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Calculation of the second-order optical nonlinear susceptibilities
in biased Al„Gal As quantum wells
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The second-order optical nonlinear susceptibilities I'"' of biased Al„Ga, „As quantum wells (QW's)
are theoretically estimated. The contributions of Wannier excitonic states and nonexcitonic excited
states to g' ' are discussed. It is shown that the transitions between a Wannier excitonic state and nonex-
citonic excited states contribute dominantly to y"' of biased Al„Ga, „As QW's. The y'~' values are cal-
culated for various QW widths and electric fields. The strong resonance of exciton energy and

pumping-light energy, the strong oscillator strength of Wannier exciton states, and the large dipole of
Wannier excitons result in large y'2' values greater than 5 X 10 '0 m/V for QW's with well widths of less

0
than 70 A. Because QW's have large y'2' values in the wavelength range near 1.55 pm, they are good
candidates for nonlinear optical devices for communication systems.

I. INTRODUCTION

In the 1.3-1.55 pm optical telecommunications wave-
length range, powerful wavelength conversion and state
squeezing functions' can be performed using second-
order nonlinear effects. To realize such a device, materi-
als with large second-order optical nonlinear susceptibili-
ties y' ' are required.

Asymmetric quantum-well (QW) structures of III-V
compound semiconductors like biased QW's are expected
to have y' ' two orders of magnitude larger than those of
bulk III-V compound semiconductors. Bulk III-V com-
pound semiconductors have some of the largest reported

Although III-V compound semiconductors are not
suitable for second-harmonic generation (SHG) applica-
tions due to their optical loss for photons with energy
greater than the band-gap energy, they can be used for
wavelength conversion devices or parametric
amplification with pumping light near the band-gap ener-

gy and signal light at half the band-gap energy where the
semiconductor is almost transparent. In addition to a
possible large y' ', III-V compound semiconductor QW's
can be used as the core of a waveguide structure with
tight optical confinement. Further, growing the
waveguide and pump laser on the same substrate is very
attractive. Strong optical-confinement waveguide struc-
ture and integration with a pumping laser allow the high
optical power density indispensable to nonlinear optical
effects. In the case of bulk III-V semiconductors, it is
difficult to achieve the phase-matching condition because
of the crystal symmetry. However, with QW's, a
pseudo-phase-matching structure can easily be con-
structed by application of a periodic electric field.

In spite of these attractive features, the g' ' of biased
QW structures in the wavelength range around 1 pm has
not been thoroughly investigated. Several experiments
and discussions ' at the wavelength of 10 pm using sub-
band states in the conduction band of QW's have report-

ed large values of y' ' on the order of 1.0X10 m/V.
Unfortunately, these values cannot be used in the 1-pm
wavelength range, because neither the pump light nor the
signal light is resonant with the subband energy.
Khurgin discussed the g' ' of various asymmetric
Al„Ga, „As QW's theoretically in the case when the
photon energy of the beam is resonant with the interband
transition energy, and showed that y' ' was of the same
order of magnitude as for bulk GaAs. On the other
hand, Shimizu pointed out that the Wannier exciton
states, which were not considered in Khurgin's calcula-
tion, play a large role in second-order nonlinear optical
phenomena, and estimated a large g' ' of 8X10 esu
(3X10 m/V), even when QW width and electric field
were not optimized. As the oscillator strength of the
Wannier excitons depends on well width and electric
field, optimization of the we11 width and the electric field
will yield significant improvements in y' '.

In this paper, we calculate the g' ' of Al Ga& „As
QW's for signal light of wavelength 1.55 pm and pump-
ing light near 0.78-JMm wavelength. The transition be-
tween the Wannier exciton state and nonexcitonic excited
states is shown to be dominant among the various transi-
tions contributing to y' '. We optimize the electric field
for various QW widths and obtain large y' ' values for
small QW widths with relatively high applied electric
field. The values are shown to be sufficient for use in non-
linear optical devices such as parametric amplifiers in the
optical communication wavelength range.

