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The carrier dynamics in photoexcited semiconductors is studied in a quantum-kinetic approach
based on the density-matrix formalism. Besides the memory effects related to the energy-time uncer-

tainty, we discuss interference efFects between difFerent types of interactions describing the fact that
a transition due to one interaction occurs between states, which are renormalized by other interac-
tions. We Srst analyze the relaxation process in a one-band model, which allows us to concentrate
on memory efFects in the electron-phonon interaction. We then extend the model to a two-band
semiconductor interacting with a short laser pulse, which is more realistic due to the explicit treat-
ment of the carrier generation process. Here we discuss, in particular, the role of renormalization
efFects. It turns out that these effects reduce the broadening due to the non-Markovian dynamics
and lead to distribution functions, which are more similar to the semiclassical case; the positions
of the peaks, however, exhibit slight time-dependent shifts. On the other hand, phonon quantum
beats in the decay of the interband polarization are increased by these renormalization effects.

I. INTRODUCTION

On a semiclassical level the carrier dynamics in semi-
conductors is described by the Boltzmann equation. In
this case the state of the system is completely specified in
terms of the distribution functions of carriers and other
quasiparticles such as, e.g. , phonons. Interactions be-
tween quasiparticles lead to scattering processes between
the states of the free particles. These stochastic processes
are pointlike in space and time. The Boltzmann equation
can be derived from quantum mechanical equations of
motion after performing a series of approximations which
involve, in particular, a perturbative treatment of inter-
actions and a coarse graining in space and time.

Refinements in the experimental techniques have now
led to spatial structures on a nanometer scale and to the
measurement of the dynamical behavior on a femtosec-
ond time scale. In both cases those coarse graining pro-
cedures become invalid and quantum effects related to
momentum-position and energy-time uncertainty come
into play. Deviations from the semiclassical behavior re-
lated to short length scales result from quantum inter-
ference phenomena leading, e.g. , to resonant tunneling, i

the Aharonov-Bohm efFect, or weak localization. In the
present work we will concentrate on quantum effects re-
lated to short time scales. We will consider a spatially
homogeneous system where such quantum interference
effects do not play a role.

It is now well established that for many experiments
on the picosecond and the femtosecond time scale the
description of the interaction of the carriers with a laser
pulse cannot be expressed in terms of a generation rate.
Instead, carrier-light interaction requires the introduc-
tion of a variable, the interband polarization, and the
basic equations for the carrier dynamics are now given by
the semiconductor Bloch equations. The semiclassi-

cal generation rate can be recovered f'rom the Bloch equa-
tions by performing a series of approximations. First, it is
assumed that the polarization is not infiuenced by other
types of interaction mechanisms. Under this condition
the polarization can be obtained by a formal integra-
tion of its equation of motion and then can be inserted
in the equations for the distribution functions. Due to
this integration the generation of carriers at a given time
does not depend only on the distribution of carriers at
that time, but also on previous times; the generation
contains memory effects. Assuming slowly varying dis-
tribution functions and light field amplitudes, a Markov
approximation can be performed, resulting finally in the
semiclassical generation rate.

The derivation of other scattering rates, such as for
carrier-phonon or carrier-carrier interactions, involves
the same approximations as described above for the
case of carrier-light interaction. Therefore deviations
from the semiclassical behavior on ultrashort time scales
should be expected also for these interactions. The in-
teraction of electrons with optical phonons is particularly
well suited for an investigation of quantum kinetic phe-
noxnena since, first, it is a relatively strong interaction
with typical time scales in the range of femtoseconds and,
second, due to the constant energy of the phonons, devi-
ations &om the semiclassical behavior should be clearly
visible.

Carrier-phonon quantum kinetics has been investi-
gated for the case of transport in high electric fields
as well as for optically generated carriers. The main
effects related to a quantum description are a collisional
broadening due to the finite lifetime of a &ee-carrier
momentum eigenstate, collision retardation due to the
description only in terms of single-particle distribution
functions, and the intracollisional field effect due to the
action of the electric field during the scattering process.
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A major problem in treating transient phenomena on a
quantum kinetic level consists in the use of the initial con-
ditions. This is particularly true for the case of electrical
transport where one is interested in early time deviations
from the semiclassical model, e.g. , in the velocity over-
shoot. Here one assumes that the coupled carrier-phonon
system is in a stationary state before the application of
the electric field. While in the semiclassical case the equi-
librium distributions are simply given by Fermi-Dirac dis-
tributions for the carriers and Bose-Einstein distributions
for phonons, as results from Boltzmann's H theorem, in
the quantum case these distributions may be modified by
the interactions. Therefore the initial condition should
be calculated explicitly as the stationary solution of the
system without field which, however, is often not easy
to obtain numerically. In this respect it is advantageous
for optical excitation of a semiconductor at low temper-
atures that there is a well-defined initial state: In an
electron-hole picture this is simply given by the vacuum
of electron-hole pairs. The many-particle nature of the
system is contained in the material parameters, e.g. , in
temperature-dependent values for the gap energy and the
effective masses, which are used as input parameters.

In this paper we study the quantum kinetics of op-
tically generated carriers. Our calculations include the
three kinds of quantum phenomena mentioned above:
collisional broadening, collision retardation, and the in-
tracollisional field effect. In contrast to the case of trans-
port in static electric fields, the intracollisional field eKect
is related here to the field of the laser which renormalizes
the system by mixing electron and hole states due to the
ac Stark effect. However, not only the external field leads
to this renormalization but also internal fields, e.g. , due
to electron-hole interaction as described in Hartree-Fock
approximation, contribute to the state mixing.

The analysis of quantum kinetic phenomena can be
based on several theoretical approaches. Calculations
have been performed by using nonequilibrium Green's
functions ' ' leading to integro-di8'erential equa-
tions for two-time functions, the retarded (or advanced)
Green's functions, and the particle propagators. Usually,
the two-time particle propagators are reduced to one-
time functions, the single-particle density matrices, by
a generalized Kadanoff-Baym ansatz, 3 which retains
memory kernels in the collision terms. Alternatively, as
we do in this contribution, one may start directly with
the equations of motion for the single-particle density
matrices. 2 This results in a hierarchy of equations
of motion for different reduced density matrices which
has to be truncated at some point to become accessible
for a numerical investigation.

