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Edge states in antiferromagnetic quantum spin chains
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The structure of edge states in general Snite antiferromagnetic quantum spin chains with arbitrary
spin value S is discussed within the framework of the nonlinear-sigma model (NLcrM) plus a topological
0 term. Based on a large-N theory of SU(N) quantum antiferromagnets and strong-coupling expansion,
we argue that edge states with fractionalized spin quantum number S' exist in all spin chains with S & 1,
with S'=S/2 for integer spin chains and S' =(S—1/2)/2 for half-integer spin chains.

Recently, there has been much interest in nontrivial
edge states in quantum-mechanical systems, most notice-
ably in the study of the fractional quantum Hall effect
(FQHE). ' Another system of interest is the S=1 anti-
ferromagnetic spin chain, where edge states with frac-
tionalized spin quantum number S'= —,

' are being ob-

served experimentally. ' Since the low-energy physics of
both systems is believed to be described by field theories
with topological terms, it is natural to ask whether the
edge states in these systems are intrinsically related to
their topological characters. In this paper we shall ad-
dress this problem for quantum spin chains from two
directions, large-N theory of SU(N) quantum antifer-
romagnets and strong-coupling expansion. We shall first
consider integer-S spin chains and show that the S'=S/2
edge state is a direct consequence of the existence of to-
pological terms in the effective Hamiltonian in the large-
N theory. As an indirect confirmation of the theory, the
phenomenon of weak-dimerization will be discussed. We
shall then extend our discussion to spin chains with half-
integer spin value S, where based on a strong-coupling
expansion, we argue that edge states with fractionalized
spin-quantum numbers S' exist for all S & 1, with
S'=S/2 for integer spin chains and S'=(S —1/2)/2 for
half-integer spin chains. The structure of edge states in
spin chains with arbitrary value of topological angle 8
will also be discussed.

The relation of edge states in integer-S spin chains to
topological term in the low-energy continuum theory
[O(3) nonlinear sigma model] can be most easily visual-
ized by looking at the Berry phase contribution to the
continuum theory. ' For a finite spin chain of length L,
the Berry phase contribution to the efFective action is '

AS

2 I [Q(L)—Q(0)]+4m Q j,
whe«Q(x) is the solid angle subtended by the close path
on the surface of a unit sphere defined by the time evolu-
tion of a unit vector n at x. Q is an integer measuring the
number of times the spin configuration n(x, t) (x=0 to L,
t = —ao to ao) covers the surface of the unit sphere. '

Notice that for integer spin chains, SXQ is always an in-

teger and exp(i2mSQ) is always one, i.e., the term R2nSQ
has no effect on the path integral and can always be elim-
inated. With periodic boundary condition the edge con-
tributions at x=O and x =L cancel, and the Berry phase
action has no efFect. For open chains, contributions at
end points survive with S,„z~;„,=A'(S/2)[Q(L) —Q(0)],
which can be interpreted as the Berry phase of two free
spins with spin magnitude S/2, located at the end points
x=0 and L, respectively. Performing a strong-coupling
expansion to lowest order, we find that the system is
everywhere a spin singlet except at the end points where
the Berry phases give rise to two free spins with spin
magnitude S/2 located at each end of the spin chain. s'9

The edge states can also be understood in a Gaussian
theory in the CP' representation of the O(3) tr model
where the low-energy effective Lagrangian is written
as7, 10

L =— ~(B +tA )Z~ —l e'" a A„
1 . 2 . 8

p p 2~ p, v (2)

where Z is a two-component complex spinor field
[n=(Z'oZ) with ~z~ =1], g-2/S, and 8=2trS. The
first term is the usual O(3) o model whereas the second
term is the topological term discussed above. The advan-
tage of the formulation is that within the Gaussian ap-
proximation, we can study edge states for spin chains
with an arbitrary value of 8. The Gaussian theory is usu-
ally formulated in a large-N expansion ' '" of the CP
model where the two-component spinor field is replaced
by an ¹omponent z field. A large-N expansion can be
performed on this model with the help of a Lagrange
multiplier field A, to enforce the constraint. To lowest or-
der (Gaussian approximation), we find N branches of free
massive z bosons with dispersion tok=m +(ck) where
m -exp( tr/Ng) is the ma—ss gap, k the momentum vec-
tor of the bosons, and c is the spin-wave velocity.