II. THEORETICAL MODEL OF y'2' IN QW's

We consider the situation of parametric amplification
or difference-frequency generation in the wavelength
range near 1 pm. To use the pump beam efficiently, its
photon energy is selected near the resonance of the inter-
band transition but several meV below the resonance of
the Wannier exciton. If the QW is transparent for all
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waves (pumping wave co, signal wave co„and idler wave
co, ), overall permutation symmetry holds and the y' ' of
difference-frequency generation is the same as that of
sum-frequency generation. According to nonlinear-

response theories, the microscopic expression of
y',p(c0;co„co, ), where i, j, and k are the polarization direc-
tion of pumping wave, signal wave, and idler wave, is
given as

N, q (g~r, ~n 1 &(n 1~r, ~n2&(n2~rk ~g &

co%' „, „2~ (
— „) g+ 1)(co;—co„, g+'I )

Here X, is the number of wells per unit length in the
direction perpendicular to the QW plane, eo is the per-
mittivity in vacuum, and q is the charge of the electrons.
~g & is the ground state,

~
n 1 & and

~
n 2 & are excited states,

and 1/I'„„ is the relaxation time between states n and n'.
We assume I'„„=I'„„=I. (j,co, ) (k, co, ) means a
term with k exchanged for j and co, for co, Non.resonant
terms are ignored.

Equation (1) is derived under the assumption that the
population in the ground state pz

' equals unity, and that
in the excited states p'„„' equals zero. Even at room tem-
perature, this assumption is a good approximation in our
case, because the transition energy from the ground state

I

to the excited states, E„,which is of the same order as
the band-gap energy (~ 1.5 eV), is 50 tiines larger than
the room-temperature thermal energy kT (=30 meV) and

p'„„'/ps '=exp( —E«/kT) =2X10 =0,
which means p' '= l.

Combinations of
~
n 1 & and

~
n 2 & are classified into

three categories according to the relation with Wannier
excitonic states.

(a) The contribution of transitions between nonexcitonic
excited states In th. e first case examined, both ~n 1 & and
~n2& are nonexcitonic excited states. Equation (1) may
be written as

(2)

where ~hh(k~~) & is the lowest subband state of the heavy-
hole band for a wave vector k~~ in the plane of the QW,
while ~c, (k~~) & and ~c2(ki) & are the lowest and the
second-lowest subband states. A dipole transition be-
tween ~cz(k~~) & and Ihh(ki) & is possible when an electric
field is applied, because the symmetry of the wave func-
tion is broken. Khurgin calculated y' ' for this transi-
tion and the transition between hole subbands. A value
of y' '=6X10 ' m/V (d,3=1.2X10 " m/V) was es-
timated for a 50-A QW. This value is almost the same as
that of bulk GaAs. Using the resonance transition only
at the point k~~=0 and a large 75-meV detuning between

pump photon energy and interband energy to avoid
band-tail absorption results in this discouragingly small

I

value. As a result, we cannot decrease the denominator
[co—

co„i, „(k~~)+il ] of Eq. (2). Even if the band-tail ab-
sorption can be ignored in applications such as paramet-
ric amplification, the detuning cannot be decreased to less
than 15 meV because it is necessary to avoid the absorp-
tion of Wannier excitons whose binding energy is about
10 meV. This decrease of the detuning increases y' ' by a
factor of 5. However, this value is one order of magni-
tude smaller than the process which includes Wannier ex-
citon states, as shown later.

(b) The contribution of transitions between Wannier ex
citon states In the seco.nd case considered both ~n 1 & and

~
n 2 & are Wannier exciton states.