The equations of motion obtained up to a given or-
der in perturbation theory may be different in both ap-
proaches due to the fact that perturbation theory is done
with respect to a different set of variables. The second
order in the density-matrix theory coincides with the re-
sult of the Green's function formalism if the equation for
the particle propagator is calculated in second-order and
the retarded Green's function for the noninteracting sys-
tem is taken. However, as has been pointed out, this level
of approximation may lead to unphysical results, in

particular the values for the distribution functions may
leave the allowed interval between zero and one. In the
Green's function approach this behavior is eliminated by
taking into account the second-order corrections of the
retarded (and advanced) functions2s s at least in some
approximative way. In the density-matrix theory such
corrections are obtained from the next level of the hier-
archy by explicitly calculating two-particle correlations
and inserting these quantities in the equations of motion
for phonon-assisted density matrices, as will be shown in
detail in Sec. II and in Appendix A.

In this paper we start with an investigation of the dy-
namics in a one-band semiconductor where we study the
relaxation from a given initial distribution of carriers.
Though not a realistic case, it allows us to concentrate
on the quantum kinetic aspects of the electron-phonon
interaction. At short times, due to the energy-time un-

certainty, virtual transitions into states very far from the
classically allowed cases are possible. Therefore, numeri-
cal results at these times may depend on the upper limit
taken for the electron band. We study in particular the
time dependence of the mean electron energy with re-
spect to this upper limit.

Then we extend the model to the more realistic case
of a two-band semiconductor interacting with a short
laser pulse. Carrier-carrier interaction is taken into ac-
count in a screened Hartree-Fock approximation. Here
the time evolution starts from a well-defined initial con-
dition, the vacuum of electron-hole pairs. We again see
the time-dependent broadening due to energy-time un-

certainty now for both carrier-light and carrier-phonon
interactions. The most interesting difference with respect
to the one-band model, however, is the fact that we now
have several types of interactions. On a semiclassical
level all interactions lead to transition rates which are
summed up independently. In a quantum kinetic treat-
ment the interactions interfere, describing the fact that
now a transition due to one type of interaction occurs
between states which are renormalized by other inter-
actions. Incorporating these renormalizations in a self-

consistent time-dependent way in a semiclassical descrip-
tion, even if possible in principle, would be very difficult
to achieve practically because it would require a contin-
uous change of the basis. In the quantum kinetic ap-
proach, on the other hand, this selection of the basis is
not necessary. The main subject of this second part is the
analysis of the role played by these interference effects.
Interestingly, it turns out that some quantum features,
e.g. , the broadening of the distribution functions, are re-
duced while others, such as phonon quantum beats, are
enhanced.

II. DYNAMICS
IN A ONE-BAND SEMICONDUCTOR

The Hamiltonian H = Ho+ H z for a one-band semi-

conductor model consists of a part Ho for describing
noninteracting electrons and phonons and the electron-
phonon interaction H, „,
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with the static (8,) and the optical (8 ) dielectric con-
stant, elementary charge e, and the normalization volume
V.

The relevant observables are the distribution functions
of electrons fk and phonons nq,

f'= (,'") -.= (btb. ) (4)

The equation of motion for these distribution functions
as obtained &om the Heisenberg equations of motion are
given by

fk = 2)—Re Bk+qk —Re Bk)
l

' 'J. ' (5a)

where ckt (ck) and bt (b ) denote creation (annihilation)
operators for electrons and phonons, respectively, ek ——

h2k2/2m, denotes the electron energy, m, is the effective
mass, huq is the phonon energy, and g' is the electron-
phonon interaction matrix element. Here we will consider
the case of Frohlich interaction with LO phonons, which
means a fixed phonon energy fuuq = bc'~ and

where Re(T) denotes the real part of x. On the right-
hand side in Eqs. (5) we have introduced variables, the
so-called phonon-assisted density matrices 8', which are
given by the expectation values of a product of three
operators weighted by the Frohlich coupling factor g,

e ~ e
k+q, k jgq{ k+q q k) '

Equations (5) do not form a closed set of equations of
motion; rather they represent the starting point of an in-
finite hierarchy which can only be treated approximately.
The first-order contribution in carrier-phonon interaction
to the dynamics of the distribution function is obtained
from Eqs. (5) by factorizing the expectation value of the
matrix 8' [Eq. (6)j, resulting in a product of the elec-
tron distribution function fk and the expectation value
of a single phonon operator (bq). The latter one de-
scribes coherent phonons. While in inhomogeneous sys-
tems, e.g. , near a surface, such contributions exist and co-
herent phonons have been observed experimentally, s '

in a homogeneous system the separation is only possi-
ble for q = 0 and these terms cancel in Eq. (5a). Here
we will restrict ourselves to the case of a homogeneous
system and therefore we have to consider the next order.

To describe the dynamics of the scattering we have
to determine the equation of motion of the expectation
value 8k+ k. It is given by

—Bk+q k ——task+q ksk+q k —y g gqigqi iCk+q+q k q qg ~ gq y k+q q' k q q)
ql
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with the oscillation &equency Ok+ k ——(ok+ —ek-
fau~)/h. On the right-hand side we have now electron-
phonon and electron-electron two-particle density matri-
ces. The second-order contribution is obtained by factor-
izing these two-particle density matrices into the distri-
bution functions, e.g. , according to

, „b,b)=f„' b (S)

This leads to an equation of motion for Sk+ k with ank+9',k
inhomogeneous part depending only on the d.istribution
functions

2
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with the rates

1 2
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and thus, together with Eqs. (5), to a closed set of equa-
tions of motion.

As is well known, the semiclassical approximation is
obtained by a formal solution of Eq. (9) and applica-
tion of the adiabatic and Markov approximation, ~s which
yields the Boltzmann equation

—
~

1 —fk+q I fkn xfk+ ~q+ —W—
2)

(1la)
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Carrier-phonon interaction leads to scattering processes
(phonon emission and absorption) between electronic
states with a well-defined energy.