To order 1/N, an additional effective Lagrangian 5L is
generated for the gauge field 'o "

5L = 2Fpv
1

4 2 pv

where e -m /N and the z bosons are coupled to the
gauge field through Lagrangian (2). Notice that U(1)
gauge theory has linear Coulomb force in one dimension
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and is confining. Thus we expect pairing of the z bosons
in the CP ' model. For N=2 and in the original spin
language, we expect that S =

—,
' elementary excitations in

the large-N theory are confined in pairs, implying that
the "real" elementary excitations have a spin magnitude
of one.

The effect of 0 term has been discussed by Coleman'
in the infinite chain case where edge states do not exist.
We shall generalize his discussion to finite chains in the
following. Notice that ie B„A„ is just the electric field
of the U(1) gauge theory and the 8 term, linear in the
electric field, can be interpreted as corresponding to a
uniform external electric field with magnitude
E,„t=8/(2n )e, imposed on the quantum spin chain. For
a chain with open ends, the electric field can be interpret-
ed as coming from external charges, +(8/2m )e, placing at
opposite ends of the one-dimensional universe, which
produces the electric field. ' For integer S =n, 8=2nm
and the external charge is ne. Now we may ask what is
the ground state of this system. One possible solution is
that the electric field remains constant throughout the
chain, and the energy of such a solution
-E,„, L -(nm) L/N, where L is the length of the chain.
Alternatively, a solution with much lower energy can be
constructed by nucleating n z boson charge pairs from
the vacuum going off to the ends of the spin chain to
screen the external field. The energy cost of such a solu-
tion is of order (2n)m, which is much lower than the en-

ergy of first solution as L becomes large. For N=2, each
z boson carries spin —,', and the n bosons nucleated at each
end together forms edge state with spin quantum number
S'=S/2, in exact agreement with general expectation.

It is clear in the above picture that the presence of an
effective one-dimensional gauge theory is crucial for the
explanation of the edge states. It is thus natural to ask
whether there exists other physically observable effects
associated with the gauge Geld which one can test? Read
and Sachdev' have shown in a 1/N expansion that in
quantum spin chains, the effective electric field is directly
proportional to the dimerization (spin-Peierls} effect
(E-q=($; S;+i S;.S; i)) and a spin chain carrying a
uniform electric field is equivalent physically to a uni-

formly dimerized spin chain. The equivalence between
electric field and dimerization has an interesting conse-
quence on the behavior around the edges of spin chains.
Notice that the z bosons in the large-N expansion have a

gap m in the excitation spectrum, implying that there ex-
ists a characteristic "size" of the boson wave function,
g-m ', and the edge states in the quantum spin chains
are "smeared out" around the edges within a distance

The external electric field thus penetrates into the
spin chain and is screened out completely only at a dis-
tance x & g away from ends of spin chain. That immedi-
ately implies that regions around ends of spin chains are
dimerized with magnitude of dimerization decaying ex-
ponentially with characteristic length -g away from
ends of spin chain. Notice that this "weak-
dimerization" effect should not be observed in phases of
quantum spin chains which are not described as a U(1)
gauge theory. Indeed, exact diagonalization studies on
S= I finite quantum spin chains have confirmed such a

picture where it is found that weak-dirnerization effects
exist only in the Haldane phase of quantum spin chains
with the Hamiltonian

H= QS; S;+,+D(S;, )
I

and is absent in the large-D phase where edge states do
not exist.

Now let us extend our discussion to arbitrary value of
0 in the topological term within the large-N approxima-
tion. Following Coleman, ' for general 8%2nm, the
"external charge" is not quantized and the background
electric field cannot be screened completely by nucleating
integer charge pairs. Finite electric field always remains
in the spin chain meaning that the spin chain is dimerized
for general 8%2nn In. creasing 8 from 8=0, nucleation
of charge pairs becomes energetically favorable as 8 ~ m,

in which case one boson pair is nucleated. The external
charge is ouerscreened resulting in an effective external
charge e'= [8/(2n ) —1]e and a background electric field
E-e' which is reversed in direction in space. Physically,
an edge state with spin quantum number S'=

—,
' is formed

at 8=m and the dimerization order parameter
q= ( S, S, +,—S, .S;,) reversed in sign abruptly when 8
increases through m, i.e., a first-order transition occurs at
8=m. The magnitude of dimerization goes to zero con-
tinuously as 8 approaches 2m(E~O) and increases in
magnitude (but with direction reversed) again when 8 in-
creases further until 8=3m /2, in which case another pair
of bosons is nucleated and the spin quantum number of
the edge states jumps from —,

