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We have augmented the elective-bond-orbital model to include second-nearest-neighbor overlap in-

tegrals. With these additional parameters we can St the band energies at the I and Xpoints, in addition
to the zero-center masses. This model provides a more accurate bulk band structure with a negligible in-

crease in computation time. The improved model is applied to short-period type-II InAs/In„Ga& „Sb
superlattices, and we observe a significant departure from the nearest-neighbor results.

I. INTRODUCTION

Superlattice band-structure calculations comprise a to-
pic of perennial interest to solid-state and device physi-
cists. Currently, there are many methods that can gen-
erate reasonable results. In general, though, to obtain in-
creased accuracy one must drastically escalate the coin-
putation time for a given algorithm. The most computa-
tionally benign —if not the most accurate —schemes are
usually based upon atomic orbitals or, equivalently,
zone-center basis functions. The k p method' can accu-
rately describe a few bands near the zone center, in the
sense that the zone-center band gaps and second-order
band dispersions wi11 be correct. Depending upon the ac-
curacy required and the energy range of interest, various
nuinbers of bands may be included. To describe free-
carrier states and optical absorption, one is typically in-
terested in only the conduction, heavy, light, and split-off
bands. When the spin degeneracy is included, this results
in an SX8 k.p Hamiltonian. Of course, this description
is only strictly valid near the zone center; more bands are
required to describe states with large crystal momentum
k or extreme energy. In bulk material, additional bands
may be easily accommodated. In superlattices, however,
the resulting system of coupled differential equations is
often solved by a direct matrix approach. 3 In this case,
adding even a few extra bands will rapidly increase the
dimensionality of the matrix. Since the diagonalization
time of an N XN matrix grows as N, this can dramati-
cally extend the computation time. It is clear, then, that
if we want to improve the range or accuracy of the mod-
el, we are better off refining the 8 X 8 matrix than adding
more bands.

In this respect, the effective-bond-orbital model
(EBOM} is a step in the right direction. Here instead of
taking a perturbation-theory approach, the semiconduc-
tor bands are described by a face-centered-cubic (fcc)
tight-binding Hamiltonian. In order to calculate the con-
duction, heavy, light, and split-off bands of either spin,
one includes spin-doubled s,p„,p,p, orbitals to generate
an 8X 8 Hamiltonian. The parameters are determined by
fitting the band gap, the split-off gap, and the zone-center
mass of each band. Additionally, the heavy- and light-
hole splitting at the Xpoint is constrained. This provides
a tight-binding matrix whose small-k expansion returns

exactly the 8 X 8 k p Hamiltonian. One advantage of the
EBOM technique is that it is often easier to implement
the tight-binding superlattice-slab matrix than it is to
solve the coupled system of differential equations result-
ing from the k p method —especially with regard to the
interfacial boundary conditions. Perhaps a more
significant advantage is that the fcc tight-binding method
is in principle valid throughout the zone. In particular, it
should be more accurate than the k p method for larger
k. Since the band structure of short-period superlattices
will sample large-k states from the growth direction, we
may expect the EBOM to be more accurate for thin-layer
structures. Of course, the more complete sp s' zinc-
blende empirical-tight-binding model (ETBM}can be ex-
pected to give even greater accuracy, but this model re-
quires that we again include bands with which we are un-
concerned (the higher conduction bands and lower
valence bands} in order to get a more accurate answer
near the band gap. Also, it can be difficult to determine
the parameters for this model, especially if we want to fit
the effective masses as well as the I, X, and L gaps.

Thus, it seems that the EBOM can provide an excellent
superlattice description on a price and/or performance
measure. This is especially true in narrow band-gap or
type-II superlattices where the conduction-band-
valence-band coupling is significant. In this paper, we
make a simple improvement to the model that will
enhance its accuracy for short-period (001) superlattices
with only a small increase in cost. By adding second-
nearest neighbors to the model, we can fit all of the zone-
center masses, the I -point gaps, and the X gaps as well.
We present this modification in Sec. II and conclude with
the results in Sec. III.