On a quantum kinetic level, on the other hand, the
phonon-assisted density matrices are treated as indepen-
dent variables. However, as already pointed out by other
authors, si'sz a solution of Eq. (9) may lead for some ini-
tial conditions to unphysical results, in particular the
distribution function of electrons may become negative
or larger than unity. This has also been shown analyti-
cally for the Jaynes-Cummings model, i.e., the simpli6ed
case of a two-level system with a single phonon mode.
Therefore, this is not a consistent level of approximation
and higher-order contributions have to be taken into ac-
count. In a Green's function formalism this is done by
inserting a perturbed retarded Green's function in the
equation for the particle propagator. In the density-
matrix formalism used in this work the same result is
obtained from the equations of motion of two-particle
correlations, i.e. , the deviations of the two-particle den-

sity matrices &om their factorized form, defined, e.g. , as

(11b)

~(ck+,—,'k, 4) = ( k+q —q'k~q q) —fknq 4,q

(12)
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Details of this derivation as well as a discussion of the
approximations are given in Appendix A. The result-
ing equation of motion for the phonon-assisted density
Inatrix then reads

k+q, k ~k+q, k ~k+q ~k k+q, k + y ~q
)
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) & )l
l
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As shown in detail in Appendix A, the derivation of
the equation of motion for each of the two-particle cor-
relations leads to expectation values of 6ve operators
which have to be factorized into all possible combinations
of single-particle and phonon-assisted density matrices.
Treating the two-particle correlations in a Markov ap-
proximation and limiting ourselves to terms which have
the structure of self-energy contributions, where the real
part of the self-energy is neglected, the next-order contri-
butions to Eq. (9) can be expressed in terms of a damping
rate I'& related to the Boltzmann scattering rates accord-
ing to

The set of equations of motion [Eqs. (5) and (14)] is the
basis for the investigation of the quantum kinetics in a
one-band model. Strictly speaking, the present formu-
lation is still Markovian since we are dealing only with
first-order differential equations. However, when com-
pared to the semiclassical case, the set of independent
variables is enlarged. Eliminating the phonon-assisted
density matrices by a formal solution of Eq. (14) leads to
closed integro-differential equations for the distribution
functions which do contain memory kernels. Thus, when
speaking of a non-Markovian dynamics in the quantum
case, we refer as usual to the dynamics of the distribution
functions alone.

For an isotropic initial condition fk depend. s only on
k = ~ki and sk, k depends on k, k', and the angle 8 be-
tween both vectors. In the case of optical phonons and
a thermal phonon population, where ~~ and nz are in-
dependent of q, a further simplification is possible by
performing an integration over the angles and using as
dynamic variables

k2
F„ = f„,27r2

(15a)

cg bk' —k~g (15b)

The results described in the following have been obtained
by a numerical solution of the equations of motion for
these variables on a discretized mesh with constant spac-
ing in k. Material parameters for GaAs (m, = 0.063,
mk = 0.45, Ru~ = 36.4 meV, s, = 10.92, and e' = 12.9)
and zero lattice temperature have been used. No hot-
phonon effects are taken into account since this would
require to keep the angular dependence of the phonon-
assisted density matrix. Typically, 330 k values up to an
electron energy of about 1 eV and a time step of 0.2 fs

have been taken. The initial condition at t = 0 is given
by a distribution function which is Gaussian in energy
and corresponds to that one created by a 100 fs Gaus-
sian laser pulse (see Sec. III), as well as Sk k

——0.
In Fig. 1 we compare the relaxation dynamics of the

electron energy distribution for (a) the semiclassical and
(b) the quantum kinetic case. We have plotted the en-

ergy distribution, i.e., the distribution function multi-
plied by the density of states, as a function of energy,
since this quantity gives the most intuitive picture due
to the 6xed separation of the phonon replicas and the
conserved area under the curve. In the semiclassical case
the constant phonon energy leads to the appearance of
exact replicas of the initial distribution shifted downward

by multiples of the phonon energy. In the quantum ki-
netic case each replica is initially very broad and then
becomes narrower with increasing time. At early times,
due to the energy-time uncertainty principle, the energy
of an electron or a phonon is not yet a well-defined quan-
tity; it needs some time to build up the energy-conserving
b function of the semiclassical traasition rates. It is in-
teresting to notice that the onset of the narrowing of
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FIG. 1. The electron energy distribution f (g)~@ a a
«n«ion of energy (a) in the semiclassical case and (b) in the
quantum kinetic case at difFerent times for relaxation from a
given initial distribution in the one-band model. In (a) the re-

laxation leads to exact replicas of the initial distribution while

in (b) the energy-time uncertainty leads to a time-dependent
broadening of the replicas.

FIG. 2. The electron energy distribution f'(E)~E for the
same case as in Fig. 1 for very short times on an enlarged scale.
The curves show the buildup of the 8 function according to
sin(ut)/u with increasing time.

each replica shifts roughly with the phonon emission time
(about 150 fs) multiplied by the number of phonons emit-
ted. This demonstrates that an energy uncertainty is
associated with each emission process. The time in the
energy-time uncertainty relation is not related to the to-
tal time of the evolution starting from the initial condi-
tion at t = 0.

The most interesting quantum kinetic effects appear at
very short times. Therefore, in Fig. 2 we show the elec-
tron energy distributions on a strongly enlarged scale.
We see that indeed at early times the distribution ex-
tends up to very high energies. With increasing time the
occupation of these high-energy states decreases; the de-
crease, however, is not a monotonous function of time,
but exhibits an oscillatory behavior. Figure 2(b) shows
the buildup of the energy-conserving h function as the

mit of sinut/u as is well known from the elementary
derivation of Fermi's golden rule.

