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Theory of the photoluminescence spectra of porous silicon
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Porous silicon (PS) with its distribution of crystallite sizes is a highly disordered material. We present
a theoretical formulation to explain the photoluminescence (PL) spectra of porous silicon. We base our
formalism on the quantum confinement model using methods similar to those of Kane and Lifshitz. A
minimal set of parameters is employed whose numerical values are obtained from independent experi-
ments and/or microscopic theories. Our work demonstrates (i) a downshift in the PL peak due to the
size distribution, thus facilitating the use of smaller and physically reasonable exciton binding energy; (ii)

a PL spectrum with a hne-shape asymmetry on the energy scale, having a full width at half maximum of
=350 eV, in consonance with experiments; (iii) the presence of both columns and dots in PS; (iv) the
presence of local inhomogeneities. Modifications of our model and extensions to related experimenta1

phenomena are also discussed.

I. IIV IRODUCr ION

The discovery of visible photoluminescence (PL) in
porous silicon (PS) has attracted a lot of attention in the
past few years. ' Almost all recent works on PS report
at least one PL spectrum with a peak in the visible re-
gion. ' Indeed, PL has acquired the role of a central
characterizing tool in this field. The objective of this
work is to report a simple theoretical framework with a
minimal set of plausible parameters to explain the PL
spectra.

Primarily, porous silicon is a disordered system. It
consists of an intricate network of crystallites with vary-
ing sizes and shapes. The large surface supports hydro-
gen and oxygen complexes. At the microscopic level
there exists dangling bonds and voids. Constructing a
theory for the PL spectrum which encompasses all levels
of disorder is a difficult task. Further, it may not be a
desirable goal as it would entail the use of a large set of
parameters whose numerical values are not accessible ei-
ther by microscopic calculations or by experimental ob-
servations. Hence, a modest approach to explain the
overall features of the PL spectrum, which operates
within a circumscribed and limited set of plausible pa-
rameters, is a desirable alternative.

Our work is based on the quantum confinement mod-
el. ' ' Most workers employ a simple quantum
confinement model where the PL peak alone is sought to
be explained. We believe that disorder plays a key role
and model it by a distribution of crystallite sizes. This
work, described in Sec. II, is similar in spirit to the
mean-field approach of Kane and the probabilistic argu-
ments of Lifshitz to explain the Urbach tail in optical ab-
sorption. ' A large body of theoretical work in the Ur-
bach tail problem assume that the absorption edge a(E)
is simply proportional to the electronic density of states
and ignore the energy dependence of the transition ma-
trix element and the electron-electron interaction.
There are several features which we choose to ignore in
our formalism. Some of these are relaxation of carriers,

gap states due to voids and defects, thermal disorder, and
the distinction between hole and electron contributions to
exciton energies. We wish to employ a small set of plau-
sible parameters, and further, observe (Sec. III) that these
explain several reported PL spectra. Our formalism can
be extended to include the above-mentioned factors as
well as important experimental parameters such as the
frequency and intensity of the incident excitation. These
are indicated later (Sec. IV). We note that there exists an
alternate hypothesis for visible PL in PS, namely, the
"siloxene model. " Theoretical work on this model has
also been reported.

In Sec. II, we describe our theoretical formalism. We
derive expressions for PL spectra originating from both
column and dot distributions. The presence of local in-
homogeneities where either columns or dots might dom-
inate requires a Lifshitz-like argument for modeling the
edges of the PL spectrum. The PL spectra, which may
appear Gaussian when plotted against the wavelength,
has a distinct asymmetry on the energy scale. This is nat-
urally obtained in our formalism. A further noteworthy
feature is a shift in the PL peak due to the distribution of
crystallite sizes (Fig. l). This enables us to employ a
small and physically reasonable exciton binding energy.

In Sec. III we outline how the numerical values of the
parameters employed are obtained from experimental ob-
servations and microscopic calculations. Our calcula-
tions compare favorably with the PL spectra obtained by
several workers.

In Sec. IV, we briefiy discuss earlier works based on the
quantum confinement model. We outline extensions of
our formalism to include some of the features mentioned
in the third paragraph of this section. We also indicate
how some insight into related experimental observations
such as photoluminescence excitation (PLE) can be at-
tained based on our model.

