per valence electron
in the bulk material, and N, the number of valence elec-
trons. However, the independent-electron (“free
motion”) hypothesis is not a prerequisite. In the self-
consistent spherical jellium background model (JBM),*>
the total charge of the ions is uniformly spread out over
the volume of a sphere of radius R N, and all Coulomb in-

teractions are treated quantum mechanically. Worked
out within the density-functional theory (DFT) and the
Kohn-Sham (KS) procedure,® the resulting equations can
be formally considered as dealing with N, independent
electrons trapped in a spherical potential box. In such a
potential the individual energy levels E, ; are highly de-
generate and tend to group into bunches which are clear-
ly distinct in small clusters. In large clusters, the electron
energy spectrum is very congested, but the persistence of
a strong state-bunching phenomenon is revealed in the
smoothed density of states. As in atomic or nuclear
physics, which both deal with fermion systems, the spher-
ical symmetry and the approximate size independence of
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the level ordering are the two keys for the emergence of
the electronic shell structure which arises from the
sequential filling of the lowest 2(2/+ 1)-fold-degenerate
levels (subshells) and the level bunches (major shells) by
the N, valence electrons. Sizes of enhanced stability,
called magic sizes, correspond to clusters with closed
shells. Quantitatively the level-clustering phenomenon
modulating the density of electronic states is reflected
through size-dependent shell effects which are periodic
on a N!/? scale (approximately AN!/3~0.6 between two
consecutive magic numbers). In the large-size domain,
theoretical and experimental results show that the shell
effects vanish periodically but with a much larger size
scale (AN!/3~6). This effect, called the supershell struc-
ture, appears as a beating phenomenon and is interpreted
in a very elegant way within the semiclassical theory of
the density of states,”® as arising from the interference
between the triangular and square closed orbit contribu-
tions. In the discrete-level quantum picture the super-
shell structure results from the progressive shift between
two level-bunch series having close periodicities.

All these features have been extensively observed in al-
kali cluster experiments, and studied by many
groups. >3~ Globally the experimental results agree
almost perfectly with the theoretical predictions of the
structureless JBM, particularly in the low size
domain.'>"® Indeed, in small clusters, the gaps between
the groups of levels are sufficiently large to prevent some
bunch coalescence which could occur when including the
granular structure or surface roughness of the clusters,
ingredients ignored in usual Jellium-like models. Howev-
er, some discrepancies have been noticed in the medium
and large size ranges and have cast doubts on the stan-
dard JBM.%!* For example, the experimental beat loca-
tion in Nay cluster mass spectra extends around the size
N, =~1000, above the size domain predicted by standard
JBM calculations (N,=700-800). In addition,
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discrepancies between various experimental results sug-
gest that the electronic structure depends on the experi-
mental conditions via differences in the cluster geometri-
cal structure®!® (see Table I of Ref. 11 for a compilation
of the experimental results on alkali species). Neverthe-
less the discrepancies are rather minor and could easily
be erased, without forsaking the basic hypothesis of the
JBM (averaging of the ionic charge density), by relaxing
the assumed homogeneity of the jellium density, '* or the
arbitrary step-profiled parametrization of the jellium
wall.'® In consequence the JBM remains a suitable mod-
el for describing the electronic shell structure of the
valence electrons and predicting the magic sizes. Howev-
er, the above ingredients introduced to correct the
discrepancies between theory and experiment are phe-
nomenological (as the step-profiled jellium wall), and are
added to the conventional JBM in an ad hoc manner,
even though some physical effects may be invoked as sup-
port.

The same theoretical framework has been successfully
applied to more complex elements, where ion pseudopo-
tentials and band-structure effects are stronger, such as
noble and group-II B elements (filled atomic d shell, s!
and s2 atomic configurations),'” "% and trivalent group-
III A metals (ns’np! atomic configuration).?! ~2® The ex-
periments carried out with the trivalent species by Pella-
rin and co-workers??~2¢ have provided additional insight
into metal cluster physics. The results seem to indicate
that the emergence of a JBM-like electronic structure is
closely related to the liquidlike structure of the clusters.
In fact these experiments do not strictly prove the liquid-
like structure of the clusters over the entire volume.
Indeed, one might suspect that the development of the
JBM-like electronic shell structure results only from the
favored overall shape symmetry: the main consequence
of the thermal effects in Ref. 26 being presumably the
smoothing or suppression of the unavoidable roughness
and faceting of rigid close-packed arrangements (this
effect could be related to the surface melting observed in
cluster dynamics simulation),?’~?° and the promotion of
a perfect spherical shape (this point will be discussed in
more detail in Sec. II). In addition, with regard to the
electronic shell structure, considerable differences from
the alkali species have been observed. The most striking
feature is a considerable shift of the beat location, found
at much larger cluster sizes (N, =2500 for gallium).?

The purpose of this paper is to investigate, through
model calculations, how and to what extent the ionic-
background discontinuity and the finite ion volume modi-
fy the JBM-like electronic shell structure, and could un-
derlie the discrepancies between experiment and JBM
calculations. We first attempt to answer the question of
whether the usual electronic shell structure, character-
ized by the shell spacing AN!/*~0.6, emerges in
nonsmooth effective potentials resulting from strongly in-
homogeneous ion distributions. For small clusters
(n <25), in spite of the apparent crudeness of the JBM for
describing real clusters, ab initio calculations® ™3
preserve the JBM electronic shell structure. Moreover,
sophisticated models including both discrete structure
and suitable ion pseudopotential,®* ™35 also preserve this
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structure. This is also the case within the Hiickel formal-
ism,3¢73% where the lattice geometry is formally taken
into account by specifying the nearest neighbors of a
given atom, and the elements of the Hiickel matrix are
derived from accurate molecular calculations.*® As pre-
viously emphasized, the large magnitude of bunch spac-
ings in the zero-order (JBM) approximation explains the
weak qualitative influence of the perturbative lattice
effects. To our knowledge, no study over a large-size
domain has been reported in the literature for large clus-
ters (N>100). Obviously the reason is the formidable
computational effort required to carry out this challenge
when self-consistency of both lattice and electronic struc-
tures is prescribed. Confident extrapolation to larger
sizes of the agreement between experiments and JBM ob-
served in the small-size range is speculative owing to the
congested electronic state density in large clusters. A4
priori, fusion of the level bunches and/or changes in the
bunch filling numbers (as compared to the JBM results),
induced by the cluster granularity and roughness, are ex-
pected. Natural emergence of the size-shell structure in
flat electronic effective potential is partially due to the
rough scaling law of the energy levels: E, ;~1/R ﬁfe (the

energy is measured from the bottom of the potential).
This approximate radius dependence prevents occurrence
of strong reordering of the energy levels when the cluster
size varies. In the semiclassical picture the linear relation
linking the triangular/square orbit lengths and the clus-
ter radius R N, is responsible for the shell and supershell

structures characterized by a constant spacing between
consecutive magic sizes. Intuitively these scaling laws
are expected to be very approximate, or even completely
wrong, in the case of potentials having a nonflat bottom.
Surprisingly, in the case of trivalent metal clusters, the
standard JBM-like electronic shell structure (more pre-
cisely the shell spacing) is observed by simple eye inspec-
tion of unprocessed mass spectra over a very large size
domain (up to N, =7000 for gallium),? in spite of very
strong electron-ion interaction. Therefore, a theoretical
study of the actual impact of the discrete ionic structure
in large clusters is highly required. With regard to the
supershell pattern, it is also advisable to look for the pos-
sible granular-structure origin of the discrepancy ob-
served between theory and experiment.

Because the effects of the discrete structure are expect-
ed to be more pronounced in nonalkali metals, most of
the calculations reported in this paper concern large clus-
ters of trivalent species which are exhaustively studied in
our laboratory. A similar study could be undertaken
with alkali using the same approach. Our calculations
are carried out within the framework of the SAPS (spher-
ically averaged pseudopotential) approximation, which,
at the present time, is the only numerically practical tech-
nique allowing to deal with very large clusters.33 ™3 This
approximation, assumed to describe quite well the main
effects on the electronic structure arising from the granu-
lar background, consists of retaining only the spherical
part of the total electron-ion interaction. Support for this
numerical approximation will be provided. To avoid the
considerable computational time required to determine
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the ionic geometry minimizing the cluster energy, ap-
proximate but reliable results from the “universal cluster
model” developed by Spina and Brack,* which is a
reasonable extrapolation of the microscopic calculations
performed on small clusters within the SAPS approxima-
tion, will be used for the ionic structure. A self-
consistent calculation of the effective electronic potential
will be carried out. Shell energy curves for various ionic
configurations and pseudopotential parametrizations will
be reported to emphasize the great sensitiveness of the re-
sulting electronic shell structure to model ingredients.
Finally, electronic shell structure for homogeneous
liquidlike clusters will be investigated.

The paper is organized as follows. In Sec. II we discuss
some general questions concerning the emergence of the
electronic shell structure in clusters, as well as various
simplifying hypothesis usually assumed in theoretical
models. In Sec. III we outline the ‘“‘universal cluster
model” of Spina and Brack, with a particular focus on
the features relevant to a suitable determination of the
electronic shell structure. Results for both multiple-shell
and liquidlike clusters are reported in Sec. IV. Conclud-
ing remarks and a summary of the major results are given
in Sec. V.