X,q' (g fr, fe,„,&(e,„,fr, fe,„,&(q,„,fr„ fg &

(co co,„i +i I )(co, —co,„2 +i—l )
(3)

The Wannier exciton states in a QW are written as the
linear combination of the product of a free-electron and a
hole state,

%',„=g A(k }y,(z, )u, (r, )yz(zI, )u, (ri, )e
kii

(4)

where u, (r, } and u„(rI, ) are the periodic parts of the
band-edge Bloch functions of the conduction band, pri-
marily composed of s-state functions, and of the valence

band, composed of p-state functions. y, (z, ) and y„(z~)
are con6ned-state envelope functions for the direction z,
perpendicular to the QW plane. A(ki) is the Fourier
transform of the in-plane envelope wave function of the
exciton, C&,„(ri), and is given as

A«~~)=f fd r(~e

We take
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1/2

(r )=
—(r li'A.,„

ex
ex

ex

Et/(A, e„)=—
z

+fP

2@k,~x
4KB Q lrl'+(z, —z„)'

where /tt is the reduced effective mass parallel to the
quantum-well layers. Similar to the Wannier exciton os-

The two-dimensional exciton radius A,,„can be deter-
mined by a variational method which maximizes the exci-
ton binding energy of

cillator strength formulation, " the matrix element
(g I r, I

'I/, „)in Eq. (3) can be written, using Eq. (4),

(gl; I+..) =y &(k ) . &., Ip, lu„&„„
k

II

ii im, Z, —E„

X & q, (z, ) I q'g (z/, ) & .

The lowest heavy-hole subband Ihhl ) of the exciton state
was chosen as Iq/, „,), to use the resonance effectively. In
this case, i should be selected in the x or y direction
parallel to the QW because (u, lp, lu„)„s is almost zero
near the I' point of a QW. The matrix element

(V,„,Ir l+,„z) is written using Eq. (4) as

& 4,„,lr Ie,„2 &
=

& e,„,Iz/,
—z, le,„2 &

= f f f u„&(rh)u„2(r/, )d r f f f u (|r, )u, z(r, )d r

X C.,1 rll 4.,2 rll 'rll

X I&qe|lzelqe2&&q/|lq/2& —
&qeglqe2&&q/llz/, lq/2&I. (9)

As the asymmetry of the envelope function occurs only in
the z direction, j is selected for z perpendicular to the
QW. The factor

Q i rI, „2 rg

in Eq. (9) is nonzero when u„(r/, ) and u„2(r/, ) are the
same p-state function, so the second-lowest heavy-hole
subband exciton may be selected for I+,„2). However,

(q//„lq//, 2) and (/p„lq/, 2) are less than 10 even when

an electric field is applied, because I/p/, &) and lq//, z) move
in the same direction. From actual calculations, it is
found that yI k/(c0;co„co;),„,„ is less than 1X10 ' m/V,
which is one order of magnitude smaller than that of bulk
GaAs.

(c) The contribution of transitions between a Wannier
exci ton state and nonexcitonic excited states. In the third
category studied, In 1) is a Wannier exciton state and

I
n 2) is a nonexcitonic excited state,

&,q' &glr;IP, &&I/

II

The nonexcitonic excited state IV,„(kii) ) is written as

q/ (kl ) =u (r )q7 (z )e u (r/ )q)/ (z/ )e

(10)

The in-plane wave-vector selection rule kii=k, ii= —
k/,

ii
can be included under the electric-dipole transition. Equation

(8) was used as the matrix element (g I r, I%',„)for i =x. The matrix element ( V,„Irj I %,„(kii) ) is given by

/, I

I

=f f d r, d r„g A*(kIi)e
'

' "" '"" q/„'(z„)u„"(r/, )q/,'(ze)u, '(r, )

II

k

X(z, —
z/, )q/, (z/, )u, (r/, )e "

' "'((),(z, )u, (r, )e (12)

(13)

(14)

Since the value is nonzero only when kll =kll, it is written as

&O,„lz, —z/, 1%'-(kii'&="'kii)I&q I"Iq & &q Iz/, Iq

The matrix element & +,„(kii)Irk Ig ) in Eq. (10) is the same as the dipole transition for a nonexcitonic electron-hole pair:

Ig &=
imo E, kii E„kii—
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(15)

Ignoring the k dependence of co g(k~[) E (ki) F- (k~~) lp (ki)& and lq&, (ki)& the summation in Eq. (10) may be per-
formed only on Eq. (14) and A (k~~) in Eq. (13). The result of these operations is rewritten as &g irk l%',„& and shown in
Eq. (8). The results, Eq. (10), can be simplified to