II. THEORETICAL FRAME%'QRK

Our aim is to explain the photoluminescence spectra
employing a minimal set of broad and plausible assump-
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(d —do)
Pd = —exp

&2' a 2a' (2.1)

The number of electrons in a column of diameter d parti-
cipating in the PL process is proportional to di. The
heights of the columns depend only on the growth time
and are approximately the same. Hence

tions. There exists in literature a variety of approaches to
the Urbach tail in optical absorption. %'e propose to
work along the lines of two sister approaches: the one
due to Kane and the well-known Lifshitz argument. '

There exist two classes of explanation for the origin of
visible PL in porous silicon: (i) the quantum confinement
model in which luminescence is due to electronic
confinement in the columnarlike (or dotlike} structure of
porous silicon, ' ' and (ii) the chemical model in which
the large surface area presented by PS support luminesc-
ing siloxenes. In the recent past evidence for the former
model has been accumulating. ' ' %e work within the
quantum confinement model but avoid the oversimplify-
ing assumptions made by some of its proponents.

Columns of mean diameter do in the nanometer range
have been reported by several independent groups. ' '
The growth of these columns is a stochastic process and
it appears reasonable to assume columns of silicon with a
Gaussian distribution of diameter d centered around a
mean do,

(d —do)
Xd exp — d(d)

20

1 do
X exp

2

b,EO

hE

2'

(2.7)

The PL line shape is approximately Gaussian if a is
small. For finite rr the &1/hE factor in the exponential
outweighs the polynomial dependence in the prefactor,
resulting in an asymmetric curve with the shoulder on
the high-energy side (see Fig. 1).

Another aspect we need to note is that the mean ener-
gy of the upshift EEO [Eq. (2.5b)] and the location of the
PL peak hE [=%co (E E&—)] are—not identical. To
see this, we difFerentiate and set to zero the above expres-
sion (2.7). This yields

(2.6)

The Dirac delta function facilitates a straightforward
integration and yields

' 3/2

N, =N, (d) =ad (2.2)

where a is a constant.
For a PS sample consisting of varying column diame-

ters the probability distribution of electrons participating
in the PL process is given by a product of the above two
expressions:

hE =hE 1 0

10 0.

d.
'
+20

1/2 2

(2 &)

(d —do)
P,d

= —bd exP —
2&2ira' 2cr 2

(2.3)

where b is a suitable normalization constant.
In the quantum confinement model, the PL process is

attributed to the energy upshift of the electrons and is
proportional to 1/d .

The PL energy fico is given by

fico=E —E + c
g b d2

(2.4)

b,E= fico (Eg Ei, ), — — (2.5a)

(2.5b)

where we have also paused to define a mean upshift EEQ
related to the mean column diameter do.

The PL line shape is then determined by transforming
Eq. (2.3) to the energy axis as is commonly done,

where Eg is the bulk silicon gap (1.17 eV), E& the exciton
binding energy, and c an appropriately dimensioned con-
stant. The energy upshift due to confinement hE is

For a /do~0, b,E =b,EO, as expected. However, for
reasonable o the above expression can be Taylor expand-
ed to yield

hE =AE0 1 —10

'2

~EFWHM ~EQ '
dp

,

—2 —2

do

From the values reported by Read ei al. ,
'

do =30 A,
a =3 A, a Ido =0.1, and hE =0.96Eo.

Thus, there is a downshift. This is depicted by a hor-
izontal bar in Fig. 1. It is important to realize the physi-
cal significance of this. As wi11 be explain d in the next
section, the downshift dispenses with the need to invoke
large and physically unreasonable exciton binding ener-
gies.

The peak in PL intensity is P (DER }. We can obtain an
approximate expression for the full width at half max-
imum (FWHM) (EEFwHM) of the PL spectrum if the
prefactor energy dependence hE is ignored. This is
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where JV is a normalization constant. It is conceivable
that both columns and dots are present in porous silicon.
The experimental PL spectrum is a weighted sum of the
column and dot spectra. Statistically speaking, there
would be inhomogeneities resulting in a region (say of
volume V) having an overwhelming column concentra-
tion c ( »co the mean column concentration). One can
then invoke a methodology along the lines of the Lifshitz
argument. The probability is given by

&. 000-
P(C)=K exp N, c—ln

Cp
(2.11)
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FIG. 1. Theoretical PL spectra. The solid line is due to
columns (peak at hE~ =0.46 eV) and the dashed line is due to
dots (peak at ~~ =0.67 eV). The mean diameter is do=30 A

0
and variance 0 =4 A for both spectra. The quantum

0
confinement constant c (in c/d )=485.816 eVA [the same as
calculated by Read et al. (Ref. 18)] and the binding energy
E&-—0. 14 eV. The horizontal bar at the peak of the column

spectrum indicates a downshift ( =0. 1 eV) from Rs&o=c/do on
account of the statistical distribution of the column sizes. (See
text in Sec. II for further discussion. ) Both spectra are normal-

ized to unity.