II. COMMENTS ABOUT THE EMERGENCE
OF THE ELECTRONIC SHELL STRUCTURE
IN TRIVALENT METAL CLUSTERS

Recent experiments by Pellarin and co-workers?? ™2

have clearly pointed out that the development of the
JBM-like electronic shell structure is correlated with the
experimental conditions, and undoubtedly with the tem-
perature involved during the cluster growth and photo-
ionization process. They observed that the mass spectra
of gallium clusters [melting point T (bulk)=303 K] (Ref.
25) exhibit the JBM-related periodicity AN!/*=0.6,
while aluminum clusters [ 7(bulk)=933 K] mass spectra
show a periodic pattern (AN,/3=0.31) which is correlat-
ed to the faceting of octahedral fcc clusters.???>% For
indium clusters [ 7(bulk)=430 K] complex mass spectra
suggest a strong competition between JBM electronic and
geometrical effects. Recently, a more direct relationship
with the internal cluster temperature was supported by
recording mass spectra of Aly clusters produced at vari-
ous source temperatures. % By gradually heating the
laser vaporization source up to 473 K, Baguenard et al.
observed a progressive transition from the octahedral to
the jelliumlike size periodicity in the mass spectra. In
fact, such a change in the cluster structure versus temper-
ature can also be inferred from a comparative examina-
tion of previous results obtained with alkali clusters. For
instance mass spectra of large cold photoionized Nay
clusters reveal a cuboctahedral or icosahedral geometric
cluster structure,!® characterized by specific magic num-
bers, from N=1500, although subsequent abundance
spectra involving warmer clusters exhibit the JBM-like
electronic shell structure up to 3000 electrons.’
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A. On the eventual statistical origin
of the electronic shell structure

This correlation, obvious at first glance, raises addi-
tional questions related to the emergence of the electronic
shell structure in large clusters, and its dependence on the
ionic arrangement. Intuitively, it appears that thermal
effects favor the spherical symmetry (minimization of the
surface energy), prevent the growth of ordered close-
packed ionic arrangements, and wipe out—on
average—the granular structure of the effective mean-
field potential experienced by the valence electrons.
However, assuming the above phenomenological picture
(“moving disordered ionic lattice”) to support theoretical
models involving structureless backgrounds rests on an
implicit (but nonjustified) hypothesis. Above all, the time
scale for an effective ionic density averaging has to be
compared with the characteristic time scale of the
valence electron motion or of the relevant electronic pro-
cess involved in a given observable, for instance the time
scale of the photoionization process for near-threshold
experiments. Indeed the electronic time scales are short-
er than those of the ionic degrees of freedom, as is as-
sumed in cluster dynamics simulations (Born-
Oppenheimer approximation). That is, the valence elec-
trons encounter essentially a rigid ionic structure, not
necessarily perfectly spherical and homogeneous.

Hence the origin of the almost perfect agreement with
the conventional spherical JBM (except for the supershell
features) could have two distinct explanations: (i) the
electronic structure of rigid clusters having nonbulklike
or amorphous structures and negligible shape distortion
from a perfect sphere does not differ sensibly from the
structure obtained within the structureless spherical
JBM; (ii) the statistical averaging of the measured elec-
tronic shell structure-related observables, arising from
the numerous ionic configurations probed when record-
ing an experimental mass spectrum, can be taken into ac-
count globally, in a model description, by some shape
averaging and a spatial smoothing of the instantaneous
effective potential encountered by the electrons.

This paper attempts mainly to test the first hypothesis,
although in a schematic way and under the assumption of
a perfect spherical symmetry. With regard to the second
hypothesis, calculations by Manninen, Mansikka-aho,
and Hammaren*' show that the average density of states
from an ensemble of Hiickel fcc clusters generated by the
Monte Carlo method exhibits the standard closing num-
bers even if each individual cluster does not. These au-
thors argue that the residual discrepancy with the exact
JBM magic numbers could be due to insufficient statis-
tics. However, caution has to be taken when connecting
the observable shell structure to some averaged model in-
gredient, whether time or ensemble averaging, or spatial
smoothing. As an illustration, let us consider the simple
phenomenological model consisting of a spherical poten-
tial well with square wall and finite depth having a radius
R (1) oscillating slowly around the value Ry (total ampli-

tude AR). With a typical potential depth the shell struc-
ture does not depend on the instantaneous value of R (¢),
as for the infinite spherical potential box (all the occupied



50 INFLUENCE OF ION PSEUDOPOTENTIAL ON THE . ..

energy levels E, ; scale approximately according to R —2).
Therefore the shell structure will be pronounced and
characterized by well-defined magic sizes. By contrast, a
time averaging of the instantaneous electron state density
displays a rather weakly contrasted shell structure. The
modulation in the averaged state density vanishes if
2(dE /dR)AR exceeds the level-bunch spacing near the
Fermi level. If we assume that the valence electrons en-
counter only the time-averaged potential (hypothesis of a
long electronic time scale) the resulting effective potential
has now a soft surface wall (thickness AR). Such a poten-
tial profile leads to noticeable shifts (depending on the
AR value) of the node and antinode locations in the
supershell structure, as compared to the steep wall case.
Identical results are obtained if the averaging of the state
density or the effective potential is performed from an en-
semble of rigid clusters having a finite radius-distribution
width. This academic example stresses that finding a
simple theoretical proof for the statistical-averaging ori-
gin of the successful development of the JBM shell struc-
ture is not a trivial challenge. From the above example
we see that improper averaging procedure could lead to
wrong predictions, which in addition depend on the phys-
ical quantity selected to perform the model averaging.

B. On the spherical symmetry

In all cases, theoretical calculations indicate that the
observation of the JBM-like electronic structure is incon-
sistent with models involving rigid closed-packed clus-
ters’’ (even those built to ensure the most perfectly a
spherical shape) or phenomenological models involving a
polyhedral faceted potential boundary, *? except for small
clusters (roughly N <300 for fcc Hiickel clusters and
N <500 for the icosahedral symmetry of the potential
box). In both cases, one cause of the discrepancies is the
pronounced surface roughness or departure from the
spherical shape, which prevents the development of the
standard JBM level bunching in the neighborhood of the
Fermi level when large clusters are involved. In the case
of the simple topological Hiickel model, the large depar-
ture arises undoubtedly from the intrinsic different nature
of this approach as compared to JBM-like models. In
particular, in such a formalism, the JBM-like state densi-
ty is never observed near the Fermi level for N > 300, and
thus simple Hiickel models cannot lead to the observed
size-shell structure.

Hence JBM-like shell and supershell structures, experi-
mentally observed up to 7000 valence electrons for galli-
um, seem consistent only with models involving a quasi-
perfect spherical effective potential. However, we know
from the Jahn-Teller theorem that for nonmagic sizes the
total cluster energy is lowered by allowing distortion (for
instance ellipsoidal) of the spherical overall shape. Self-
consistent calculations on small clusters, and experience
from nuclear physics, corroborate this feature.**~*> The
relative distortion is expected to decrease versus the clus-
ter size, owing to the decreasing relative magnitude of the
shell-correction energy as compared to the liquid-drop-
model surface and curvature energies. Moreover,
neglecting the granular structure and surface corruga-
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tion*? (two assumptions for usual JBM-like models which
ensure the highest state degeneracy and consequently the
largest gaps) leads to an overestimate of the shell effects.
We have carried out model calculations involving weak-
amplitude sinelike surface corrugation of hard-walled
spherical potential wells. The results clearly show that
the standard electronic shell structure is preserved but
weakened, with negligible changes in the magic sizes (see
Sec. IITA). Similarly, calculations by Genzken and
Brack,* taking into account electronic excitations in-
duced by finite temperature, lead to a strong smearing
out of the shell effects. Nevertheless, all the calculations
involving relaxation of the spherical constraint and ellip-
soidal deformations show that the change consists mainly
of a reduction of the amplitude of the shell effects with no
change of the major shell closing numbers. Therefore, as
far as prediction of the main magic sizes is concerned, the
spherical symmetry, assumed for all sizes, can lze con-
sidered as a suitable pragmatic assumption.

C. On the beat shift of the supershell structure

The second striking finding arising from the trivalent
metal experiments is the considerable discrepancies be-
tween experimental and theoretical (JBM) supershell beat
locations for these species. The first beat location is
found near N,=2500 and 1150, respectively, for gallium
clusters.?> Our recent experiments on warmed aluminum
clusters show a similar departure from the JBM predic-
tions: no beat or half-period shift of the magic sizes is
observed below N,=2000.26 In addition, no clear or
easily reproducible shell or supershell pattern is obtained
in the large-size domain, suggesting a much greater
dependence of the Al electronic shell structure (and im-
plicitly geometrical structure) on the experimental condi-
tions, as compared to gallium clusters. For both species,
the magic numbers in the small-size region are close (al-
though slightly shifted) to the theoretical ones.

In a previous paper we suggested that a slight increase
of the surface softness of the effective potential probed by
the valence electrons could explain the observed experi-
mental results.'® Introduction of a suitable jellium soft-
ness and complete self-consistent calculations leads to re-
sults identical to those of the phenomenological study re-
ported in Ref. 16. Indeed, introduction of a diffuse jelli-
um is not a new ingredient and was previously used by
several authors in the scope of the optical response of
metal clusters.*’ > In the field of condensed matter,
some works indicate that liquid metal-vapor interfaces
are characterized by a smooth positive charge distribu-
tion,’"3? with a thickness on the order of one or two
atomic layers. Moreover, generalization by Allen and
Rice of the jellium-metal surface model developed by
Lang and Kohn, > involving mutually self-consistent ion-
ic and electronic charge distributions, leads to smooth jel-
lium walls.’* However, let us point out that Refs. 51 and
52 are devoted to thermodynamic properties of liquid-
metal surfaces and consequently the distributions are de-
rived from ensemble-averaged (or time-averaged accord-
ing to the ergodic hypothesis) ionic charge distributions.
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Therefore, according to the discussion in Sec. IT A, these
results have to be taken with great care as quantitative
support for defining the smooth effective surface potential
leading to the observed shell structure. With regard to
the relaxed jellium model of Ref. 54, it is obvious that, in
spite of the energetic term introduced to stabilize the jel-
lium at a specific metal density in the inner region of the
metal slab, the long decreasing tail of the surface jellium
distribution is a consequence of the bulk jellium instabili-
ty (the volume energy in the single-parameter JBM is
minimum around r,=4.3 a.u.). For instance, the width
of the surface profile for r, =4 a.u. (sodium) is on the or-
der of 11 a.u. With such a diffuse boundary, the first beat
location of the supershell structure would be shifted at
gigantic cluster size, and moreover the triangular orbit-
related shell structure would be destroyed in the small-
and medium-size domains. Contrary to these unsuitable
results, an increase of the softness of the effective poten-
tial at the cluster surface could be explained by a slight
static expansion of the outer spherical ionic shell or by
large vibrational motion of the surface atoms toward the
vacuum (a feature observed in cluster dynamics simula-
tions). On the other hand, the effect of short-wavelength
surface roughness, thought to be suitably modelized by a
soft ion profile (spatial averaging assumption), would re-
quire support from microscopic quantum calculations, as
for the inner granularity. Support for this numerical ap-
proximation is given in Sec. III A, and the apparent con-
tradiction with our calculations involving corrugated po-
tential box is discussed in Sec. IV D (we stated previously
that the main effect of corrugation is a weakening of the
shell effects; see Sec. IT A).