II. INCI.USION OF SECOND-NEAREST NEIGHBORS

We are interested in the energy band structure of com-
pound semiconductors. These typically form into a zinc-
blende crystal structure consisting of a two-atom anion-
cation basis that is repeated on each site of a face-
centered-cubic lattice. Rather than specializing our
tight-binding model to the crystal structure, we take the
EBOM approach and consider instead only the lattice
structure. Thus, we assume a set of "effective" orbitals
P (r —R) localized on the fcc lattice sites R of the zinc-
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blende crystal. We form a trial wave function %k(r) by
taking a linear combination of Bloch sums of these orbit-
als, i.e.,

%q(r) = g c (k) g e'" "P (r —R),1

N a R

where N represents the number of lattice sites in the crys-
tal. Upon substituting this wave function into the

Schrodinger equation H%=E%, we obtain the tight-
binding secular equation. Since we have explicitly includ-
ed the Bloch phases e'" at each lattice site, the secular
equation is diagonal in k. We are only concerned with
the conduction and valence bands near the band gap, and
so we consider only orbitals P that transform under ele-
ments of the fcc point group like s and p states. If we
direct the p orbitals along the crystal axes x, y, and z we
get the 4X4 secular equation

&p„lHls &

&p, lHls &

&p, lHls &

&s lHlp„&

&p. lHlp. &

&p, lHlp. &

&p, lHlp. &

&s lHlpy &

&p„lHlp, &

&p, lHlp, &

&p, lHlp, &

&slHlp, &

&p. lHlp, &

&p, Hlp, &

&p, lHlp. &

c, (k)

c (k)

c~ (k) c (k)
Py

c (k)

(2)

We now evaluate each matrix element by taking the sum
over R in Eq. (1) up to second-nearest neighbors. If we
assume that the conventional fcc unit cell has lattice con-
stant a (i.e., a =5.65 A for GaAs} then the elements are

&s lHls & =E„(OOO)

+4E„(110)[cosg cosri+ costi cosp+ cosg cosp ]

+2E» (200)[cos(2$)+cos(2ri ) +cos(2p) ],

&slHlp„& =4iE,„(110)si gn[c sot+rc sop]

E,„(110)=V, i,
E,„(200)= V,~3,

E„„(000)=V~ o,
E„„(110)=—,

' V, + —,
' V

E„„(011)= Vppi,

E„„(200)= Vppq,

E„„(002)= Vqpq,

(10)

(13)

(14)

(15)

(16)

(17)

+2iE,„(200)sin(2$),

&p„lHlp„& =E„„(000)+4E„„(110)cosg[cosg+cosp]

+4E„„(011)cosgcosp+ 2E„„(200)cos( 2g )

+2E„„(002)[cos(2' )+cos(2p )],
&p„lHlp~ &

= 4E„Y(110)si g—nsing .

(4)

(5)

Here g=k„a/2, ri=k a/2, p=k, a/2, and the other ele-
ments are obtained by cyclic permutation.

In any tight-binding Hamiltonian, we may choose to
include either two-center or three-center integrals. Typi-
cally there are more three-center than two-center orbit-
als; thus, the three-center approach supplies more dispos-
able constants. The original nearest-neighbor EBOM
(Ref. 4) was written with three-center integrals, providing
enough parameters to fit the zone-center masses and the
I -point gaps. With our second-nearest neighbors,
though, we will already have enough two-center integral
parameters to satisfy all of our constraints. Hence, we
find it more convenient to write the three-center matrix
elements above as the following linear combinations of
two-center integrals:

E„'=V o+4V )+SV
+2V 2+4V z (triply degenerate),

and the X-point energies

(19)

When we develop constraint equations to fix these two-
center integrals, we will find that even by fitting the
masses of each bond at the I point ( g = rl =p =0) and the
energies of each band at the X (g=~, ri=p=O) and I
points, we cannot uniquely separate V, , and V,p2. There-
fore, we include only the nearest-neighbor sp matrix ele-
ment ( V~, ), leaving us with the nine independent param-
eters Vsso V

& V$$2 Vol Vppo Vppf Vpp) pp2 and pp2.
We will choose these by fitting the conduction-band (E, )

and valence-band (E„)energies at the I' point (two con-
straints}, the conduction-band (X„),doubly degenerate
valence-band (Xs, ), and nondegenerate valence-band
(X3 ) energies at the X point (three constraints), and the
conduction, heavy, light, and split-off masses at I' (four
constraints).