(, )
N, q' l&glr„lq'. .&I'f&g, lz, ly, &

—&q. Ized, lg„&]
(co c—o,„ig+iI )(co, . co—,„s+iI )

This simplification is justified by the fact that A(k~~) de-
creases rapidly for large k vector as shown by Eqs. (5)
and (6). It is considered that Eq. (4) in Ref. 2 is a result
modified from Eq. (15) under the assumption of I =0,
co„,„,=0, and co =2', =2', . As l &g l r, l 4,„& l

is propor-
tional to the oscillator strength, large values of y' ' are
expected. We can ignore the contribution of higher-order
heavy-hole Wannier exciton states or light-hole Wannier
exciton states, whose resonant peaks are several tens of
meV's larger than that of the lowest heavy-hole exciton.

From the above discussion, y' ' is dominated by the
third type of transition. In the next section, we calculate
p,'»(co;co„co; ),„b»d using Eq. (15).

III. CALCULATION

The envelope functions were calculated by the
transfer-matrix method' with parameters summarized in
Table I. The band discontinuity was divided 6:4 between
the conduction band and the valence band. The band
structure and calculated envelope functions are shown in
Fig. 1. For simplicity, the electric field at the barrier was
assumed to be 0, and the well was divided into 20 flat
steps. AlAs barriers were selected. The Al composition
of the well was selected to be 0.15, so the Wannier exci-
ton will resonate with a pumping photon which has about
twice the energy of 1.55-pm-wavelength signal light. As
shown in Fig. 1, the envelope functions of the conduction
and valence bands move to opposite sides.
&tp, lz, ly, &

—&y, lz„ly„& increases with the applied elec-
tric field and becomes as large as 20 A.

The transition-matrix element for the interband optical
transition l & u, lp lu„&„iil in Eq. (8} was given as
2M M&w, where M is the transition-matrix element' in

bulk materials,

g A(k~~) was approximated by 4,„(0}using the rela-

tionship of Eq. (6) in Ref. 10. fit' was assumed to be
equal to the linewidth of the Wannier exciton at room
temperature, 3.7 meV. '

To bring the pump photon near resonance with the ex-
citon, it was chosen to be 5 meV smaller than the exciton
peak energy after taking into account the quantum-
confined Stark effect redshift. In this situation, the de-
tuning between the pump energy and the exciton energy
is larger than the linewidth of the excitons, which means
that the QW is almost transparent to the pump wave-

length. The signal wavelength was fixed to 1.55 p,m.
In the case of multiple quantum wells (MQW's), N, is

given as

1

(W+L)
where 8' is the width of the wells and L is the width of
the barriers. N, increases with decreasing well width.
We fixed the barriers of the MQW's to 40 A. As shown
in Fig. 1, 40-A barriers were selected to prevent interac-
tion between QW's.

IV. RESULTS AND DISCUSSION

The electric-field dependence of the absolute value of
y' ' is shown in Fig. 2(a) for QW width less than 100 A,
and in Fig. 2(b) for widths more than 100 A. For QW
width greater than 50 A, an optimum electric field exists

E(,

2Pl 0

12 M„
(Es+ b, )

mo (E +26, /3)
(16) AIAs AI„Ga, „As AIAs

and M&w is a polarization factor, for which we selected —,
'

for the electron —heavy-hole transition. ' The factor of 2
represents the degeneracy due to spin.

I

-50
I

50 z (A.)

Luttinger-Kohn parametersEg 6 m,~r
(eV) (eV) (mo) y I

Well 1.59 0.34 0.079 6.34
Barrier 2.88 0.28 0.15 3.45

3.99
2.78

2.66
1.29

TABLE I. Parameters used in the calculation. Eg is thegr
band-gap energy at the I point, 6 is the spin-orbital splitting
energy, and m, is the effective mass of electrons.