In Fig. 3 the temporal evolution of the mean ki-
netic energy of the electrons, ~a~ = N

= ~~& j~&, is shown. Except for the first few femtosec-
onds, the behavior is quite similar. The energy relax-
ation rate in the quant»m kinetic case is slightly reduced
with respect to the semiclassical case. During the first 10
fs, however, the behavior is completely difFerent. In the
semiclassical case we obtain &om the Boltzmann equa-
tion (10) with a negligible phonon distribution function
for the time derivative

classical—(e)t
2%(d~ ) gk —k'

kk'

which is always negative and, in particular, has a finite
value at t = 0. In the quantum kinetic case at t = 0 the
matrix S' is zero and thus we have d(e)/dt = 0. The
second derivative is given by

160-
)
E

120
II
0

80

LLI

40
0.0

——-- semiclassical

0.2 0.4
Time (ps)

0.6 0.8

FIG. 3. Time dependence of the mean kinetic energy of the
electrons for the semiclassical and the quantum kinetic case.
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The second derivative is positive and independent of the
initial distribution function. It diverges if the band has
no upper limit. Under the condition that initially all two-
particle correlations vanish this result is exact and not
limited to second order in the matrix element. There-
fore, the mean energy always increases at short times.
The physical reason for this fact is again the energy-time
uncertainty relation: At short times all states can be oc-
cupied independent of their energy. Since there are much
more states at higher energies than at lower energies, ini-

tially there are more transitions towards higher energies
as can be seen from the distribution function at t = 4 fs

in Fig. 2(a).
Figure 4 shows the time dependence of the mean elec-

tron energy at very short times for various upper limits
k „ofthe band. The number of k values has been var-
ied in order to keep the k-step size constant. In the case
of the lowest value of k „ the band is cut at an energy
of 250 meV, i.e. , about 80 meV above the initial distri-
bution. Thus we have more states below the initial dis-
tribution than above; the energy starts with a horizontal
slope and then decreases. With increasing k „the num-

ber of high-energy states becomes larger and the energy
exhibits an initial increase. The energy relaxation rate
at later times is not affected; however, the curves remain
shifted with respect to each other. These results demon-
strate the problems when using a quantum kinetic model
with a given initial distribution. It is related to the fact
that we have started the simulation with an uncorrelated
electron-phonon system, which never will build up in a

real photogeneration process.
Up to now we have discussed the differences between

Markovian (semiclassical) and non-Markovian (quantum
kinetic) relaxation of a nonthermal carrier distribution.
Due to the one-band approximation we were able to con-
centrate on the quantum kinetic effects related to a single

type of interaction. The main drawback in this approach
is related to the initial condition: The assumption that
all correlations between electrons and phonons vanish at
t = 0 would mean physically that Grst a distribution of
electrons has to be created in the conduction band and
then electron-phonon interaction is switched on. To be
more realistic, the generation of the carrier distribution
has to be included in the model. This can be done in the
case of photoexcitation of an undoped semiconductor at
low temperatures since here we start from a well-deGned
initial condition, the vacuum of electron-hole pairs. Such
a system, a two-band semiconductor interacting with a
classical light Geld, is the subject of the next section.

III. DYNAMICS
IN A TWO-BAND SEMICONDUCTOR

H = Ho + H, „+Hh „+Hl. + H, (19)

contains the parts describing noninteracting carriers and
phonons (Ho), electron-phonon (H, „) and hole-phonon

(Hi, „) interaction, the interaction with a classical light
field (Hl, ), and the Coulomb interaction between the
carriers (H, ). The noninteracting part is the same
as in Sec. II, extended by the holes described by cre-
ation (annihilation) operators d&~ (d&) and the hole en-

ergy e& ——Es ~+5 k /2mi, with the gap energy Es ~ and
the effective mass of the holes mh. The Hamiltonians de-
scribing carrier-phonon interaction have the same struc-
ture for electrons and holes, but since the Frohlich inter-
action is a polar coupling related to the electric charge,
electron and hole coupling matrix elements have oppo-
site signs g" = —g'. In order to trace back the various
contributions in the analytical calculations, however, we

will keep the different symbols for electron-phonon and
hole-phonon matrix elements.

The interaction with a classical light field treated
within dipole and rotating-wave approximation is given

by

~) I kckd k+ V'kd —'kck-t

k
(20)

We consider a two-band polar semiconductor with a
direct band gap in the electron-hole picture. The full
Hamiltonian

150
0.00 0.02 0.04

Time (ps}

0.06 0.08
where the coupling factor

%pi, = Mi, . Eo(t)e (21)
FIG. 4. Time dependence of the mean kinetic energy of the

electrons for the quantum kinetic case with different values
for the maximum of wave vector k corresponding to energy
maxima of 0.265 eV, 0.530 eV, 1.06 eV, and 4.24 eV.

contains the dipole matrix element Mk, taken indepen-
dent of k, the central angular frequency wI. , and the
pulse shape of the electric field Eo(t), here taken as a
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Gaussian Ep(t) = Ep exp[—(t/rL, ) j. The amplitude of
the Geld will be speci6ed in terms of a Rabi &equency
QR = 2Mi, Ep/fi.

In a two-band semiconductor the total carrier-carrier
interaction H via the Coulomb interaction Vq can be
separated in three parts: electron-electron, hole-hole, and
electron-hole interactions,

—fk = 2Re ipk'pk + 2 ) Re sk+

(24a)

H~, = ) V
~

—ck+ ck, ckick
kk'q

+ dk+ dkq dk&dk ck+qdk~ qdk~ck l
(22)

i t t t t
+q -q +q

We have neglected terms which do not conserve the num-
ber of particles such as Auger recombination and impact
ionization, as well as the interband exchange interaction.
In this work we will restrict ourselves to Coulomb ef-
fects in Hartree-Fock approximation and neglect carrier-
carrier scattering. Within this approximation the Hamil-
tonian H, can be factorized into an effective single-
particle Hamiltonian HHF,

~kckck + ~k~ —k~—k

+AkCkd k + Akd kCk (23)

with self-energies Zk' ———P, Vq~ fk+, due to the in-

traband parts and an internal field b,k = —p, Vq~pk+q
due to the interband part. The self-energy part can be
added to the noninteracting Hamiltonian Ho, which leads
to a renormalization of the carrier energies according to

——ck'"+ Zk'". The internal field part can be added to
the carrier-light renormalizing the external field accord-
ing to hpk = hpk+ Ek. Within the Hartree-Fock approx-
imation only the coherent part of the Coulomb interac-
tion is taken into account. The presence of &ee carriers
leads to a screening of the bare Coulomb potential. We
will not address this problem in the present work, but
include the effect by using statically screened Coulomb
potential in random-phase approximation with a self-
consistently determined screening wave vector k, .
The screened. exchange self-energy then is supplemented
by the Coulomb hole energy.