In this paper we will investigate the influence of rigid
discrete ionic distributions, assumed to be spherical, on
the electronic shell and supershell structures, with partic-
ular emphasis on the beat locations. In order to obtain
results intrinsic to the strongly inhomogeneous multiple-
shell structure, or to the finite core volume in liquidlike
clusters, neither explicit soft distribution nor implicit
effective surface softness introduced via some increase of
the spacing between the outermost ionic layers are in-
cluded in our simple models.

III. THE MODEL

A. Ionic structure
in the spherically averaged pseudopotential (SAPS)
approximation

Our model is derived from results obtained in the
SAPS approximation. This simplifying method was in-
troduced by Iniguez et al.3*3* and Mafianes et al.>® in
order to include the effects of the discrete ionic structure
through appropriate ion-core pseudopotentials. We re-
call that the purpose of the pseudopotential concept,
based on the rigid-core assumption, is to avoid the expli-
cit introduction of the ionic core and of the inner-shell
electrons in the electronic quantum calculations. The
SAPS technique, still simple enough to be applied to
medium-size clusters (roughly up to a few hundred
atoms), can be considered as a first-order correction to
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the drastic structureless spherical JBM and seems to
bring a reliable improvement to the JBM. In the SAPS
approximation the Coulomb interaction between point-
like ions is treated exactly, while the electron cloud is
supposed to encounter only the spherical average of the
total ion pseudopotential [ VP%(r)], which is assumed to
be local in this paper as in previous works. This last ap-
proximation is equivalent to stipulating the constraint of
using only a spherically symmetric electron density in the
DFT. This hypothesis is likely to be better justified for
large spherical clusters, involving no pronounced large-
scale angular-dependent background inhomogeneity. For
instance, the SAPS method is expected to be wrong in the
case of  slight ellipsoidal deformation, or
polyhedral potential box models.

This approximation, assumed in Refs. 33-35, can
roughly be supported by a simple perturbative approach.
The total pseudopotential is expressed according to
VP =VP(r)+ V'P(r,0,p), where the second term, the
multiple expansion of the total pseudopotential, is re-
sponsible for the breakdown of the spherical symmetry.
At the lowest order of the perturbation theory, and with
no attempt at self-consistency, the effect of V'?(r,0,¢) on
the 2(2/+1)-fold degenerate subspace corresponding to
the KS level E, | consists of a level splitting with no shift
of the average energy since the total electron density as-
sociated with this level is only » dependent, and the
spherical average of VP(r,0,9) is, by definition, equal to
zero. The same conclusion holds true if we consider the
larger subspace associated with a level bunch, instead of a
single KS level. In consequence, the nonspherical part of
VP is expected to produce essentially a weakening of the
shell effects through an effective level broadening, with
no noticeable change of the shell and supershell closing
numbers. Our model calculations involving sinelike cor-
rugation, performed beyond the above perturbative ap-
proach, corroborate this statement. We want to stress
that the above analysis proves that the SAPS technique is
suitable for estimating the electronic shell structure for a
given cluster geometry, but not necessarily for optimizing
the ionic arrangement.

Microscopic (i.e., the location of each ion is relaxed in-
dividually) calculations of the T=0 K equilibrium
configurations, carried out by minimization of the total
cluster energy using the KS-DFT procedure, show that
the ions arrange in approximate spherical layers around
the cluster center. The geometrical shells are clearly
separated along the radial coordinate, with typical radial
widths of about 20% of the mean intershell spacing.
Such an overall structure exhibits an evident analogy
with the multiple-shell structure of rigid closed-packed
polyhedral clusters.>®> Obviously the spherical constraint
on the electron density favors nested ionic configurations
with the same symmetry. However, it is obvious that, by
imposing an overall spherical shape to the cluster (an as-
sumption required for ensuring the development of the
JBM-like shell structure), the surface atoms are necessari-
ly organized into an outer spherical layer which induces
to some extent the same trend inside the volume region.
Eventually the emergence of a bulklike core for very
large clusters might destroy a deep development of the
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spherical arrangement in the inner region.

We believe that finite-temperature microscopic calcula-
tions in the SAPS approximation would lead to such a
spherical structure for moderate temperatures. In fact,
surface ordering is not inconsistent with the liquid state,
and some works dealing with liquid metal-vapor inter-
faces in planar geometry support this kind of structure.
It is found that the ion density as a function of the coor-
dinate perpendicular to the interface exhibits strong os-
cillations extending over several atomic layers into the
bulk liquid. The amplitude of these oscillations decreases
with increasing temperature and distance from the sur-
face. As previously pointed out, such profiles are indeed
averaged thermodynamic distributions. Nevertheless,
from the simple requirement of self-consistency with the
planar symmetry constraint prescribed for the interface,
we believe that these oscillations reflect the actual layer
structure of most of the instantaneous configurations of
the surface atoms. Another inducing mechanism sug-
gested in order to explain the ordering at the interface is
the existence of Friedel oscillations in the electron densi-
ty close to the surface. Similar ordering, characterized
by a strong and damped oscillating atomic distribution, is
also obtained in model calculations involving a hard-
sphere fluid in contact with a soft repulsive wall.>’

B. Extrapolation to large clusters

In spite of their relative simplicity, microscopic SAPS
calculations are presently limited to rather small clusters
with regard to the supershell pattern. To allow applica-
tion of the above concepts to larger clusters, Spina and
Brack®® developed a simple structural model which in-
corporates, as prior assumptions, the main qualitative re-
sult obtained by Iniguez et al., i.e., the overall multiple-
shell structure. Their phenomenological model yields re-
sults in good agreement with the microscopic SAPS cal-
culations carried out on small- and medium-size clusters.
We outline the basic features of this model which are
relevant for our own investigations. In particular, we
emphasize eventual changes to be expected between
monovalent and nonmonovalent species. We consider
below a monovalent metal cluster containing N ions and

v

Z
Rj’ 0<r<Rj—rc
3 (r+Rj—rc)+A(rC2—(Rj—r)2)

vP(r,R;)= v 2rR; 4rR;

ZU
- r>R;+r,

A, O<r <rc—Rj .

A is the constant value assumed over the ionic core
(A4=0 in the usual Ashcroft parametrization), and Z, is
the valence.

We make the following two remarks: (i) the step-

» |Rj=r.l<r<R;+r,
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N,=N valence electrons. Spina and Brack assume that
the ions are homogeneously distributed on perfect spheri-
cal shells. We note N; and R; the population and the ra-
dius of the jth geometric shell (with Ry >R;>R,

> -+ >R,). For simplicity the electron density n, (7) is
assumed to be uniformly distributed over a sphere of ra-
dius Ry : n,(r <Ry )=n,, where n, is the bulk mean

value. The ionic structure {R;,N;} is obtained by
minimization of the Madelung energy which includes the

major part of the structural dependence:

N.N,
Emad= § Rij + ZEJ(NJ7R])
1<J J

+ [n(n [2 VP(r) ]dr. (1)
J

The first term represents the interaction energy among
the different shells. This expression, derived by assuming
uniform surface charge distributions over the spheres, is
a good approximation for evenly distributed pointlike
ions, especially for large clusters. The self-energy E; of
the jth sphere is expressed as N;(N;—1)/2R;f(N;) with
a parametrized effective mean interionic distance Rf (N)
fitted on energetically favorable discrete configurations.
The last term represents the total electron-ion interac-
tion, where VF(r) is the spherically averaged pseudopo-
tential of the jth spherical layer. As in Refs. 33-35 and
39, we use an empty-core parametrization of the ion
pseudopotential, extensively used in condensed-matter
physics since its introduction by Ashcroft.® =% This
pseudopotential is purely Coulombic beyond the empty-
core radius r. and takes the constant value A inside the
core. In Refs. 33-35 and 39 the radius r, is matched in
order to give a reasonable ionization potential of the cor-
responding neutral atom. For nonmonovalent species the
sum of the successive ionization potentials of the com-
plete atomic valence shell has to be approximately fitted.
The spherical average, around the center of the cluster, of
the total pseudopotential arising from the N ; ions evenly
spaced on the jth sphere is expressed as VP(r)
=N;vP(r,R;), with

()

profiled electron distribution provides a scaling factor for
the radial coordinate through the Ry value; and (ii) for

actual elements the ion-core volume is much smaller than
the mean atomic volume (r./r, <2, where r, is the
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Wigner-Seitz radius per atom in the bulk). From these,
the minimization of Eq. (1) leads to a set of structural pa-
rameters {N;,R;/R Ne} which depend weakly on the

element-dependent parameters r, and .. To a very good
approximation the spacing d between consecutive shells
and the positive charge per surface unit of the spherical
layer 0=Z,N;/4wR} do not depend on the shell indexes
and the cluster size N, but obviously depend on the ele-
ment through the 7, value. These features agree perfectly
with recent microscopic SAPS calculations performed by
Blundell and Guet on the three-concentric-shell Lij,
cluster.%! Such results ensure a constant average radial
charge density. Quantitatively the calculations of Spina
and Brack lead to the approximate formula or2=0.35
(0.03) for a monovalent species, from which the intershell
spacing d can be deduced approximately from the planar
surface limit equation d =o /n,. The optima shell popu-
lations N; are not necessarily integer numbers in this con-
tinuous model. An integer-number constraint could easi-
ly be added. Let us emphasize that the resulting errors
are not very serious and do not modify the main features
reported in Sec. IV, especially since the clusters involved
are very large.

Let us now consider a nonmonovalent element of
valence Z, having the same r, and r, parameters. Disre-
garding the A-dependent term in Eq. (2) (a term of the
order of 1/R ]-2, except for the minor contribution of ions
located at the center), from direct inspection of Egs. (1)
and (2) it is clear that each term in the Madelung energy
Eq. (1) has only to be multiplied by Z2. We conclude
therefore that the structural parameters N; and R; /Ry

minimizing E_,4 (for a given N value) are the same as
those calculated with Z, =1. The positive charge density
per surface unit o and the Wigner-Seitz radius per
valence electron r,=r,Z, !/3 are then linked by the gen-
eral equation or2=0.35Z)"3.