' to 1 as 8 increases across
3m/2, with the dimerization order parameter q reversed
in sign abruptly again. Repeating the above construction
for general values of 8, we obtain the following picture:
for general 8%2nm, spin chains are dimerized. The di-
merization parameter q jumps from +e/2 to —e/2 every
time 8 crosses (2n +1)n, and is in.creasing continuously
from —e/2 to +e/2 in between. At each transition
around 8=(2n +1)n, the edge state's spin quantum num-
ber increases by —,. This result is summarized in Fig. (1).
Notice that in this picture, the edge states play a vital
role in recovering the periodicity of q in 8
[q(8)=q(8+2m. )] in the bulk spin chain. The periodicity
of ground-state properties in 8 is required in spin chains
with periodic boundary conditions. Without the edge
states, the external electric field will not be screened and

q will increase monotonically with increasing 8 [see Fig.
(1}]. The (bulk) ground-state properties will not be
periodic in 0. Thus edge states are "required" in spin
systems with topological terms to ensure that the (bulk)
properties of open spin chains are the same as properties
of corresponding spin chains with periodic boundary con-
ditions.

It is interesting to point out that the above edge-state
picture can also be obtained by fo11owing an analysis very
similar to the one for edge states in FQHE. ' Notice
that the efFective Lagrangian (2)+(3) is in fact applicable
only for infinite chains and one may ask as in FQHE how
the effective Lagrangian should be modified if the system
is finite, assuming that the finite system is still described
by an effective U(1) scalar field theory. As discussed
above, the 0 term introduces a background electric field
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I I I I I I I I I I I I I I I I I j.' where s =
—,'. Notice that the second term in Eq. (3a) is

just the Berry phase action of a finite S =
—, spin chain in

the continuum limit. Thus Eq. (3a} can be considered as
the continuum limit of a discrete antiferromagnetic spin
model with Berry phase action

Sap =A' g ( —1)'S;Q(x;),
I

(3b)

I I I I

in the system. For

aconite

system, a boundary action has
to be introduced to confine the background electric field
in the system. It is easy to see that the external charge in
Coleman's picture is just what is required to confine the
electric field and the edge states follow subsequently from
our analysis.

The above picture is exact in the large-N limit of
SU(N) quantum antiferromagnets. For the physical case
N=2, it is believed that the large-N results are qualita-
tively correct for most values of 8, except at regions
around 8=(2n +1}~(corresponding to half-integer spin
chains), where it is believed that the transition across the
8=(2n+1)m point should be a second-order transition.
Moreover, from exact Bethe ansatz results for S=

—,
' spin

chains, we know that the (bulk) excitation spectrum
should be gapless at the point 8=m, whereas it is predict-
ed to have a gap -m in the large-N theory. Notice,
however, that although predictions on the bulk properties
of half-integer spin chains are wrong, the predicted edge-
state structure from large-N theory may still be valid,
since it appears that edge states are required for a very
general reason in the large-N theory.

To study edge states in half-integer spin chains, we
consider the Berry phase contribution to the effective ac-
tion again. Equation (1) for S~p is still valid, except that
S is now a half-integer and exp(i2nSQ) is equal to
( —1)~=exp(imQ). Thus Eq. (1) can be rewritten for
half-integer spin chain as

S =A —[Q(L)—Q(0)]+@Q
S

I

=Pi ~ —S ——[Q(L)—Q(0) ]
1 1

2 2

+—[Q(L)—Q(0)+4m Q]2
(3a)

I I I I I I I I I I I I I I I I I I

2 3 4
e/2~

FIG. 1. Dimerization parameter q and number of edge-state

bosons m~~, in large-N theory of quantum spin chains as a
function of topological angle e. q is represented by a sohd line,

and m~~, represented by a dot-dashed line. The spin magnitude

of edge state is S'= m,«, /2. Notice the jumps in m~~, and q at
8=(2n+1}~points. The dotted line represents the dimeriza-
tion parameter q if edge states are absent. Notice that the
periodicity of q in 8 is recovered by creation of edge states.

where S;=—,'+(S —1/2)/2 on sites x=O and L, and

S, =—,
' for sites in between. Now performing a strong-

coupling expansion as before, we obtain a (bulk) s =
—,
'

spin chain'3 coupling to "impurity" spins of magnitude

S; =(S—1/2)/2+1/2 at the end points x=O and L.
This result can also be obtained simply by noting that Eq.
(3) plus NLoM is just the continuum model of a s =