V
N ~—

e
U

(2.12a)

The confinement energy for U, is [from Eqs. (2.2) and
(2.5)]

AEa:1/U, .

Using (2.12) in (2.11),

P(c)= exp[ K,hE],—

(2.12b)

(2.13)

where K is a normalization constant and N, the total
number of electrons participating in the PL process
within volume V. If U, is the mean volume of the column
crystallite in this region, then

For small (tr /do ),

4bEo(do/tr )
EEFWHM 2(do/cr ) —2

(2.9a)

r

where K, is a constant. Thus the low-energy (infrared)
part of the PL spectrum has an exponential tail. The
presence of this tail accounts for some discrepancy be-
tween the theoretical PL spectrum based on Eq. (2.7) and
the experimentally reported ones.

A similar result can be obtained using a simple quantum
confinement model. Noting that b,E=c ld [Eq. (2.5b)]

~EFWHM 2i5(~E)i id=do

4c5d

do

46Eoo
(2.9b)

r '2
1 do

Po(b,E)=JV exp
hE 2 g

1/2 2
0

LE

(2.10)

The above expressions are identical for small (do/o ).
Using c =485.816 eV A, 5d =o =3 A, and do=30 A
(see the next section, Sec. III for a discussion of the nu-

merical values), we obtain from Eq. (2.9b),
EEFwHM -—200 meV. A larger and experimentally re-
ported 5EFwHM is obtained if the full expression [Eq.
(2.7)] is employed.

Some workers have hypothesized the existence of dots
instead of columns of silicon. ' ' An analysis similar to
the above can be carried out for dots. Employing N, ~ d
in Eq. (2.2) and carrying out the integration, the line
shape for the dot is

III. RESULTS

We shall now present calculations based on our expres-
sions in the previous section and compare them with ex-
perimentally reported PL spectra. There exists a
plethora of experimental spectra including some that we
have obtained. Almost all reports on porous silicon re-
port at least one PL spectrum. Indeed, visible PL has ac-
quired the role of a central characterization tool in this
field. We have selected a representative set which
highlights both the promises and problems associated
with the natural theoretical framework outlined in the
previous section. Variations in the proposed model and
alternative explanations are outlined in the next section.

We note that the majority of the PL spectra reported
have been recorded against the wavelength A, on the x
axis. In our comparison, we have faithfully transformed
A, to the energy Ace. Note that %co (in eV) = 1.24/A, where
A, is in pm. Recall that Aco=EE (Eg Eb) from E—q. —
(2.Sa).

The numerical values of physically important variables
in our calculations are as follows: The band gap of sil-
icon E ranges from 1.14 to 1.17 eV depending on the
temperature. The exciton binding energy (Eb ——0. 15 eV)
is small and physically more reasonable (than, for exam-
ple, 0.32 eV proposed by Read et al. ' ). This is possible
because the existence of a distribution of column diame-
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ters results in a downshift from the mean peak (see the
horizontal bar in Fig. 1). Thus Eg E—

b =1.00 eV. The
constant c associated with the confinement energy
( =c/d ) is taken from the careful calculations of Read
et al. ' Its value is 485.816 eVA .

Computer simulations indicate that the surface has a
"fractal-like" character. ' The slow PL decay may be at-
tributed to the fractal structure of PS (Ref. 22) provided
the model proposed by Klafter and Blumen holds. A
fractal structure would imply a large value for 0.. We,
however, rely on electron microscopy measurements
which suggest the variations around do to be =10 A. 's
Thus the variance o = —", =3—4 A. Thus 99&o of all

columns or dots lie within 3o. We take do=30 A, a
number reported by several workers. ' ' ' The specific
values of Ido, o ) for a given spectrum are cited in the
figure captions and these happens to lie close to the above
quoted values. In all our calculations we take the mean
diameter (do) of the column and/or dot to be the same. A

priori, there is no reason for them to be different.
In Fig. 2 we compare the theoretical spectrum (solid

line) with one experimentally obtained by Cullis and Can-
ham (dashed line). The experimental spectrum with a
peak at fico =1.48 eV, a FWHM of 325 meV has also
been theoretically studied by Read et al. ' The theoreti-
cal spectrum is obtained with mean diameter do=30 A

0
and 0 =4 A. These values are the same as the ones sug-
gested by Read et al. and so no "fitting" or "adjustment"
on our part has been carried out. The agreement is excel-
lent (fico =1.45 eV, FWHM is equal to 300 meV) except
at the low-energy end. The Lifshitz-like argument out-
lined at the end of the previous section provides a sub-
stantial improvement at the lower end with constant
K& =0.13 eV '. We do not wish to overemphasize its
importance at this juncture except to indicate that it sug-
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gests inhomogeneities in porous silicon.
In Fig. 3 the experimental PL spectra of Vial et al.