As a numerical example the intersphere spacing d cal-
culated from the planar surface limit equation is 5.76 and
4.38 a.u. for sodium and aluminum clusters, respectively.
It would be advisable to check that these values are, to
some extent, consistent with the corresponding parame-
ters of the species in the bulk. Calculations show that the
most densely packed cleavage planes lead to the smallest
surface energy. Interplanar spacing between consecutive
(110) planes for sodium (bcc bulk structure) and (111)
planes for aluminum (fcc bulk structure) are 5.64 and
4.41 a.u., respectively. These values are close to the cor-
responding intersphere spacings. Since in both cases the
average charge density is bulklike, the surface charge
densities of the cleavage planes and spheres are also simi-
lar.

The multiple-shell structure involved in our calcula-
tions is then built by nesting concentric ionic shells of ra-
dius R; and positive charge Z,N;=aR jz, with a constant
spacing d. The constant « is fixed by the total positive
charge constraint. The outermost shell (shell of index 1)
is assumed to be located at R;=Ry —d /2. This

prescription is only approximately ensured in the results
reported by Spina and Brack, and is assumed in the Lang
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and Kohn theory of simple metal surfaces where lattice
effects are included via perturbative techniques.>® By al-
lowing relaxation of the outer lattice plane, these authors
found that the relative change of the spacing between the
two outermost planes is very small (less than 1% for
aluminum), suggesting the reliability of the prescribed lo-
cation. Actually the absolute value of R, is of no impor-
tance for our investigations, because in Sec. IV the elec-
tronic effective potential will be calculated in a self-
consistent way: the choice of the R, value with respect
to the radius of reference R N, only sets the overall radius

of the effective potential and thus has no effect on the sur-
face pattern of the potential. A tiny change of the global
cluster radius has no influence on the electronic shell
structure (as a slight change of the r, value in the JBM).
This also holds true with respect to the exact shell spac-
ing d. With regard to the innermost ionic shell of radius
R,, our simple model leads to unphysical situations for
particular cluster size ranges (for instance, when R, <r),
and it would be more satisfactory to change slightly the
radius of this shell (set R, =0), or (if N, > 1) redistribute
N, f —1 ions on the other shells. For large clusters, such
model refinements, such as the constraint of integer
values of the N;’s have a negligible impact on the elec-
tronic shell structure. Actually, the ionic structure close
to the center of the cluster has little effect on the elec-
tronic shell and supershell structures, which are governed
mainly by levels of high angular momentum. This state-
ment is easily deduced within the semiclassical picture:
the major closed orbits involved in the shell structure lie
far from the cluster center (roughly » > R N, /2).

C. Spherically averaged ion pseudopotential

In order to provide insight into the specific features
arising from the multiple-shell structure of the clusters,
we have calculated the spherically averaged total pseudo-
potential VP%(r) for various cluster sizes. Figure 1
displays typical results obtained for sodium and alumi-
num (all the parameters used throughout this paper are
listed in Table I). Since for large clusters the discrepancy
with the potential V’(r) produced by a uniformly
charged hard-walled jellium of radius Ry is almost im-

perceptible, only the difference VP%(r)— V*(r) is plotted
in Fig. 1 (the differences are on the order of 1% of the ab-
solute value for the displayed sizes). As in planar metal
surface studies using empty-core parametrization of the
electron-ion interaction, the difference between the total
ionic pseudopotential and that from a uniform positively
charged background is a periodic function (spatial period
d) characterized by two series of bumps which corre-
spond to the successive ionic shell and intershell re-
gions.>? Specific features are observed in the present
case: the periodic oscillation, which exhibits a weakly r-
dependent amplitude, is superimposed on a mean curve
having a finite positive slope, and very large cusps or dips
near the center of the cluster (depending on the cluster
size through the R, value) are observed. These
differences are consequences of the spherical geometry
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FIG. 1. Difference between the spherically averaged total
pseudopotential of multiple-shell clusters and the conventional
jellium model ion potential. Empty-core parametrization of the
electron-ion interaction is assumed: ».=1.74 and 0.97 a.u. for
sodium and aluminum, respectively. The locations of the evenly
spaced ionic shells are indicated by vertical lines at the bottom
of each figure. Solid curves correspond to ionic structures in-
volving zero-width spherical layers. Dashed curves correspond
to ionic structures involving broad layers (a truncated Gaussian
radial ion distribution having a FWHM equal to 0.3d, where d
is the layer spacing).

and the finite cluster size. Let us note that very slight
changes of the shell populations modify appreciably these
specific features. For instance, moving one ion from one
shell (index j) to another one (index k) produces the pseu-
dopotential change Z,(1/R;—1/R;) inside the region

TABLE I. Numerical parameters used in the calculations. r
is the Wigner-Seitz radius per valence electron, deduced from
the bulk density. r. is the ionic radius. (a) Empty-core radius
obtained by Ashcroft to reproduce bulk properties of simple
metals (Refs. 58 and 59). (b) Empty-core radius obtained by
fitting the atomic ionization potentials (Refs. 33 and 61). (c)
Ionic radius ensuring the bulk stability at the actual r, value,
namely dE /dr; =0, where E (r,r.) is the bulk energy function-
al. We have used the expression reported by Ashcroft and
Langreth (Ref. 59), with the electrostatic term corresponding to
the liquid structure, and a band-structure term assumed equal to
zero. (d) Crystal ionic radius (Ref. 75).

r, (a.u)
Element r, (a.u.) a b c d
Na 3.93 1.67 1.74 1.68 1.83
Li 3.248 1.06 1.75 1.28 1.28
Al 2.07 1.12 0.97 1.08 0.96
Ga 2.191 0.97 1.17 1.17
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r <min(R;,Ry)—r.. The profile of the mean curve is
then noticeably dependent on the ionic populations in
each spherical layer. Nevertheless, as will be shown in
Sec. IV, large scale fluctuations of VP(r)— V¥(r) are
efficiently screened by very slight inhomogeneities in the
average electron density, and the self-consistent electron-
ic effective potential will have a practically constant aver-
age value inside the cluster, as in the conventional JBM.
Hence we can reasonably assume that the mean curve
profile has a minor influence on the electronic shell struc-
ture, as compared with the strong and regular size-
independent oscillations, which, in contrast with the
mean curve, are almost insensitive to minor changes in
the structural parameters R; and N;. Support for this as-
sertion can be found in Ref. 62, where the electronic shell
structure obtained by assuming a perfectly constant po-
tential bottom is found to be identical to the one obtained
from complete self-consistent JBM calculations, although
the JBM effective potential exhibits slow size-dependent
modulations around the average value in the region
r<R N, With regard to the strong cusps or dips at 7 =0,

which are spurious features of the SAPS technique near
the cluster center, let us stress that only a small cluster
region is concerned. Actually this radial domain affects
only the very low-angular momentum KS levels, and
hence does not perturb the overall shell and supershell
structures.

In order to take into account the finite-width ion distri-
bution in each spherical layer observed in 7=0 K SAPS
calculations, and also to simulate some broadening in-
duced by temperature, we have performed calculations
with N;-normalized continuous functions f(R —R;)
describing this broadening. The contribution of the jth
ionic layer to the total pseudopotential is then expressed
as

VP(r)= [ f(R —R;w™r,R)dR . 3)

The dashed curves in Fig. 1 illustrate results for such ion-
ic structures (truncated Gaussian profile). As expected,
broadening the radial distribution of the ions leads to (i) a
smoothing of the pseudopotential cusps or oscillations,
and (ii) a progressive vanishing of the Fourier com-
ponents of the pattern having radial periods shorter than
d. We note that the ionic shells and the major positive
bumps in the oscillating pseudopotential curve are in
phase in the case of sodium, and 7 shifted in the case of
aluminum. This is particularly evident in the case of
widened ionic layers. These features are consistent with
the microscopic SAPS calculations, where it is observed
that the maxima in the radial electron density are located
between the ionic shells in alkali systems, and on the ion-
ic shells in trivalent systems. 3>

IV. RESULTS

A. Evidence for JBM-like electronic shell structure

Assuming multiple-shell structure of the clusters, the
Kohn-Sham equations for the density-functional theory
are solved self-consistently using Wigner’s interpolation
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formula for the exchange-correlation energy and the
electron-ion interaction Eq. (2). Typical results for both
narrow and widened ionic spherical distributions are
displayed in Figs. 2 and 3, respectively. Radial electron
density (upper figures) and electronic effective potential
(lower figures) are compared with JBM results (dashed
dotted curves).
As was predicted, the electronic cloud is preferentially
concentrated over the attractive spherical ionic layers,
and the electronic surface distribution is slightly steeper
than the JBM one, a feature already noted by Rubio, Bal-
bas, and Alonso.% With regard to the effective potential,
we note that cusps in the total ion pseudopotential,
characterized by Fourier periods shorter than or compa-
rable to the Fermi wavelength, are reflected with no dis-
cernible change, contrary to the long-scale increasing
trend which is almost completely erased (see Fig. 1).
Qualitative information about the shell and supershell
structures can be obtained by looking at the KS density
of states (DOS) of a sufficiently large cluster. In particu-
lar, the location of the beat pattern in the DOS, relative
to the Fermi level, gives rough information about the
size-beat location relative to the cluster size selected.
This relationship can be deduced in a straightforward
way within an independent-electron model involving a
potential having a flat potential bottom and a steep po-
tential wall. In such a potential box the energy levels E,,
pack down approximately as 1/R 1%’2 with increasing sizes,

and the Fermi energy oscillates around the mean bulk
value. Because no dramatic reordering of the levels
occurs versus the cluster size, the modulations in the
cluster observables as a function of the cluster size are
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FIG. 2. Self-consistent electronic density (upper figure) and
Kohn-Sham effective potential (lower figure) for aluminum clus-
ters having a multiple-shell structure. The total ion pseudopo-
tential is plotted in Fig. 1 (full curve). The location of the zero-
width spherical ionic layers are indicated by vertical lines in the
lower figure. The dashed-dotted curves correspond to the re-
sults of the conventional jellium model.
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FIG. 3. Same as Fig. 2, but for broad ionic layers (a truncat-
ed Gaussian radial ion distribution having a FWHM equal to
0.3d, where d is the layer spacing).

directly correlated to the DOS shell structure in the
neighborhood of the Fermi level.