—,
'

spin chain coupled to two impurity spina S; at the end

points as described above. Models of an s =
—,
' spin chain

coupled to impurity spina have been investigated in detail

by Eggert and Afileck' where they showed that a
Kondo-type efect occurs in the antiferromagnetic cou-

pling case. For S; & —,', the Kondo efi'ect cannot screen

the impurity spin completely and a "free" spin of magni-
tude S; —

—,
' is left. Following their analysis, we conjec-

ture that the impurity spin S; cannot be screened com-

pletely by the s =
—,
' spin chain as long as S; & —,', and

edge states with spin magnitude S;m —
—,
' remain at edges

of the spin chain. Correspondingly, in the original finite

spin chain model, we conjecture that edge states exist in
all finite spin chains with spin magnitude S & —„with
magnitude S'=S/2 for integer spin chains, and
S'=S; —

—,'=(S —1/2)/2 for half-integer spin chains.
Notice that this result is in agreement with the predicted
edge-state structure obtained from large-N theory. Phys-
ically, the existence of edge states in finite half-integer
spin chains can be understood by assuming that the
ground-state wave function of a half-integer spin chain is
just a superposition of wave function of an s =-,' spin
chain on a spin S —

—,
' valence bond solid. '5 The observed

edge states in the half-integer spin chains are originating
from edge states of the corresponding valence bond
solids.

Now let us go back to the NLcrM [Eq. (2)] and study
the behavior of edge states around the transition regions
8-(2n +1)n Physically. , NLcrM's with 8 values slightly
deviating from (2n +1)n can be considered as continuum
models of S =n +—,

' spin chains with alternating interac-
tion J;;+,=J[1+y(—1)'], when y is small. In this lim-

it, 8=2nS(1+y) (Ref. 7} and moving across
8=(2n +1}m point correspond to half-integer spin chains
with alternating J;;+& when y changes sign. For an
infinite chain with nonzero y, the spin chain is dimerized
and a spin gap h~ develops in the spin-excitation spec-
trum with hg —

~y~ . The sudden appearance of addi-
tional edge states in the finite chain when y changes sign
can be understood in the dimerization picture by consid-
ering a S =—, hte chain with 2m sites. The spin chain is
dimerized completely and no edge states appear if J,. ;+&
is finite for i =2k+1 and is zero for i =2k, where
k=integer. However, two free S =—,

' spins will be left at
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the edges if J;;+& is finite for i =2k and is zero for
i =2k+1 since in this case, the first and last sites are
decoupled from the rest of the spin chain. For y small,
the edge spins are not completely decoupled from the
spin chain and edge states which decay into the spin
chain with a finite coherence length g-b, s

' —
~y~

will be formed. Notice that g~ao as y~O, indicating
that the points 0=(2n+1)n (y=O) are second-order
critical points at which new s =

—,
' edge states are formed,

in agreement with expectations from our previous
analysis. Physically, spin chains with alternating J's can
be formed in systems with Peierls instability. ' Thus the
edge-state behavior predicted here can be tested experi-
mentally. For example, for a collection of randomly bro-
ken S =

—, spin chains, Curie-Weiss-type behavior in spin
susceptibility is expected to be found at the low-
temperature dimerized phase, and is expected to be ab-
sent at the high-temperature normal phase. More gen-
erally, we predict that for (undimerized) antiferromagnet-
ic quantum spin chains with spin magnitude S & —„
Curie-Weiss behavior in spin-susceptibility will be ob-
served upon doping by nommagnetic impurities because
of generation of edge states.

It is important to point out that the edge states studied
in this paper are intrinsic "edge" effects, but not Pnite
size effects associated with finite spin chains. One way to
see this is to observe that both the "external charges" in
the large-N theory and the extra Berry phase appearing
at the ends of a spin chain will disappear once a periodic
boundary condition is imposed, no matter what the

length of the spin chain. More generally, one may gen-
eralize our analysis to study edge states in semi-infinite
spin chains where finite-size effects are automatically ex-
cluded. It is easy to see that our predicted edge states
picture remains in semi-infinite chains, indicating that the
edge states discussed in this paper are intrinsic edge
effects.

Summarizing, in this paper we propose a general
theory for edge states in finite antiferromagnetic quantum
spin chains within the framework of the NLOM. The
model is believed to describe the low-energy dynamics of
infinite quantum spin chains correctly. For finite sys-
tems, the validity of this approximation is not a priori
clear. For finite integer spin chains, the model repro-
duces known results for edge states. Moreover, numeri-
cal solutions of the Schwinger-boson-mean-field theory'
and exact diagonalization study confirm that the NLO M
is the correct starting point for describing edge states
(confirmation of weak dimerization). Within the NLo M,
we find that the presence of edge states is a direct conse-
quence of the topological character of spin chains and is
not restricted to integer spin chains as is believed widely.
Results obtained in this paper have direct experimental
consequences and can be tested numerically especially for
the more interesting case of half-integer spin chains.
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