(dashed curve) is compared with our theoretical calcula-
tions (solid line). ' The experimental PL spectrum has a
peak at iiico = 1.54 eV with a FWHM of 270 meV. It was
obtained for an oxidation rate of Qo/4 where Qo is a
threshold exchanged charge and is proportional to the
layer thickness. The theoretical PL spectrum was ob-

0
tained for a mean diameter of d&=28 A whereas Vial
et al. quote a theoretically calculated value of 30 A. The
variance rr =4 A (same as for Fig. 2). Vial et a/. propose
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FIG. 3. Comparison of experimental (dashed line) and
theoretical (solid line) PL spectra. The experimental curve is
from Vial et al. (their Fig. 2, oxidation level Qo/4) (Ref. 19).
The theoretical curve was generated employing the presence of
both dots (as conjectured by Vial et al. ) and columns, each with

0
~

0
mean diameter dp=28 A and variance cr=4 A. Dots and
columns are present, the population being 15% and 85%%uo, re-

spectively.
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FIG. 2. Comparison of experimental (dashed line) and
theoretical (solid line) PL spectra. The experimental curve,
from Cullis and Canham (their Fig. 1, sample 3) (Ref. 3), has
also been discussed by Read et al. (Ref. 18). The theoretical

0

spectrum is obtained using a mean diameter dp =30 A and vari-
ance or=4 A (see also, text in Sec. III) for both dots and
columns. The dot and column concentrations are 10% and

90%, respectively.
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FIG. 4. Comparison of experimental (dashed line) and
theoretical (solid line) PL spectra. The experimental spectrum
is from Banerjee et al. (Fig. 2, curve c) (Ref. 25). The theoreti-

0
cal curve is obtained using mean diameter dp =28 A and vari-

0
ance o.=2 A. The dot and column concentration were 80%%uo and
20%, respectively.
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a purely quantum dot model. We need to invoke dot and
column concentration of 15% and 85%, respectively,
with both dots and columns having the same Ida, o I as
above mentioned. Our calculations are in excellent agree-
ment with the experimental curve.

In Fig. 4 an experimental PL spectrum (dashed line), of
Banerjee et al. is compared with our theoretical calcula-
tions (solid line). The experimental room-temperature
spectrum obtained after etching has a peak at 2.07 eV
and a shoulder at 1.65 eV. Presumably the ambient oxi-
dation and subsequent etching process creates dots,
though this is not the contention of Banerjee et al. The
theoretical spectrum is obtained on employing mean di-
ameter d0 =28 A, variance o =2 A, and concentration of
dost and columns: 80% and 20%, respectively. The
agreement with the experimental curve is good.

The above results have been demonstrated for
representative experimental PL spectra. We have also
performed a number of calculations for experimental
spectra reported by several other workers in the field.
These include the ones by Zhang et al. (Fig. 1, sample g
and cited by Wang et al. ), ' ' Hummel and Chang after
spark erosion (their Fig. 3), Tsai et al. on Si:H passiva-
tion and immersion in HF (their Fig. 1), and Jung et al.
(Fig. 3). The numerical values of the parameters used
have not been adjusted and are the same as those outlined
in the beginning of this section. The agreement in all
cases is good.

IV. DISCUSSION

Most works on porous silicon report the photolumines-
cence spectra without any further theoretical analysis.
There are notable exceptions and we briefly discuss some
of them.

A series of works purport to explain the visible photo-
luminescence of porous silicon. Starting with the
pioneering work of Canham, and Lehmann and Gosele,
they posit the quantum confinement model as the source
of visible PL. ' Voos et al. consider the upshift (down-
shift) of electrons (holes), due to confinement and claim
that the holes are primarily responsible for visible PL.
Read et al. perform a detailed first-principle calculation
and attribute the electronic upshift to visible PL. ' They
report a peak at 1.48 eV in agreement with the experi-
mental work of Cullis and Canham. They, however,
need to invoke a large exciton binding energy (E&) of
0.32 eV. Buda, Kohanoff, and Parinello perform a first-
principles calculation and report a peak at 1.84 eV for a
1.14-nm wire. Ohno, Shiraishi, and Ogawa in another
first-principles calculation report an upshift of 0.9 eV for
a 1.53-nm wire. Sanders and Chang carry out an
empirical tight-binding calculation and report a peak at
= 1.6 eV for a 2.7-nm wire. ' These calculations are fo-
cused solely on the peak position of the PL. Further,
computational limitations prevent them from exploring
the effects of larger diameters. A point to note is that
several of these calculations report a direct gap at k =0.