FIG. 1. Band structure and calculated envelope functions for
the case of well width 100 A and electric field 5 X 10 V/m. E,
is the energy at the I point in the conduction band in the bulk
and E„ is that in the valence band. Broken lines show the ener-

gy of the lowest subband of electrons and holes. As the e8'ective

mass of holes is heavier than that of electrons, the subband en-

ergy of holes is smaller, and the movement of the envelope func-
tion from the center is larger than for electrons.
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for each well width. As the electric field increases, the di-
pole of the Wannier exciton increases due to the separa-
tion of the electron and hole overlap functions, while the
oscillator strength weakens due to the decrease of the
overlap integral of the electron and hole envelope func-
tions.

As the well width decreases, the optimum electric field
increases and the g' ' value at the optimum field point in-
creases. A large g' ' of more than 5 X 10 ' m/V is ob-
tained for a 70-A well width with an electric field of
1.5X10 V/m. The reason for the large value is the
strong resonance of the exciton energy and the pump
photon energy, the strong oscillator strength of Wannier
excitons, and the large dipole of the Wannier excitons. In
spite of the increase of N, with narrower QW width, the
increase of the peak y' ' value is rather modest, because
the effect of increasing N, is diminished by the decrease
of the g' ' of a single QW, caused by the decrease of the
%'annier exciton dipole. The electric Seld required for
the peak value increases rapidly because the shift of en-
velope functions of electrons and holes to opposite sides
becomes difIicult. For QW's less than 40 A wide, a larger

Electricfield (10 V/m)

FIG. 2. Electric-field dependence of the absolute value of y' '

in biased Al„oa, ,As QW's. The barriers are A1As and the
well is Alp ]gGao 85As. (a) Well width between 40 and 90 A. (b)
Well width between 100 and 150 A. The signal wavelength is
1.55 LMm and the pump energy is 5 meV smaller than the exciton
resonance energy. (a) is calculated in an electric field of less

than 5X10' V/m, (b) less than 1X10'V/m.

optimum y' ' may exist; however, it would require fields
greater than 5 X 10 V/m, which is impractical.

The difference between Shimizu's estimation (3 X 10
m/V at QW width of 120 A and E= 1 X107 V/m) and
our calculations is mainly due to the difference in the de-
tuning between the exciton resonant peak energy and the
pumping-light energy. Shimizu selected a 1-meV detun-
ing and assumed low-temperature conditions, while we
selected the detuning as 5 meV considering the usage at
room temperature.

A y' ' of more than 5X10 ' m/V is two orders of
magnitude larger than that of LiNb03, y' '=2.7X10
m/V (di3=13X10 esu), and one order of magnitude
larger than that of bulk GaAs, y' '=4.6X10 " m/V
(d» =2.2X10 esu).

The parametric signal gain is given as
1/2

(18)

where n(co, ) and n(co;) are the refractive indices at co,

and co;. The index of refraction of GaAs is about 3.0 at a
wavelength of 1.55 pm. If we assume a pump-light elec-
tric field E„of 1.5X10 V/m corresponding to 1X10
W/cm power density, which is smaller than the catas-
trophic optical damage level 5X10 W/cmi of a GaAs
semiconductor laser, ' we get a gain of more than 10
cm ' using a y' ' of 5 X 10 ' m/V. The parametric gain
can easily overcome the waveguide loss, which can be as
low as 0.05 cm ' at a wavelength of 1.55 JMm in GaAs
waveguides. ' Therefore the y' ' of a QW with an opti-
mized bias is large enough for nonlinear optical devices in
the optical communication wavelength range.

V. SUMMARY

The second-order optical nonlinear susceptibilities y'2'

of biased Al„Ga& „As quantum wells have been estirnat-
ed. The influence of Wannier excitonic states and nonex-
citonic excited states on y' ' was examined. It was shown
that the transitions between a Wannier excitonic state
and nonexcitonic excited states dominate the y' ' of
biased Al„Gai „As QW's. Values of y'2' were calculated
for various QW widths and electric fields. A large y' ' of
5X10 ' m/V was predicted for QW's with widths of
less than 70 A.. Such a large value is due to the strong
resonance between the exciton and the pumping light, the
strong oscillator strength of Wannier excitons, and the
large dipole of Wannier excitons. This value is very large
in the 1.55-pm wavelength range, making biased QW's
good materials for nonlinear optical devices for telecom-
munications.
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