In contrast to Sec. II, the Hamiltonian now contains
more than one interaction mechanism. On a semiclassi-
cal level all these interactions lead to scattering processes
which are simply added according to a Matthiesen rule.
On a quantum mechanical level within a self-consistent
calculation of the equations of motion we will see that
this rule is no longer ful6lled and interference terms be-
tween diferent interactions appear. A main subject of
this section will consist in the investigation of e8'ects re-
lated to such cross terms in the ultrafast dynamics of
photoexcited semiconductors.

The basic kinetic variables are now given by the distri-
bution functions of electrons (fk) and holes (f"k) and,
in order to describe the coherent coupling of the light
field, the interband polarization pk = (d kck). Their
equations of motion are given by

dt
f—"i, ——2Re ipkpk / + 2) Re s"k+

—Re 8h—k, —k —qIJ.
(24b)

g(+) g(
—)+ g(+) + g(

—)++ f' —k—q,k —k+q, k —k,k—q —k,k+q
q

(24c)

with hOk ——ek + 2k. These are the semiconductor
Bloch equations where the relaxation part due to carrier-
phonon interaction is explicitly given in terms of the in-
traband (s) and interband (t) phonon-assisted density
matrices containing two carrier operators and one phonon
operator, 3 '

e
Sk+q, k

h—k, —k—q

g.(+)—k —q,k

(—)+
—k,k+q

2 ~ t—„g (c„+ b c„),

q(d kbqd —k —q) )

g (d—k — b ck)

—
~gq (d „bqc„+q) .

(25b)

(25c)

(25d)

To determine the dynamics of the phonon-assisted den-
sity matrices we apply the same technique and the same
approximations as discussed in Sec. II. For the matrix s'
this leads to the equation

e ~ e e e e
dt sk+q, k z~k+q k ~k+q ~k sk+q, k

lI t(+l ~.- a
~k+q + +—k —q —k—q,k

— 2@k + Y—k
)

( & (xt kk+q+ +2 (
zzq+ ] ] —fk fk+q

e he
e ~ &q&qI —fk+, ~, pk~, pk

The remaining equations for the other three types of
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phonon-assisted density matrices are given in the Ap-
pendix B. Here the higher-order corrections lead, in ad-
dition to the damping rates I'k, to the appearance of
carrier-phonon internal fields p&' which, neglecting again
the contributions related to the principal value, are given
by

eh + y e h~
'y~' ——g gq gq

~l

X Pk —q' ( k —ci' k) Pk+tl' ( k, k+g' )

(see Appendix B).
Let us now discuss the different contributions entering

on the right-hand side of Eq. (26). The terms involv-

ing s' and the square brackets agree with the one-band
model discussed in Sec. II. As we have seen there, af-
ter performing a Markov approximation these terms give
rise to the usual Boltzmann scattering rates for electron-
phonon interaction where the damping leads to collisional
broadening. They involve only the electron-phonon ma-
trix element g'. The last term contains electron-phonon
and hole-phonon interaction simultaneously. It is related
to the presence of a definite phase relation between elec-
trons and holes characterized by the interband polariza-
tion and is sometimes called polarization scattering. ii

The most interesting terms are those which couple dif-
ferent types of phonon-assisted density matrices. This
coupling is due to three different mechanisms: carrier-
light interaction (pk), electron-hole interaction (b,k), and
the simultaneous interaction of electrons and holes with
phonons (pz). Remembering that the definition of the
matrix 8 already includes an electron-phonon matrix el-
ement, we see that indeed these terms describe inter-
ference effects between different types of interactions.
Since they couple different phonon-assisted density ma-
trices, there is no more a direct way to formally inte-
grate Eq. (26) and then perform a Markov approxirna-
tion to obtain the semiclassical limit. Instead, one first
had to transform the matrices s and t into a new set of
variables given by linear combinations of s and t which
satisfy uncoupled equations of motion. This transforma-
tion would lead to shifted frequencies and thus, after a
Markov limit, to different arguments in the b functions
of the scattering rates. Therefore, these terms describe
the fact that the scattering does not occur between the
unperturbed states of the noninteracting carriers, but
rather between states which are renormalized due to the
presence of other interactions. In the present case these
renormalizations involve, in particular, the mixing be-
tween electron and hole states due to the light field (ac
Stark effect), the electron-hole interaction (excitonic ef-
fects), and the carrier-phonon interaction (interband po-
laron effect). Therefore, these contributions describe an
intracollisional field effect, where the Beld consists of the
applied laser Beld as well as contributions due to internal
fields. The mixing of states with different k values due to
intraband polaron eKects as described by the off-diagonal
contributions in Eq. (A3) could also be included, but in

the present calculations it has been neglected since it is
expected to be of minor importance with respect to the
light- and exciton-induced effects (see the discussion in
Appendix A).

For practical purposes, however, such a diagonaliza-
tion procedure is, in general, not tractable because these
renormalizations themselves are influenced by the dy-
namics of the system. They are time dependent and
would thus require a diagonalization procedure to be per-
formed at each time. Therefore it is difficult to treat such
effects on the semiclassical level. On the quantum kinetic
level discussed here, on the other hand, they are easy to
include. They hardly increase the computer time since
most of the quantities have to be calculated anyway.