There exists another first-principle calculation by Del-
ley and Steigmeier. This calculation goes beyond the
local-density approximation and attempts to include self-

energy corrections. The dependence of the band gap E
on the cluster ("dot") diameter d is investigated. It is
found that E ~ d ' and not d . With this d ' depen-
dence, instead of Eq. (2.10), we obtain

'2
1 dp

I'D(b E )=N expEE' 2 CT

(4.1)

where N is a normalization constant. The FWHM of the
PL spectrum is found to be narrower in this case. The
dependence of the band gap on the size needs further in-
vestigation.

There are attempts to model the effect of the size distri-
bution on the PL spectrum. Behrensmeier et al. attempt
to model the PL spectra as a superposition of distinct
peaks due to discrete wire diameters. ' Wang et al. , in a
similar calculation, obtain pinning of peaks at certain
discrete energies. ' The growth process is however, sto-
chastic, and wire diameters have a range as observed in
transmission electron microscopy and scanning electron
microscopy. ' Hence our approach has, as its basis, a
continuous distribution of sizes.

One approach is to fit the PL spectra to a single or
series of peaks with a Gaussian convolution. Employing
this, Narasimhan et al. have reported three peaks. A
sum over exponentials representation is nonunique.
Further, the physical origin of these peaks needs to be
elucidated for such an endeavor to be meaningful. In the
absence of this, one merely has a curve-fitting exercise.
In contrast, our approach assumes a physical basis
wherein not the spectra, but the underlying structure of
crystallites has a Gaussian distribution.

The hypothesis that lattice vibrations are responsible
for the broadened PL spectra is not plausible. Lattice
vibrations give a typical broadening (- kT &25 meV)
which is too small to explain the reported FWHM
(-300—400 meV). An explanation of this broadening
based on lattice vibrations would involve unphysical
values of the Huang-Rhys factor. An anomalous temper-
ature dependence of PL has been reported and needs to
be understood further.

We observe that in seeking an agreement with the re-
ported PL spectra, we need to invoke both columns and
dots. Further, as mentioned in Sec. III, a Lifshitz-like ar-
gument could ensure that the tail states are properly ac-
counted for. Thus, local inhomogeneities where columns
predominate over dots (or vice versa) exist.

In an effort to employ a minimal set of plausible pa-
rameters, we have ignored several effects. These were
mentioned in Sec. I. Recombination to defect states is a
distinct possibility. Defect states, primarily those due to
dangling bonds and voids, lie in the band gap. These
states may also be broadened due to the existing disorder
in PS. Relaxation processes where the excited electron
decays to an appropriate energy state and subsequently
recombines is perhaps also present. The distribution of
sizes in PS would exercise its influence over physical phe-
nomena other than the PL spectrum. The dependence of
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the oscillator strength' ' ' on the wire diameter would
stand modi6ed. Murayama, Miyazoki, and Hirose have
reported an exponential Urbach tail in the PLE spectrum
and this may be attributed to the above-mentioned distri-
bution and inhomogeneities. The effect of the surface
contribution to the PL may be accounted for in our mod-
el by modifying the prefactor in the distribution [Eq.
(2.3)] from bd to (b, d b2—d ) where b, and b2 are
volume- and surface-dependent constants, respectively.
Since the surface has a "fractal"-like character, the ex-
ponent a may be different from unity. Further, Eq. (2.4)
for the PL energy may be modified to

be relevant in explaining the PLE spectrum and an asso-
ciated exponential Urbach tail. The decay of PL is a
nonexponential process. ' ' While there are several
theoretical explanations for this decay, the distribution of
energies leading to the Kohlraush type behavior is a pos-
sible explanation. %e hope to extend our work to explain
these and other experimental observations.

In conclusion, we emphasize that the attractive aspect
of our model is the choice of a minimal set of parameters
whose numerical values are dictated not by the exigencies
of an individual PL spectrum, but by independent micro-
scopic calculations and experiments.

fuu=Es Eb+ —+h(I, cur, . . . ) .

Here, 8 accounts for nonlinear processes arising out of
the influence of experimental parameters such as the in-
tensity I and the frequency col of the incident radiation.
These extensions which are not included in our work may
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