KS-DOS, corresponding to the effective potentials of
Figs. 2 and 3, are plotted in Figs. 4(b) and 4(c), respective-
ly, and compared to the JBM results [Fig. 4(a)]. The
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FIG 4. The density of Kohn-Sham states (DOS) for the
aluminum cluster Als,, (N, =1560). The electronic effective po-
tentials are displayed in Figs. 2 and 3. (a) DOS obtained with
the conventional jellium model. (b) DOS obtained with zero-
width concentric ionic layers. (c) DOS obtained with broad ion-
ic layers (a truncated Gaussian radial ion-distribution having a
FWHM equal to 0.3d, where d is the layer spacing). Approxi-
mate locations of the beat pattern are indicated by triangles.
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discrete DOS have been smoothed in order to more clear-
ly exhibit the main structures of the level grouping. This
figure clearly shows that, in spite of the high cusps or
periodic distortions modulating the bottom of the
effective potential, a strong level-bunching phenomenon,
characterized by the same bunch spacing as the one ob-
served in the JBM, occurs. Let us recall that the bunch
spacing is constant only on an E}/? scale in flat potential
models. However the subshell structure is very different
compared with the JBM, and depends on the ionic distri-
bution. Approximate locations of the supershell beat in
the DOS, characterized by frequency doubling of the
peak pattern, are marked with triangles in Fig. 4. The
large differences between the various beat locations indi-
cate that the supershell structure is highly dependent on
the geometrical cluster structure. Comparison with the
JBM results suggests that the size-beat location occurs at
lower sizes in the case of well-contrasted spherical
multiple-shell structure. Quantitative estimation of the
size-beat shift from a particular size-selected DOS re-
quires evaluation of the number of states lying between
the beat and the Fermi level. Contrary to models involv-
ing a hard-walled constant potential well, we know that
this procedure leads to wrong results in general because
of the breakdown of the scaling law E, ;=1/R ,i",e. For in-

stance, in the case of soft potential profiles, the DOS shell
structure depends on the cluster size through the size
dependence of the birth of the various classical closed or-
bits.!%%? Such a failure is expected in the present case
which involves strongly distorted potentials, where the
existence and distortion of perfect polygonal orbits are
functions of the cluster size through the number of
crossed ionic layers during the closed classical path.

B. Shell-correction energy curves

In order to investigate the electronic shell and super-
shell structures over extended cluster size domains, and
for numerous ionic layer distributions, we have applied
the efficient independent-electron method (much less time
consuming than the JBM), which was successfully tested
in Refs. 62 and 64. In the paper by Clemenger, JBM po-
tential profiles calculated for flat metal surfaces by Lang
and Kohn*® were used to study the 7, dependence of the
electronic shell structure. This “phenomenological” ap-
proach, which in fact includes the size-independent
features provided by self-consistent results, was found to
generate the same shell structure and magic sizes as those
given by self-consistent JBM calculations over the entire
size domain. First we calculated self-consistent electron-
ic KS potentials for several large clusters and checked
that the potential surface profile was almost size indepen-
dent, as in the conventional JBM. This general result is
due to the fact that the surface profile depends mainly on
the quasi-level-independent shape of the decreasing tails
of the filled KS wave functions inside the classically for-
bidden region, and therefore is not noticeably influenced
by the electronic shell structure, contrary to the potential
shape in the interior. The quasiperiodic cusp pattern
modulating the potential bottom is also almost size in-
dependent. Actually the tiny differences observed are
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consequences of the electronic shell structure and can be
disregarded, as was proved in Ref. 62. Therefore, the ra-
dial effective potential for a given size N, is expressed ac-
cording to the functional form V, (r)

=%Y(r —Ry ), where %V is built from the self-consistent

potential of some large cluster (size N,y). More precisely
the effective potential is constructed by the following pro-
cedure.

Q) Vy (= Vy (r—Ry +Ry ) forr >Ry —2d.

(ii) The quasiperiodic cusp pattern is extended below
R N, —2d by repetition of the VNE(r) profile previously

defined in the radial region [Ry — 2d,R v, —d ].

This phenomenological potential does not reproduce
the large central bumps or dips (see Figs. 2 and 3). How-
ever, inappropriate continuation of our convenient pa-
rametrization up to r=0 does not distort the results.
This will be proved below. Phenomenological potentials
for both narrow and widened ionic distributions are plot-
ted in Figs. 5(b) and 5(e) respectively.

Electronic shell structures in such potentials are then
derived by calculating the so-called shell-correction ener-
gy. This theoretical observable, which exhibits the major
magic sizes as pronounced dips, is obtained by subtract-
ing from the cluster energy the average part parametrized
as a liquid-drop-model expansion (third-order polynomial
in N1/%). We recall that in independent-electron models,
the energy is taken as the sum of the energies of the N,
lowest states. Shell-energy curves, corresponding to the
effective potentials drawn in Figs. 5(b) and 5(e), are
displayed in Fig. 6, curves b and e, and compared with
the phenomenological JBM-like results [Figs. 5(a) and 6,
curve a]. The inspection of these curves corroborates the
rough indications provided by the DOS curves displayed
in Fig. 4 about the supershell structure. The same size
shell periodicity as the one obtained in the standard JBM
develops in spherical multiple-layer ionic structures. In
particular the major magic numbers N} are practically
identical in the small-size domain: NJ*=9, 18-21, 39,
57-60, 93, 138, 198, 255-273, 339, and 441. Quite good
agreement is also observed in the large-size domain, obvi-
ously in size regions corresponding to an even difference
between the index numbers of the antinode regions of the
supershell pattern. This alternative 7 and 27 shift of the
oscillating shell energy curves is readily visible in Figs.
6(a) and 6(b). The location of the beating pattern, indi-
cated by triangles, differs from the JBM prediction (ap-
proximately N, =1150) and depends on the ion distribu-
tion (roughly N,=500 and 750 for narrow and broad
atomic layers, respectively), with a relative ordering con-
sistent with the analysis deduced from the DOS curves in
Fig. 4. Let us emphasize that the beat location depends
on the width of the atomic layers.

As was inferred from our previous investigations on
the influence of the softness of the potential profile,
most of the information about the effective potential ex-
perienced by the valence electrons, deduced from the set
of magic numbers, are actually provided by the beat loca-
tions. The strength of the shell closing effects, linked to
the KS level gaps, also provides valuable information.
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This contrasts with the fundamental size period AN,
~0.6, which seems universal for any spherical potential
box involving narrow surface wall and flat average bot-
tom. In the present case this quasiperfect agreement with
the JBM is particularly striking, and was not expected,
owing to the large amplitude of the effective potential dis-
tortions.

Calculations involving damped potential oscillations in
the central region of the cluster have been performed to
artificially wipe out eventual spurious effect due to fre-
quent unphysical innermost layer location [Figs. 5(c) and
6, curve c]. By comparing curves b and c of Fig. 6, we see
that the radial region close to the cluster center has no
effect on the electronic shell structure; this supports what
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FIG. 5. Electronic effective potentials, fitted on self-
consistent results, used in independent-electron calculations for
aluminum clusters. The corresponding shell-correction energy
curves are plotted in Fig. 6. Empty-core parametrization of the
electron-ion interaction is assumed (7, =0.97 a.u.). (a) JBM-like
effective potential. (b) Effective potential for a multiple-shell
structure involving zero-width ionic layers. (c) Same as (b) ex-
cept for the damping of the innermost potential oscillations. (d)
Effective potential for a damped multiple-shell structure extend-
ing over only the three outermost ionic layers. (e) Effective po-
tential of a multiple-shell structure involving broad ionic layers
(a truncated Gaussian radial ion distribution having a FWHM
equal to 0.3d, where d is the layer spacing). (f) Effective poten-
tial for a damped multiple-shell structure with broad ionic lay-
ers extending over only the three outermost ionic layers.

was stated in previous sections. Invoking a progressive
destruction of the multiple-shell geometry inside the clus-
ter by temperature effects, leading to a homogeneous
inner density, we have carried out model calculations
with oscillating cusp patterns which are damped from the
first outer spherical layers [Figs. 5(d) and 5(f)]. Such po-
tentials can be qualitatively reproduced by assuming a
progressive increase of the ionic layer width in the inner
cluster region. These potential profiles, which are con-
sistent with the surface ordering obtained in liquid
metal-vapor interface calculations, 36 lead to electronic
shell structures which are practically identical to those
obtained by assuming development of the multiple-shell
structure over the whole cluster volume (see Figs. 6,
curves d and f), at least in the size range studied. We
have noted changes in the supershell structure only for a
very narrow extent of the modulation. Actually, by as-
suming the semiclassical approach, it is clear that the oc-
currence of a supershell pattern shift is undoubtedly
correlated with the relative proportion of flat and oscil-
lating radial potential regions which are probed by closed
triangular and square classical orbits. All our results
point out the central part of the surface properties and
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FIG. 6. Shell-correction energy curves corresponding to the
electronic effective potentials plotted in Fig. 5. The major mag-
ic sizes correspond to the sharp minima. Approximate loca-
tions of the beat regions are indicated by triangles. Roughly, in
a given size domain, all these oscillating curves are relatively 7
or 27 shifted, depending on the relative location of their respec-
tive beat patterns.
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ionic arrangements in the development of the electronic
shell structure.

C. Influence of the ion-pseudopotential parametrization

In this section we report some calculations illustrating
the dependence of the electronic shell structure on the
effective pseudopotential which is assumed to describe
the electron-ion interaction. This study is not purely
academic: this sensitivity has to be kept in mind in all
non-ab-initio granular models, involving inhomogeneous
ionic distributions or/and particular parametrization of
the ion pseudopotential. The best choice in mesoscopic
systems is far from being definitively assessed, and
numerous approaches, derived either from atomic or
from condensed-matter physics, are found in the litera-
ture. 86065769 If some properties are quite insensitive
to the accuracy of the pseudopotential, as the electronic
shell structure in the small-size domain, we stress that
this is not the case for the supershell structure. This will
be shown clearly below.