The numerical investigations are based on the closed
set of equations of motion given by Eqs. (24), (26), and
(Bl) where again, as described in Sec. II, an integration
over the angular variables is performed. In most cases
a laser pulse with a pulse duration of &L, = 100 fs, a
Rabi &equency of O~ ——5 ps, and an excess energy of

Eg p: 180 meV has been used.
First we have switched off all contributions related to

the interference between different interactions describing
the renormalization effects. Thus we will see only ef-
fects associated with the non-Markovian character of the
quantum kinetic model. The terms quadratic in the in-
terband polarization are included; however, it turns out
that they have a negligible influence on the dynamics. In
Fig. 5 the electron energy distribution is plotted at differ-
ent times. The time-dependent broadening is now due to
both carrier-light and carrier-phonon interactions. The
former one dominates at short times [Fig. 5(a)] leading
to a narrowing of the first (unrelaxed) peak in the dis-
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FIQ. 5. The electron distribution function f'(E)v E» a
function of energy for the two-band model excited by a 100 fs
laser pulse at different times without renormalization terms
between different interactions.
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FIG. 6. Same as Fig. 5, but including the renormalization
terms. These terms lead to a narrowing and to shifts of the
maxima due to renormalization efFects.

tribution function with increasing time. After the pulse
is over, the peak has reached its final width. Carrier-
phonon interaction, as in the one-band case, leads to a
narrowing of each phonon replica from an initially broad
underground with increasing time [Fig. 5(b)] until the
semiclassical width is reached. The times when a local
minimum between two subsequent replicas starts to build

up, are, approximately, t = 50 fs, t = 200 fs, t = 400 fs,
and t = 600 fs, respectively; thus they are again roughly
separated by the semiclassical phonon emission time indi-

cating that an energy-time uncertainty is connected with
each emission process.

In Fig. 6 now the interference terms [second row in

Eq. (26)] are included in the simulation. When compar-

ing the results with the previous case (Fig. 5), two char-
acteristic differences become obvious. First, the interfer-

ence terms result in a narrowing of the phonon replicas.
This can clearly be seen by looking, e.g. , at the distri-
bution functions at t = 50 fs or t = 150 fs. A minimum

between the generated peak and the first replica can now

be identified already at t = 0 fs. Thus we obtain the
interesting result that including additional quantum me-

chanical features in the model leads to a dynamics which

becomes more similar to the semiclassical behavior. The
second feature is most clearly seen in Fig. 6(b). In con-
trast to Fig. 5, the position of the maxima of the peaks
now becomes time dependent. This is a direct conse-

quence of the renormalization due to light field and the
excitonic effects. It should be noted that the energy scale
of the abscissa always refers to the band structure of non-

interacting electrons.
In order to see better the difFerences between the vari-

ous approaches, we have plotted in Fig. 7 the electron

t=10 (a)

4-
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2
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Co 1-
J3

0
Co

CbI
0
O

UJ 1

t = 500 fs (b)

0
0 50 100 150

Energy (meV)

200 250

FIG. 7. The electron energy distribution f'(E)~E as a
function of energy for the two-band model excited by a 100 fs
laser pulse at two different times calculated within the quan-
tum kinetic model with and without renormalization terms,
with the Bloch equations including semiclassical phonon scat-
tering rates, and with the Boltzmann equation including a
semiclassical carrier generation rate.

energy distributions at two fixed times for the quan-
tum kinetic model with (solid lines) and without (dashed
lines) renormalization terms, the Bloch equation model
with semiclassical carrier-phonon scattering rates (dot-
ted lines), and the Boltzmann model where also the car-
rier generation is described by a semiclassical rate. The
shift in the peak positions of the quantum kinetic and
the semiclassical results are due to the polaron shift in
the generation process which is automatically included
when calculating the phonon-assisted density matrices,
while it has been neglected in the semiclassical treatment
of carrier-phonon interaction. The slight shifts between
the Bloch equations with semiclassical scattering and the
Boltzmann equation is due to Hartree-Fock terms which
are not included in the latter equation. We again see the
remarkably faster narrowing of the peaks if the renormal-
ization terms are included in the quant»m kinetic model,
as well as the delay in the narrowing of subsequent repli-
cas.

Finally, Fig. 8 shows the mean energy of electrons and
holes as a function of time. In this integrated quantity we
6nd no difFerence between the quantum kinetic cases with
and without renormalization effects. During the pulse
the main difference is related to the carrier generation
process which involves an energy-time uncertainty in the
solid and dotted curves while in the Boltzmann case the
spectral shape of the generation rate is always given by
the Fourier transform of the pulse. The energy relaxation
rates are again very similar, being slightly smaller in the
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quantum kinetic case.
All these quantum effects lead only to relatively small

quantitative changes in the carrier dynamics and would
thus be very difBcult to observe experimentally. As we

have seen, the situation becomes even worse with renor-
malization effects included because in this case the dis-
tribution functions are even closer to the semiclassical
case. However, as recently pointed out, in an experi-
ment measuring the interband polarization the situation
might be different. Here the quantum kinetics should
lead to the appearance of phonon quantum beats which
are absent in the semiclassical case. These quantum
beats can be explained as a beating between the direct
and the phonon-assisted transitions. It has been pointed
out that under realistic conditions they are visible in the
calculation only if the Hartree-Fock terms are included.
Now the question arises as to whether these quantum
beats are also modified by the presence of renomaliza-
tion effects. To investigate this point we use the same
parameters as in Ref. 31: a pulse duration of vL, = 50 fs0 71, — S,
a Rabi frequency of O~ ——40 ps, and an excess energy

In Fig. 9 the incoherently summed polarization p'"' =
Pt, ~pi, ~

is plotted as a function of time for different cases

(a) without and (b) with Hartree-Fock terms. During
the pulse the Rabi oscillation is stronger including the
Hartree-Fock terms due to the Coulomb enhancement
described by the internal field. After the pulse the de-

phasing of the coherence in the system is seen for all
cases; the overall dephasing rate is nearly independent
of the model. Within a semiclassical description of the
relaxation process the incoherently summed polarization
decays monotonically and also the dashed line in Fig. 9(a)
for the quantum kinetic model without Hartree-Fock and
interference terms exhibits practically no structure, in
agreement with Ref. 31. When comparing the solid line
in Fig. 9(a) with the dashed line in Fig. 9(b), we see that
Hartree-Pock terms as well as interference terms now lead
to the appearance of quantum beats with approximately
the same amplitude. The reason is that both renormal-
ization and excitonic effects increase the pair coherence
in the system by mixing electron and hole states. These
phonon quantum beats are strongly enhanced if both ef-
fects are included [solid line in Fig. 9(b)j. Thus, in con-