By solving the matrix equation (2) we can easily obtain
the I -point energies

E, = V„o+12V„,+6V„2 (nondegenerate),

E„(000)= V„o,

E„(110)= V„, ,

E„(200)= V„2,

(20)

(9) (21}

(7) X„=V„o—4V„,+6V„2 (nondegenerate),

X3„=V~o —4V", +2V 3+4V 3 (doubly degenerate),
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X3,=V 0
—4V, +2V 2+4V 2 (nondegenerate) .

(22)

Here we have written the valence-band-edge energy as E,'
instead of E„ in anticipation of the spin-orbit corrections
to follow.

Next we must calculate the I -point masses in our mod-
el and fit them to experiment. For this, we Taylor ex-
pand the matrix in Eq. (2) about k=0. Since the form of
this expansion is set by the fcc lattice symmetry, and not
by the number of neighbors included, we still obtain the
same matrix form as in Ref. 4,

H), .p
=

E,—v, kz

—4i V,~ak„

4i—V, ak

—4iV, ak,

4i Vzak„

E„'—A, ,k„—A, ~k

—iL3k„k„

—iL3k„k,

4i V,zak„
—

A,3k„k

E„' A, ,k—
y A.2k-

—',,

krak,
4iV, ak,
—

A,,k„k,
—

A,3k' k,
E' —g k2 —g kz

(23)

The difference is that our coefficients now include
second-neighbor integrals as well, giving

&p, tlH, .Ip„t&= —'
=&p, tlH, . Ip„t&',

v&
= ( V, + V„2)a (24) &p, tIH, .Ip, l&=—=&p, lIH, .Ip, t&,

A,)=(V )
—

Vpp)+4Vpp2 4Vpp—z)a /4, (25)

(26)

(27)

Of course, this is exactly the same form as the sp3 k p
Hamiltonian in the absence of spin-orbit coupling, since
that matrix is also determined from the fcc lattice sym-
metry.

To describe the bands near I, it is essential to include
spin-orbit effects into the model. Here we follow the usu-
al practice by doubling the basis set from sp3 to
st,p, t,pst, p, t,sl,p„l,p„l,p, l and by coupling the
spin and orbital parts to total angular momentum states

Ij,m & through the Clebsch-Gordan coefficients. ' We
then treat the spin-orbit coupling phenomenologically by
adding a spin-orbit Hamiltonian that acts upon the

Ij,m &

states as H, , =(2b, /3A' )L S. This form is chosen to
reproduce the split-off gap 5 when evaluated in the
sp3 X ( t, f }basis. Since this term actually raises the j=

—,
'

states by 6/3 and lowers the j=—,
' states by 2h/3 we

must correct the valence-band edge, and so we have used
E,' =E„—b, /3 in Eq—. (19).

Of course, the spin-orbit coupling will also infiuence
the X-point energies (20)-(22}. Specifically, the X&, state
is unchanged and one of the degenerate Xs„states is shift-
ed upward by 5/3; the other Xs„state and the X3„state
emerge as the surd-pair roots of a quadratic equation and
so cannot be treated conveniently. These roots remain
very close to the 5=0 values. In GaAs, for example, the
spin-orbit term shifts the X5„state downward by 108
meV and shifts the X3„state upward by 6 meV. Since
these shifts are small in magnitude compared to the X-
point energies themselves, we neglect X-point spin correc-
tions in favor of maintaining our linear equations
(20)—(22}.