For instance, assuming an empty-core parametrization,
the radius r, depends on the bulk or atomic physical
properties used in the fitting procedure (see Table I). As
a drastic example, the effective r, value for lithium is 1.75
or 1.06 a.u. when requiring matching of either the atomic
ionization potential or bulk metal properties,®® % re-
spectively. Differences are smaller in the case of alumi-
num (0.97 and 1.12 a.u.) or sodium (1.74 and 1.67 a.u.).
The noticeable influence of the ion-core volume on the
supershell structure is expected from Sec. IV B since the
node locations are found to depend crucially on the exact
profile of the spherically averaged pseudopotential: a
change in the r. value modifies the relative width and
height of the bumps corresponding to the ionic-shell and
intershell regions. Sophisticated pseudopotentials, re-
ferred to as “norm-conserving,” constructed from full-
core ab initio atomic calculations, are available.%%
However, a strict application of these refined pseudopo-
tentials, which are nonlocal (a specific pseudopotential is
defined for each angular momentum —relative to the ion-
ic core—of the valence states), would lead to a formid-
able numerical complexity for large clusters. Forsaking
the SAPS approximation, the introduction of a basis set
of atomic pseudo-wave-functions, centered around each
ionic site, is necessary in order to preserve the full advan-
tages of these refined pseudopotentials.3? Restoring the
standard and practical approximations (locality and
SAPS approximation) requires selecting a pseudopoten-
tial corresponding to a specific I-valence state. As dis-
cussed by Blundell and Guet,5' this approximation is
severe in the case of lithium, which contains s-core states
only, and introduction of the neglected p component of
the pseudopotential would probably correct the overes-
timated effective core radius (the same as for sodium) and
thus the overestimated cluster volume obtained from the
microscopic SAPS calculations. In fact we believe that a
simple local parametrization fitted on bulk properties, as
done originally by Ashcroft with the single-parameter
empty-core profile,*® is a reasonable compromise which
simultaneously allows us to avoid the explicit introduc-
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tion of the ! dependence (equivalent to some suitable
weighted average of the /-dependent pseudopotentials)
and eliminates eventual problems of transferability which
could occur in using atomic pseudopotentials in a bulk
metal environment. This could explain the efficiency of
these empirical pseudopotentials in the study of metal
surface properties,” although they are not theoretically
derived from first principles as are the norm-conserving
ones. Nevertheless we emphasize that all results reported
in this paper are qualitatively independent of the exact
pseudopotential profile inside the ionic core. All trends
concerning the electronic shell structure changes depend
on the essential ingredient of finite core-volume granular
models: the electron-ion interaction at short distances is
more repulsive than the Coulomb law involved in electro-
static models such as the structureless JBM. In compar-
ison with Ashcroft empty-core parametrization, norm-
conserving pseudopotentials are softer near r, and
present either a repulsive positive bump or a soft attrac-
tive well over the ionic volume. In this section we give
only trends which are expected for the supershell shifts if
more attractive or repulsive ion pseudopotentials, relative
to the zero value of the usual Ashcroft parametrization,
are assumed inside the ion core. For this purpose we
present in Figs. 7(a), 7(b), and 8, curves a and b, results
obtained for aluminum with a constant pseudopotential
value inside the ion core, namely 4=1.8 a.u. (repulsive
case) and 4 =—Z /r,=—3.1 au. (attractive case).
These values are chosen arbitrarily. In the case of alumi-
num, the s-valence-state norm-conserving pseudopoten-
tial exhibits a soft bump culminating at 1.6 a.u. at the
center, while p-valence-state ones are rather flat around
the value —1.6 a.u.%° Construction of the electronic
effective potentials and shell-energy calculations are car-
ried out within the same procedure as described in Sec.
IVB.

For all pseudopotential parametrizations the size-shell
spacing is found to be very close to the JBM one. In the
case of more repulsive electron-core interaction [curves
Figs. 7(a) and 8(a)] the electronic shell structure is close
to the JBM predictions (curve of index 0 in Fig. 8), except
for some details in the beat region and slight shifts of the
magic numbers. The agreement is much better than the
one observed with the usual Ashcroft prescription ( 4=0)
inside the ionic core [in Figs. 5(¢) and 6, curve e], al-
though the amplitude of the pseudopotential modulation
is of the same order of magnitude in both cases. Two
main profile features are relevant to the magnitude of the
electronic structure change: (i) the phase of the modula-
tion at the outermost ionic shell (dip or bump); and (ii)
the amplitude of the d-period Fourier component of the
periodic radial potential. The modulation of the curve in
Fig. 7(a) is dominated by the harmonic component of
period d/2 and therefore has a much weaker influence on
the electronic shell structure (the aluminum Fermi wave-
length is equal to 6.8 a.u.). In the case of more attractive
electron-core interaction, the almost perfect sinelike
modulation has a large amplitude and results in a consid-
erable change in the supershell pattern [Figs. 7(b) and 8,
curve b].

The curves of Figs. 7(c), 7(d), and 8 (curves ¢ and d) are
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results obtained with phenomenological effective poten-
tials built by adding an exponentially damped d-period
sine curve to the optimized JBM-like phenomenological
potential profile (dashed curves in Fig. 7) below R N A

shift of the beat location to lower or higher sizes, relative-
ly to the JBM result, can be produced by a simple 7/2-
phase shift of the sine curve (equivalent to a change of
the location of the outer ionic layer equal to d /4~=1.1
a.u.) Comparison of curves of Figs. 7(b)-7(d) and 8
(curves b—d) shows that the relative location of the first
ionic layer and of the potential wall is the most crucial
parameter. This study points out that accurate self-
consistent quantum calculation of the shape of the sur-
face potential is highly required to predict correctly the
electronic shell structure in the large-size domain.

D. Liquid-cluster model

When the temperature is high enough, as compared to
the melting point of the cluster, stable geometrical struc-

effective potential V_g(r) (a.u.)

5 10 15 20

r (a.u.)

FIG. 7. Electronic effective potentials, fitted on self-
consistent results, used in independent-electron calculations, for
aluminum clusters. The corresponding shell-correction energy
curves are plotted in Fig. 8. An empty-core parametrization of
the electron-ion interaction, with 470 [see Eq. (2)], is assumed
(r.=0.97 a.u.). (a) Effective potential for a multiple-shell struc-
ture involving broad ionic layers (a truncated Gaussian radial
ion distribution having a FWHM equal to 0.3d, where d is the
layer spacing), and for 4=1.8 a.u. (b) Same as (a), except

= —3.09 a.u. The locations of the ionic layers are indicated
by short vertical lines. (c) and (d) Phenomenological potentials
built by adding an exponentially damped d-period sine curve to
the phenomenological JBM-like potential (dashed curves in all
the figures). In (c) the outermost minimum is located at R N,

d/4; in (d) the outermost minimum is located at R N, —d/2 (a

sine curve of period 2d is used to smoothly connect this
minimum to the JBM potential wall).
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tures (bulklike or multiple-shell) are unable to develop,
and large scale inhomogeneities in the inner ionic distri-
bution are expected to vanish. If a homogeneous ion-
location distribution is assumed over the entire cluster
volume, its spherically averaged component is flat in the
radial domain 0<r <R w,» and does not exhibit notice-

able radial modulation, contrary to the case of multiple-
shell structures. Strictly speaking, the instantaneous ra-
dial distribution is actually a series of very close Dirac
functions. However, the resulting total pseudopotential
is a smooth function [for illustration see Fig. 1, and
remember that only the difference VP(r)— V¥ (r) is
displayed] with a completely negligible residual high-
frequency modulation, reminiscent of the granular struc-
ture. Hence the pseudopotential V'P5(r) can be calculated
by assuming a continuous homogeneous ion distribution
in the sphere of radius R N, This fairly good numerical

approximation does not need to involve time averaging.
The exact choice for the radius of the distribution has no
influence on the electronic shell structure. In previous
sections, total pseudopotentials from broad ionic layers
were calculated by taking N;-normalized continuous dis-
tributions f (R —R;) [see Eq. (3)]. A more refined model
would involve a softer ion-density profile at the surface to
take into account the surface corrugation. The liquid-
drop model investigated in this section is actually almost
identical to the conventional electrostatic JBM: the sin-
gle difference is that a more appropriate electron-ion in-
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FIG. 8. Shell-correction energy curves corresponding to the
electronic effective potentials plotted in Fig. 7 (the curve of in-
dex O is the JBM result). The major magic sizes correspond to
the sharp minima. Approximate locations of the beat regions
are indicated by triangles. Roughly, in a given size domain, all
these oscillating curves are relatively 7 or 2 shifted, depending
on the relative location of their respective beat patterns.
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teraction is substituted for the Coulomb law inside the
ionic cores. The total electron-ion pseudopotential is
then expressed as

Ry

e nO
Ps = 4 —_
VP(r) fo ™

]v”s( r,R)R%dR . )

v

Instead of displaying V'P*(r), more insight into the specific
features introduced by including a more suitable
electron-ion interaction is provided by calculating the
positive charge density of the underlying equivalent elec-
trostatic model, with the help of the Poisson equation.
Note that the empty-core pseudopotential of a single ion
cannot be derived from any charge distribution (except in
the specific case 4 =—Z,/r,) contrary to its spherical
average VP(r,R) [Eq. (2)]. For instance, for 4=0, the
associated charge density consists of two spherical §
functions peaked at R —r, and R +r,, containing the
charges Z,(R —r,)/2R and Z (R +r,)/2R, respectively.
The equivalent charge distributions are plotted in Fig. 9.
Taking into account the electron-ion interaction through
Ashcroft empty-core formula introduces an effective
stairlike surface inhomogeneity in the ionic background
density. The additional step extends over the radial
domain R N, T <r <R N, +r,, and analytical evaluation

leads to the formula

e

no
1__
’

n (r)=——

2 (5)

[while n, (r)=nq for r <RNe-—rc]. For large clusters,

the size evolution of this quasi-step-profile is impercepti-
ble. The change in the equivalent positive charge density,
relative to the simple JBM square shape, depends on the
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FIG. 9. Equivalent jellium density, normalized to the bulk
mean value, corresponding to the liquid-cluster model. This
model involves a homogeneous spherical ionic distribution and
an empty-core parametrization of the electron-ion interaction
[see Eq. (2)]. The overall effect of the non-Coulombic electron-
ion interaction over the ionic cores (r,=0.97 a.u.) is equivalent
to the effect produced by a jellium skin of weaker average densi-
ty, extending over the radial region (RNe—rc, RNe +r.). Solid

and dashed curves correspond to the values 4=0 and 1.8 a.u.,
respectively [see Eq. (2)].
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parametrization of the ion pseudopotential. A steep tri-
angular spike is obtained for more repulsive electron-core
interaction [ A=1.8 a.u. in Eq. (2)]. Let us emphasize
that the jellium is encountered by the valence electrons
through its electrostatic potential, which partially erases
the jellium shape differences, and, in particular, hard
walls are smoothed. In consequence this narrow skin of
weaker density is expected to act as a smooth jellium and
to yield a KS effective potential softer than the JBM one.
Note that such a stairlike surface profile was recently as-
sumed (in a purely phenomenological model) by
Mansikka-aho, Manninen, and Nishioka to simulate the
covering of aluminum clusters by an alkali atomic lay-
er.” These authors suggested producing such mixed
clusters in order to study experimentally the effects of
surface softness.