0
-0.1 0.1 0.3

Energy (meV)

0.5 0.7

FIG. 9. Incoherently summed polarization g„~pt, ~

as a
function of time (a) without and (b) with Hartree-Fock terms.
The phonon quantum beats are most pronounced if both
Hartree-Fock and renormalization terms are included.

trast to the case of the distribution functions, quantum
effects are increased here by renormalization effects which
might enhance the possibility of experimental observa-
tion.

IV. CONCLUSIONS

We have presented an analysis of the electron-phonon
quantum kinetics in a one-band and a two-band semicon-
ductor. In the case of a one-band model the relaxation of
a given initial distribution has been investigated. Thou h
not a realistic situation, it allowed us to concentrate on
the quantum effects related to electron-phonon interac-
tion. We have seen the time-dependent broadenin of

phonon replicas due to energy-time uncertainty and
ning 0

the build up of the h function, which describes the en-

ergy conserving in the semiclassical limit, according to
a sin(art)/ur in the distribution function. While in the
semiclassical case the mean electron energy at low lattice
temperatures always decreases, in the quantum kinetic
case it starts with a horizontal slope and then increases at
short times. This increase is sensitive to the upper limit
of the band in the simulation and is related to the use
of an initial condition where electrons and phonons are
taken to be uncorrelated. The subsequent energy relax-
ation is slightly reduced with respect to the semiclassical
model.

We then have investigated a more realistic situation, a
two-band semiconductor excited by a short laser pulse.
We saw again the time-dependent broadening of the gen-
erated peak and of the replicas now due to both carrier-
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light and carrier-phonon interaction. We have shown that
in a quantum kinetic treatment an interference between
difFerent types of interactions, corresponding to time-
dependent renormalization efFects in the dynamics, can
be included. They lead to slight time-dependent shifts of
the positions of the peak maxima in the electron energy
distribution. Surprisingly, however, it turned out that by
including these quant»m mechanical effects the broaden-
ing is reduced and the energy distributions therefore look
more similar to the semiclassical case. On the other hand,
these interband renormalization effects increase the am-
plitude of phonon quantum beats in the relaxation of the
incoherently summed polarization due to an increase of
the pair coherence.
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APPENDIX A

Here we derive the higher-order corrections to the
equations of motion for the phonon-assisted density ma-
trices resulting &om two-particle correlations. As an
example we take the variable S(ckt+, ckbt, bq). The
equation of motion for the corresponding two-particle
electron-phonon density matrix is given by

d t t i e ee t tb
dt
—(c„+,ci,b, b ) ——' ek+ i —„(ck~,ci,b, q)

q//

+gq„(ck+ q, q„ckbq„bq, bq) —(ck+q q, ck+q„bq„bq, bq)

+ g ~ Qq (~k+q q/k~k//+q/ck//+q) Qq (ck+q q/ck~k//~k +q &q/)q—q q q q q
k//

(AI)

On the right-hand side expectation values of five operators, phonon-assisted two-particle density matrices appear.
After factorization into all possible combinations of distribution functions and phonon-assisted density matrices and
inserting the equations of motion of the distribution functions according to

we obtain

—b(ck+q q c,b, , b, ) = —(c„+q q, q,b, , bq) ——f„n
)

(A2)

—b (ct+,c„bt,b )dt

e (g
&k+q —q'ge

ee (
fk+q-q +

ek+q && ek b (ck+q qq ckbqt bq)
)

g,', (
+ +q' sk+q, k e fk + +q sk+q —q', k—q'

)
' g'

I )
l

ee ee
Aq/ Sk,k —q + p+ + Jk + Aq Sk+q, k+q —q

)
'

gq' k )
(A3)

z = ) vr b(0 —~;) + i p y;
(0 —lalq )

(A4)

We now apply the adiabatic and Markov approximation
to this equation. Formally we have an equation of mo-
tion z —iOz = g, y; for the variable z, denoting the
two-particle correlation, with a &equency 0 and inho-
mogeneous parts y;, which can be separated into slowly
varying parts y, and rapid oscillations due to the &ee ro-
tation of the phonon-assisted density matrices according
to y; = y;exp( —iur;t). The approximations lead to the
semiclassical solution

with Dirac's delta function b(x) and the principal value
P(1/x). The imaginary part involving the principal val-
ues leads to polaron shifts in the energies and wilL be
neglected here.

As a result we now have expressed the two-particle
correlations in terms of phonon-assisted density matri-
ces. Remembering from Eq. (7) that the contribution to
the equation of motion of sk+ k involves a summation
over q', we see that, while in the 6rst term on the right-
hand side the summation is performed only over posi-
tive quantities, in the other three terms also the complex
quantity s' is involved in the summation. Since in gen-
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eral this quantity is rapidly oscillating in time, we may
neglect these terms by using a random-phase approxima-
tion. This assumption is equivalent to the calculation
of the dephasing rate in a two-band model as the total
scattering rate. In the language of Green's functions it
means that we take only the self-energy part for the re-
tarded Green's function.