It is convenient to have the matrix elements of Hs 0 in
the (sp }X(t,$) basis. If we quantize our angular mo-
menta about the z axis and respect the standard Condon-
Shortley phases, we obtain the nonzero matrix elements

&p, tIH, .Ip, l&= —'
=&p, lIH, , Ip, t&',

&p, tIH, . Ip„L&=——=&p„lIH, . Ip, t&,
(28)

&p tlH. . Ips&&=
3

=&p

Then in the (sp ) X( t, J, ) basis the full 8 X 8 Hamiltonian
is given to second order in k by

Hg. p

0 +[H„],
k.p

(29)

Ecn(k) =Es+ —v, +pa 1+— k
r

(30)

EHH(k ) E
Ar ]

+A, +—a k
3 2 2

+ I [(p + 3Xa 2)2(k 4+k 4+ k4}

+( —
A, +3k, —3A, ya +9k, ya +—'y a )

X(k'k'+k k'+k'k')]' ' (31)

Eso(k) =E,—6— +A, +—ar k
3 2 2

(32)

where

where the 4 X4 matrix Hz.&
is given in Eq. (23).

If we transform this matrix H to the Ij,m & basis with
the Clebsch-Gordan coefficients, we can solve for the
dispersion by perturbation theory. The conduction (CB),
heavy (HH), light (LH), and split-off' (SO) bands are then
obtained to second order as
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Eg 2(4V,p )

E+5 ' 3E
E —=E —Eg c u (33) V„2=(X1, E—, )/16 —R0

mo

If we compare carefully, we see this is exactly the same
form as the second-order solution to the 8 X 8 k p Hamil-
tonian, "provided that we identify

A, , =6Roa 'Y2

~2=R0~'(y1 —2y2),

$3=6Rog 2y3,

where

(34)

(35)

(36)

(38)

4R 0

x
Y3 V3 L 4R 0

(39)

(40}

Now we can substitute Eqs. (25)-(27) and (38)—(40) into
Eqs. (34)-(36), to express the true Luttinger parameters
in terms of our two-center integrals as

24R0y2L = V 1
—V 1+4V 2

—4V"2+6',
4R0(yl L 2Y2 L )= Vpp1+3Vpp, +4Vpp2

12R0/3, L Vpp 1 Vpp1 +3

(41)

(42)

(43)

Finally, the conduction-band mass m, is obtained by tak-
ing the k coefficient from Eq. (30) and inserting Eq. (24)
to yield

R0 =—

2moa

Here the y; are the "modified" Luttinger parameters that
implicitly include the effects of conduction-
band-valence-band coupling. It is more common,
though, to have empirical access to the "true" Luttinger
parameters y J L in which the interband coupling has been
explicitly separated out. ' The two are related by"

+ 1+—[(X2,—X5, )/12+4R0y5 L], (47)

Vpp0=(SE +3X5 )/8 6R0(3 1 L 2r3 L )

V 1=(E„'—3X5, +2X5„)/16,

Vpp1
= (E„'+X5„—2X5„)/16,

Vpp2
=(2X5„—X5, E„' )—/16

+R0(r 1,L+4r2, L 6r3,L»

Vpp2 (X5 E )/16+RO( Y1,L 2r2, L }

X (X3 X5 )/1 2+4R0y3

(48)

(49)

(50)

(51)

(52)

(53)

III. RESULTS AND CONCLUSION

Because of the complex relationships between the input
parameters and the calculated bands, it is difFicult to
make intuitive comparisons between the second-neighbor
corrections to the EBOM and the ETBM. In either mod-
el, the second-nearest neighbors add higher periodicity
terms (in k} to the Hamiltonian, consequently allowing
much greater ffexibility in the band curvatures. In the
EBOM it is quite easy to add second neighbors, since
there are only two additional parameters and these pa-
rameters can be determined directly from the empirical
input. In the ETBM, by contrast, the second-neighbor
parameters are usually determined by numerical optimi-
zation.