1. Results for trivalent species

In Fig. 10 are plotted typical results of self-consistent
KS calculations for various cluster sizes, and for the same
pseudopotential parametrizations as in Fig. 9. As expect-
ed, the surface profiles of the electronic potential wells
are softer than the JBM one, and the increase of the soft-
ness is correlated to the increase of the repulsive charac-
ter of the electron-ion interaction. As in the JBM and
multiple-shell cluster models, which both involve the
same surface description of the ionic background for each
size, the surface potential profile is quasi-size-
independent and can be parametrized according to a
functional form V(r —Ry ).
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FIG. 10. Typical self-consistent Kohn-Sham effective poten-
tials obtained in the liquid-cluster model, for aluminum clusters.
The dashed curves correspond to the phenomenological JBM-
like potential. The equivalent jellium densities are plotted in
Fig. 9. Empty-core parametrization [see Eq. (2)] of the
electron-ion interaction is assumed. (a) r.=0.97 a.u.,, 4=0 a.u.
(b) r.=0.97 a.u.,, 4=1.8 a.u. (strongly repulsive electron-ion in-
teraction inside the core).



5572

As before, we have applied the reliable method of Refs.
62 and 64 to calculate the size-shell structure for spheri-
cal liquid clusters and the empty-core parametrization of
the electron-ion interaction. The size-independent “phe-
nomenological” surface potentials, fitted on self-
consistent results, and the corresponding shell-correction
energy curves, are plotted in Figs. 11 and 12, respective-
ly. The phenomenological JBM potential profile (dashed
curves in Fig. 11) leads to a shell structure (curve of index
0 in Fig. 12) in very good agreement with complete size-
to-size self-consistent calculations.!>%? The supershell
beat is located around N}*=10.5 (N,=1150). As ex-
pected from Ref. 16 the effective surface softness arising
from the non-Coulombic interaction inside the ionic
cores leads to a large shift of the beat location [ N, =2000
for Fig. 12(b)]. Comparison of the various results points
out that the predicted supershell structure depends cru-
cially on the electron-ion interaction, but the trend (shift
of the first beat toward higher sizes, all the more as the
softness is larger) is a systematic feature of soft potentials.
Besides the influence of the strength of the repulsive in-
teraction (compare curves a and b in Fig. 12) the exact
extent of the non-Coulombic region is suspected to be of
particular importance for determining the shell structure,
especially for low-r, metals. The potential profile of Fig.
11(c) is obtained with the value r. =1.12 a.u. deduced by
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FIG. 11. Electronic effective potentials, fitted on self-
consistent results, used in independent-electron calculations, for
aluminum clusters. The corresponding shell-correction energy
curves are plotted in Fig. 12. The dashed curve is the phenome-
nological JBM-like potential. Empty-core parametrization of
the electron-ion interaction is assumed [see Eq. (2)]. Curve a,
r.=0.97 a.u,, A=0 a.u. Curve b, r,=0.97 a.u.,, 4=1.8 a.u.
Curvec,r.=1.12a.u., A=0a.u.
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Ashcroft®® to reproduce bulk aluminum properties. The
change in the r.-value is small (0.15 a.u.) but noticeable
increase of the surface softness and shift of the beat size
domain are observed (compare curves a and c in Fig. 12).
We have carried out the same investigations for galli-
um clusters. The r, parameter was fixed to the value
minimizing the r,-dependent bulk energy functional (with
the electrostatic interaction appropriate to liquid struc-
ture) at the observed experimental density (see Table I).
The matching of the ionization potentials (IP’s) of the
valence shell would lead to practically the same core ra-
dius as aluminum (the first IP differs by less than 1% and
the two others by roughly 7%). This value is identical to
the tabulated ionic radius of Ga’" in crystal. For the
purpose of consistency with the other metals studied, we
checked that the r, values taken from the condensed-
matter physics literature for aluminum and alkali species
(see below) are close to the ionic radius and the empty-
core radius, ensuring the bulk stability at the actual r
value (see Table I). Results for the electronic supershell
pattern are shown in Fig. 13. As for aluminum the beat
pattern is shifted toward higher sizes (curve b of Fig. 13)
relative to the JBM prediction (curve a of Fig. 13). In-
crease of the repulsive interaction inside the core volume,
as exhibited by norm-conserving pseudopotentials for s-
valence states for trivalent s’p metals, could bring the lo-
cation of the supershell beat closer to the experimental
result. Nevertheless, if the standard Ashcroft parame-
trization (4=0) is assumed, agreement with the experi-
mental result [beat around N, =2500 (Ref. 25)] could be

aluminum
0 a
a A

shell energy (arb.unit)

FIG. 12. Shell-correction energy curves corresponding to the
effective potentials plotted in Fig. 11 (the curve of index 0 is t.he
JBM result). Approximate locations of the beat regions are in-
dicated by triangles.
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FIG. 13. Shell-correction energy curves for gallium clusters
obtained in the liquid-cluster model. Empty-core parametriza-
tion of the electron-ion interaction is assumed: 7. =1.17 a.u. and
A=0in Eq. (2). Curve g, results obtained with the phenomeno-
logical JBM-like potential. Curve b, results obtained in the
liquid-cluster model.

achieved by relaxing the arbitrary step profile of the sur-
face ion distribution. For instance, a spherical average of
the eventual surface roughness would lead to a soft ionic
distribution at the surface. In order to compare our re-
sults with Ref. 25, we have assumed the same density
profile: the shape is triangular over a thickness € (the
overall ion density is trapezoidal). Calculation shows
that a thickness € on the order of 3 a.u. (value scarcely
larger than the diameter of Ga3™") is sufficient to repro-
duce the experimental beat location. Note that this value
is noticeably lower than the one required within the
diffuse JBM of Ref. 25 (e =6 a.u.).

Stating that the supershell pattern shift could be in-
duced by eventual surface roughness does not question
the reliability of our calculations involving a corrugated
spherical hard-walled potential box, which give rise
essentially to a weakening of the shell structure (see Sec.
II B). Actually, from our experience of the effects of sur-
face softness,'® we know that a noticeable shift of the
supershell pattern occurs only beyond some critical soft-
ness threshold, which depends on the r; value. Thus, as
far as hard-walled potentials and weak corrugations are
involved, the effective softness (obtained by spherically
averaging the surface roughness) is too weak to induce a
large change of the shell structure. In that case, the sin-
gle effect of the surface roughness is the breakdown of the
perfect spherical symmetry which leads to a damping of
the shell effects. On the other hand, when the same
roughness is added to a soft effective potential, its impact
on the supershell pattern is magnified.

2. Results for alkali species

In the case of alkali metals, which are characterized by
large-r, values, changes induced by a given increase of
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the surface softness will be smaller, as compared to
trivalent metals. Since the expected beat shift will be tiny
on a N!/3 scale, and the magic sizes depend little on the
potential surface shape, systematic rules for defining the
beat region have to be substituted for a simple eye inspec-
tion of theoretical plots or experimental spectra. The
beat region is characterized by a weaker amplitude of the
shell effects and enhancement of the subshell structures.
This last feature is theoretically reflected through a fre-
quency doubling of the pattern on an N!/? scale. Experi-
mentally the subshell-related features are often obscured
by thermal effects and the breaking of perfect spherical
symmetry (see Sec. IIB). As far as theoretical calcula-
tions are concerned, a complete self-consistent procedure
leads to subshell structures smoother than those obtained
within the independent-electron approach.$? The best
method, systematically used in most papers, consists of
plotting the cube root of the successive major magic
numbers N, against a running integer index.®” 2% The
points lie on two straight lines which are shifted by one-
half size-shell period at the beat region. Following this
approach, we will characterize the extent of the beat size
domain by the highest (lowest) clear magic size spaced
from the previous (following) ones by the standard size
shell spacing AN}/3~0.6.

In Fig. 14 electronic surface densities and potentials
obtained within the liquid-cluster model are drawn and
compared with JBM results. An increase of the softness
leads to a reduction of the main Friedel oscillation, which
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FIG. 14. Self-consistent electronic density (upper figures) and
Kohn-Sham effective potential (lower figures) obtained for sodi-
um and lithium in the liquid-cluster model. The dashed curves
are the JBM results. Ashcroft empty-core parametrization of
the electron-ion interaction is assumed; sodium clusters:
r.=1.67 a.u.; lithium clusters: r.=1.06 a.u.
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is a systematic feature of low-density metals.>> The ener-
gy shift of the potential bottom results essentially from
the change in the electrostatic dipole barrier. The result-
ing increase of the Fermi level gives rise to a decrease of
the ionization potentials, and thus a better average agree-
ment with experiment.? The r, values are taken from
Ref. 59: r,=1.67 and 1.06 a.u. for sodium and lithium,
respectively.