Within these approximations the two-particle correla-
tion is given by

6(ck+,ckb, b )

corr (e ~e ~e e
k+q, k ~ k+q + ~ k k+q, k (A6)

with the Boltzmann relaxation rates according to Eqs.
(ll) and (13) and thus the equation of motion (14).

that on this level also the two-particle density matrices
involving two phonon annihilation operators, where the
factorized part vanishes, give a 6nite contribution. As a
final results we obtain an additional term in Eq. (9) due
to the correlations

lgqi
+~(~k+q, k+q —q') fk+q —q' + nq' sk+q, k '

(A5)

The same calculations have to be performed for the other
two-particle correlations in Eq. (7). It should be noted

APPENDIX B

For completeness the equations of motion for the re-

maining phonon-assisted density matrices s", t(+), and
) in the two-band model are given here. Their struc-

ture is the same as for 8' discussed in Sec. III:

d h

dt
h ph ph h ™ e g(+) ~-( ,(-)—k, —k—q —k —k-q 8—k, —k—q + ~k + ~k —k—q, k + ~k+q + ~k+q ~ —k,k+q

+g~ gq ~ nq+ 1 1 f—"k-q f knq—f—k —q 1 fk + ygqgq &k&k+q & (Bla)

1
gq

(. l & l (.—t = —i 0 —I'" —I" t ' + ' 8' — i + " s"—k —qk —k—qk —k —q k —k—qk+ l k+q ~k+q 8k+qk ~8k 0—k S k, —k —q

( &( „ l 1 „ I' &(
"qf-k-q + "q + f-k-q pk ygqgq "qfk + "q + 1 ' 1 fk pk+q).

(—) (—) h (—) .- e ~ e(
—k,k+q ~—k,k+q —k ~k+q t —k kyq + teak + 7k sk+q, k

h

l
~k+q + &—k—q

h—k, —k —q

——
gq nq + 1 fk+q + nq 1 —fk+q Pk ——2gqgq' nq + 1 f k + nq 1 —f k Pk+q, (Blc)

) & &. "
& )

with the frequency 0 k k
——e"k + ek 6 Ru and the relaxation rate I'k according to Eqs. (11) and (13) by

substituting all electron variables by hole variables.

N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry, Phys.
Rev. B $9, 7720 (1989).
B. L. Al'tshuler, A. G. Aronov, and B. Z. Spivak, Pis'ma
Zh. Eksp. Teor. Fiz. $3, 101 (1981) [JETP Lett. 33, 94
(1981)].
G. Bergmann, Phys. Rep. 107, 1 (1984).
S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 5'F,

2752 (1986).
S. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev.
B $7, 941 (1988).
A. Stahl, Z. Phys. B 72, 371 (1988).
M. Lindberg and S. W. Koch, Phys. Rev. B 38, 3342
(1988).
H. Haug, in Optical Nonhnearities and Instabilities in
Semiconductors, edited by H. Haug (Academic, San Diego,
1988), p. 53.

W. Schafer, in Optical Nonlinearities and Instabilities in
Semiconductors, edited by H. Haug (Academic, San Diego,
1988), p. 133.
I. Balslev, R. Zimmermann, and A. Stahl, Phys. Rev. B
40, 4095 (1989).
A. V. Kuznetsov, Phys. Rev. B 44, 8721 (1991).
T. Kuhn and F. Rossi, Phys. Rev. Lett. 69, 977 (1992)-
T. Kuhn and F. Rossi, Phys. Rev. B 46, 7496 (1992).
M. Lindberg, R. Binder, and S. W. Koch, Phys. Rev. A

45, 1865 (1992).
J. R. Barker and D. K. Ferry, Phys. Rev. Lett. 42, 1779
(1979).
J. R. Barker and D. K. Ferry, Solid State Electron. 23, 519
(1980).
J. R. Barker and D. K. Ferry, Solid State Electron. 23, 531
(1980).



50 ELECTRON-PHONON QUANTUM KINETICS IN PULSE-. . .

J. Lin and L. C. Chin, Appl. Phys. Lett. 49, 1802 (1986).
L. Reggiani, P. Lugli, and A. P. Jauho, Phys. Rev. B 36,
6602 (1987).
R. Brunetti, C. Jacoboni, and F. Rossi, Phys. Rev. 8 39,
10781 (1989).
J. Rammer, Rev. Mod. Phys. 6$, 781 (1991).
A. P. Jauho, in Grunular ¹noelectronics, edited by D. K.
Ferry, J. R. Barker, and C. Jacoboni (Plenum, Nem York,
1991),p. 133.
R. Bertoncini and A. P. Jauho, Phys. Rev. Lett. 68, 2826
(1992).
F. Rossi and C. Jacoboni, Semicond. Sci. Technol. 7, 8383
(1992).
R. Zimmermann, Phys. Status Solidi B 159, 317 (1990).
R. Zimmermann, J. Lumin. 5$, 187 (1992).
M. Hartmann and W. Schafer, Phys. Status Solidi B 173,
165 (1992).
H. Haug, Phys. Status Solidi B 17$, 139 (1992).
L. Banyai, D. B. Tran Thoai, C. Rembng, and H. Haug,
Phys. Status Solidi B 17$, 149 (1992).
F. Rossi, T. Kuhn, J. Schilp, and E. Scholl, in Pmceed-

ings of the gist International Conference on the Physics of
Semiconductors, Beijing, China, edited by P. Jiang and H.
Zheng (World Scientific, Singapore, 1992), p. 165.
D. B. Tran Thoai and H. Haug, Phys. Rev. 8 47, 3574
(1993).
R. Zimmermann and J. Wauer, J. Lumin. 58, 271 (1994).
J. Schilp, T. Kuhn, and G. Mahler, Semicond. Sci. Technol.
9, 439 (1994).
H. Haug and C. Ell, Phys. Rev. B 4B, 2126 (1992).
P. Lipavsky, V. Spicka, and B. Velicky, Phys. Rev. 8 34,
6933 (1986).
P. Lipavsky, F. S. Khan, A. Kalvova, and J. %. %'ilkins,
Phys. Rev. B 4$, 6650 (1991).
G. C. Cho, W. Kiitt, and H. Kurz, Phys. Rev. Lett. 65,
764 (1990).
W. Kiitt, Adv. Solid State Phys. $2, 113 (1992).
M. A. Osman and D. K. Ferry, Phys. Rev. B 36, 6018
(1987).
H. Hang and S. W. Koch, quantum Theory of the Optical
and Electronic Properties of Semiconductors (World Scien-
tific, Singapore, 1993).