10.0

Now we can get all of our tight-binding matrix elements
by evaluating Eqs. (7)—(17} and (33) with these parame-
ters. This completely determines the second-nearest-
neighbor Hamiltonian and assures that the solutions will
be fitted to the I and X energies, as well as to the zone-
center e8'ective masses. It is interesting to note that if we
had tried instead to fit the bands to the L-point energies,
the constraint equations would not have been indepen-
dent, and so could not have been uniquely inverted.

l?l 0
R om

C

= —V —V + 1+—ss1 ss2 2
(44)

8.0

6.0

At this point we are essentially done. The nine con-
straint equations (18)—(22) and (41)—(44) are linear and
independent in the nine parameters V„o, V„&, V„2, V 0,
Vpp 1 Vpp 1 Vpp 2 Vpp2 and y. Thus, they may be inverted
to obtain the two-center integrals in terms of the empiri-
cal parameters via

mo
V„0=(5E,+3X„)/8+6R0

Pl

4.0

2.0

0.0

-2.0

-4.0

-6.0

+ 1+—[(X5„—X3„)/2—24R0y5 L ], (45)
-10.0

L U, K

V„,=(E,—X1,)/16, (46)
FIG. 1. InSb band structure in the nearest-neighbor (dotted

lines) and next-nearest-neighbor (solid lines) EBOM.
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We illustrate the difference between the nearest-
neighbor and the second-nearest-neighbor EBOM in Fig.
1, where we show the InSb band structure for both mod-
els. Although they give identical results near I', we see
dramatic difFerences at the X point. We also remark that
the X and L point behavior of the nearest-neighbor
EBOM can be very sensitive to the conduction-band
mass: for some values of m„ the X and L conduction-
band energies may dip below E„making the
model unsuitable for superlattice calculations. For
example, the GaSb material parameters are often given
as yt i =11.89, y2 t =4.92, y3 L =5.19, /=0. 77,
E =0.81, a=6.0959, and m, /me=0. 042. These pro-
duce an erroneous conduction band in the nearest-
neighbor EBOM; if we set m, /mc =0.045, the bands are
reasonable. Of course, one could reverse the interpreta-
tion and argue that the former parameter set is, in fact,
not physically acceptable. In any event, the second-
neighbor EBOM is much less sensitive to the bulk materi-
al parameters and will work with either parameter set.

The X-point difFerence between the models can cause
striking differences in the superlattice energies, especially
for short-period type-II superlattices where the wave
functions are quite likely to sample the X-point bulk
behavior. In Fig. 2, we show the band gapa for an

(InAs)„/(In, Ga, „Sb)„superlattice grown on a GaSb
substrate as a function of the monolayer number n for
various x values. The bands were calculated by evaluat-

ing the slab matrices for the two EBOM Hamiltonians.
We obtained the two-center integral parameters for the
ternary In„Ga& „Sb alloy by directly averaging the
binary values and we treated strain efi'ects with the
deformation-potential theory. All empirical parameters
chosen for the bulk materials are given in Ref. 13.

The differences in Fig. 2 are significant at small n, espe-
cially for extremal x values. Clearly the bulk X-point
behavior of each constituent material can be important in
the superlattice description. Comparing our results to
8 X 8 k p calculations for this system, ' we see that both
EBOM calculations agree favorably, but the nearest
neighbor EBOM tracks more closely. This could be anti-
cipated, since the k.p model contains no X-point infor-
mation. Indeed, while the 8X8 k p model agrees com-
pletely with both EBOM calculations at I, it is grossly

0.45

0.35

0.25

0.15

LU

0.05

-0.05

x=0.0

x=0.2

x=0.4

x=0.6

x=0.8

-0.15
4

I I

10 12
n (Monolayers)

I

14

-- x=1.0
I

16

FIG. 2. Band-gap energies for an (InAs)„/(In„Ga& „Sb)„su-
perlattice grown on GaSb in the nearest-neighbor (dotted lines)

and next-nearest-neighbor (solid lines) EBOM.
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invalid at the X point. This absence of X-point data may
compromise the accuracy of k p treatments of very
short-period structures. Of course, no model is
guaranteed to agree exactly with experiment, but because
of the embedded X-point information it is likely that the
second-neighbor EBOM will give more accurate results.
Additionally, we emphasize that the Luttinger parame-
ters and conduction-band mass must be carefully chosen
for each material.

In conclusion, we find that by including second-nearest
neighbors into the fcc tight-binding framework we can fit

the X-point energies as well as the zone-center masses
and gaps. This marginally increases the computation
time for (001) superlattices, but gives significantly
different, and presumably more accurate, results.
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