Shell-correction energy curves for sodium and lithium
(curves a and c¢ in Fig. 15, respectively) from
independent-electron calculations involving JBM-like po-
tential surface profiles are in very good agreement with
self-consistent results reported by Genzken and co-
workers.!>!* For sodium the major difference is an
enhancement of the subshell structure near Nel/ 3=385,
which enlarges the frequency-doubled pattern on the
small-size side. This feature can also be noticed in the
paper by Clemenger.* In any case, in curve a of Fig. 15
or in Refs. 12 and 13, the magic size N, =912 is clearly
the first magic number of the series associated with the
second antinode region. In the experimental spectrum
displayed in Ref. 9 this size lies manifestly close after the
beginning of the beat pattern, and can be related to a no-
ticeable subshell structure enclosed by the dips estimated
at N, =800 and 970. Because of the lower signal-to-noise
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FIG. 15. Shell-correction energy curves obtained from

independent-electron calculations involving phenomenological
effective potentials fitted on self-consistent results. Curve a,
JBM results for sodium. Curve b, results obtained in the
liquid-clusters model (r,=1.67 a.u.). Curve ¢, JBM results for
lithium. Curve d, results obtained in the liquid-cluster model
(r.=1.06 a.u.). Extents of the beat patterns, defined according
to the procedure described in Sec. IV, are indicated by short
horizontal lines.
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ratio in the large cluster domain, determination of the lo-
cation of the dips after the beat by simple eye inspection
is imprecise (particularly in the size range
N,=1600-1800), but a strong regular oscillation grows
from N,=1120 and all the dip locations indicated by the
authors (1120, 1310, 1500, . . .) are close to the JBM re-
sults. The beat shift is clearly exhibited in the paper by
Genzken'? where both theoretical and experimental re-
sults are juxtaposed. Curve b in Fig. 15 is the result of
the liquid-cluster model. The beat region is found to be
located between N, =832 (last noticeable subshell-related
size in the beat pattern of the JBM) and 1100, in good
agreement with experiment. We recall that in Ref. 9 the
spectra involve warm sodium clusters. Calculations with
r.=1.74 a.u. lead to identical results. With regard to the
low shell closing numbers, this model also corrects some
insufficiency of the JBM. The JBM predicts magic sizes
at N, =34, 186, and 254, '* when the experimental magic
sizes, clearly assigned in this size domain, are N, =40,
198, and 264.° The liquid-cluster model leads to the
values 40, 198, and 254/268 (see Fig. 15).

Curve c, Fig. 15, displays the JBM shell-correction en-
ergy obtained for lithium. These results are practically
identical to those derived from complete self-consistent
JBM  calculations, even in the beat region
(N,=676-912).!3 Obviously the exact amplitude is not
correctly reproduced since in the independent-electron
approach the shell energy is merely extracted from the
sum of the N, lowest electronic states. Evidence for the
supershell structure in lithium clusters was recently re-
ported by Brechignac et al.!' If only the listed shell clos-
ing numbers observed at high temperature are con-
sidered, the experimental beat is bounded by the cluster
sizes N, =820 and 1065. Let us emphasize that the minor
magic numbers, related to subshell structures and ob-
served at low temperature, have to be disregarded to
define accurately the beat location. The reason is that
these sizes are linked by the standard size spacing
AN!73~=0.6 to the lower or upper series of strongest shell
closing numbers, and thus they lead to an arbitrary
choice for the selected sizes defining the onset and the
end of the beat domain. For instance, in curve a of Fig.
15 (sodium case), the overestimated strength of the
frequency-doubled pattern enlarges the beat region and
its location is defined less accurately. Our model calcula-
tion (curve d, Fig. 15) leads to a beat domain clearly en-
closed by the magic sizes N, =832 and 1100 (as for sodi-
um), in close agreement with experiment. Note that, al-
though the potential softness for lithium is smaller than
for sodium, its effect is slightly magnified by the lower 7
value. Calculations with the value r.=1.75 a.u. (match-
ing of the atomic ionization potential) leads to a beat re-
gion enclosed by the magic sizes N,=1218 and 1556.
This location is manifestly too high as compared with ex-
periment, indicating that the p component cannot be
disregarded for lithium when using norm-conserving non-
local pseudopotential, as it was pointed out by Blundell
and Guet®! and also noted by Blaise et al.>® from ab ini-
tio calculations. Owing to the 1s? ionic configuration, the
Pauli-exclusion principle does not apply for p states
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which are allowed to penetrate the ionic volume. The re-
lated p pseudopotential is thus more attractive than the
pseudopotential appropriate to s-valence states. This is
roughly equivalent to reducing the effective core radius r,
in the Ashcroft parametrization. With the parameters
listed in Ref. 69, we have found that the p-
pseudopotential well is very deep [minimum V(r)=~—2
a.u. at r ~0.5 a.u.].

As in the case of the conventional JBM the theoretical
large magic sizes are not exactly those reported in the ex-
perimental works. This is not surprising, owing to the
simplicity of the models, and to the experimental uncer-
tainty in determining the closing numbers in noisy or
weakly contrasted mass spectra. In any case, taking into
account the effective jellium softness induced by the
repulsive part of the electron-ion interaction brings
theory and experiment into better agreement.

V. CONCLUDING REMARKS

In this paper, the electronic shell structure for spheri-
cal multiple-shell clusters has been investigated in the
large-size domain. Complete self-consistency was not at-
tempted as in microscopic calculations using the SAPS
technique. However, our results are derived from reliable
approximations and the critical ingredient, namely the
electronic potential profile at the surface, has been deter-
mined self-consistently. This study shows that the JBM-
like electronic shell structure, characterized by the shell-
size spacing AN!/*~0.6, develops systematically in spite
of the strong inhomogeneity in the ionic distribution. In
particular the magic sizes in the small-size domain do not
differ from JBM predictions. In contrast, the supershell
pattern depends crucially on the width of the ionic layers
(changes induced by thermal effects, for instance), and on
the exact parametrization of the ion pseudopotential. In
addition, it was proved that only the structure of the
outermost layers is relevant. For all the ionic structures
reported in this paper, the beat location is shifted toward
lower sizes, as compared to the JBM results, in contradic-
tion with experiment. Presently there is no experimental
evidence for the multiple-shell structure except in the
specific case of carbon clusters undergoing an intense
electron bombardment.”! However, if perfect spherical
symmetry is assumed, such ionic layering at the surface is
not irrelevant. Nevertheless this speculative structure,
numerically practical, is useful to test the influence of
finite core-volume and density inhomogeneities on the
electronic shell structure. We believe that the results can
be generalized to any ionic structure, ensuring approxi-
mately the spherical symmetry and a constant average
density on a large scale: (i) The shell periodicity
AN}”*=0.6 and the clear emergence of the electronic
shell structure in actual granular clusters result from the
overall shape only, and not from statistical averaging. (ii)
The supershell structure depends strongly on the ionic
distribution at the surface. These features could explain
why the supershell pattern for aluminum clusters, a
trivalent metal of high melting point, was not clearly ob-
served: an increase of the source temperature favors the
spherical shape, but the ions tend continually to organize
themselves to form facets and fcc bulklike seeds.
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The predictions of the liquid-cluster model, which in-
volves a homogeneous ionic distribution, are consistent
with the electronic shell structures observed for the low
melting point metal clusters (in fact homogeneity over a
small radial region below R N, probably would lead to the

same predictions). In the case of a homogeneous ion den-
sity the effects of the non-Coulomb electron-ion interac-
tion over the core volume are concentrated at the surface
and are reflected through an effective increase of the elec-
tronic potential softness, equivalent to a diffuse jellium.
This additional softness induces a beat shift toward
higher sizes, as compared to the JBM results. Assuming
simple Ashcroft empty-core parametrizations of the ion
pseudopotentials, the beat locations for sodium and lithi-
um are found to be close to experimental values. For gal-
lium the model predicts a beat location around
N, ~1800, below the experimental value N, ~2500. Cal-
culations involving a more accurate pseudopotential are
necessary to estimate the respective influences of the
electron-ion interaction and surface softness of the ion
distribution.

At the end of the writing of this paper, we became
aware of recent works by Reinhard et al.’”> and Genzken
et al.,” in which the jellium diffuseness (assumed in
Refs. 47-50) is related to the finite ion-core volume, and
a paper by Serra et al.,’ who use a model closely related
to our liquid-cluster model to investigate the optical
response of lithium clusters. These last authors use the
local velocity-dependent pseudopotential introduced by
Bachelet, Ceperley, and Chiochetti.®® Taking into ac-
count only the s and p valence states, Bachelet, Ceperley,
and Chiochetti expressed the non-local norm-conserving
ion-pseudopotential of Hamman, Schliiter, and Chiang®’
in a local form, cast as the sum of two velocity-dependent
terms and a potential term. The spherical average in Eq.
(4) leads to a total pseudopotential having the same form,
except that the electronic dynamic variables and opera-
tors are now defined relative to the cluster center. It
would be very fruitful to investigate the electronic shell
structure of simple metal clusters with this refined pseu-
dopotential. Contrary to our local approach, in which
most of the effects arising from the electron-ion interac-
tion can be analyzed in terms of surface softness,
velocity-dependent pseudopotentials simultaneously in-
volve concepts of different nature, for instance an r-
dependent effective mass. With regard to the supershell
pattern, the equivalence of both approaches is far from
being obvious. The vanishing of the velocity-dependent
terms and the Coulombic behavior of the potential one
occur beyond r,~3.5 a.u. for lithium. If we ignore the
two kinetic terms, the potential term alone undoubtedly
gives rise to a softness larger than the one displayed in
Fig. 14 (obtained with r,=1.06 a.u.) An effective de-
crease of the surface smoothness to bring about the beat
at the experimental location is thus necessarily ensured
by the two velocity-dependent terms. This leads to a
rather complicated interpretation of the theoretical re-
sults, as compared to a local approach. At the price of a
loss of accuracy, the advantage of a local formalism is to
allow straightforward predictions. For example, a soft-
ness increase of the potential surface profile enlarges the
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effective cluster radius R or, equivalently, the electron
spillout. This picture qualitatively explains the
discrepancies between the JBM theoretical and experi-
mental static polarizabilities and plasmon frequencies
from simple reference to their classical counterparts,
which scale as R* and (N, /R*)!/2, respectively. In a fu-
ture paper, we will report our model calculations involv-
ing spherical potential wells with surface roughness.
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