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We analyze the eigenstates in one dimension of a semi-infinite ordered lattice in contact with a semi-

infinite disordered lattice described by an Anderson model. Specifically, we study the site wave functions
in the disordered region at distances N from the interface which are small compared to the localization
length g&. The wave functions at these length scales are relevant for conduction in the metallic regime of
a disordered lattice of finite size. From a perturbation expansion for weak disorder we obtain qualita-

tively different results for the random (N-dependent) rates of exponential growth of wave functions in

different domains corresponding to the energy band of an infinite nondisordered chain. Their mean

values are anomalous near the band center and near the band edges, while corresponding to a fixed cen-

tral limit ((0 ) between these limits, up to oscillatory terms. The study of the relative rms deviations of
the above rates shows that they are self-averaging in a range of finite N &&1, at any energy. At the inter-

mediate energies the weak disorder expansion is valid for any length scale, while near the band center
and near the band edges it ceases to converge beyond a characteristic length g, . The length g, defines the
border between scales N «g„where the wave functions are weakly perturbed Bloch amplitudes, and

scales N »g„where the weak disorder acts as a strong perturbation, leading to localized states with sta-

tionary positive Lyapunov exponents (go ). We find that g, scales with the disorder in the same way as

does go, while being less than an order of magnitude smaller than go. Finally, we relate our results for
wave-function growth rates at finite length scales to the resistance of a quasimetallic sample, using a sim-

ple Ansatz for the transmission coeScient. The resistance is found to be Ohmic, but anomalous, near the
band center and strongly non-Ohmic near the band edges.

I. INTRODUCTION

The residual resistance of a statically disordered one-
dimensional conductor has been successfully described by
means of the Landauer formula

%'„+,+%'„,+a„%'„=E%'„, n =1,2, . . . ,

with the free end boundary condition

(2)

(3)

where pL (gL ) denotes the dimensionless resistance (con-
ductance) of a sample of length L, ~rr ~

is the reflection
coefficient for an electron wave of energy E (Fermi ener-

gy) which is incident at one edge of the conductor, and
~tL ~

is the corresponding transmission coefflcient. Recal-
ling that in an infinite disordered system all states are lo-
calized, there exist two regimes of conduction depending
on the relative magnitudes of the sample length L and the
localization length go: for (macroscopic) lengths L »go
the eigenstates are localized within envelopes of width

2' in the interior of the sample, which causes it to be in-
sulating; for L « go the states appear to be delocalized on
the scale of the sample's size, so that one expects (quasi)
metallic conduction. This residual metallic conduction
has been assumed to be given by Ohm's law (pL ~L) in
the scaling theory of localization.

The localization of eigenstates in a long sample
(L »go) is well understood for Anderson's one-orbital
tight-binding lattice model with site-diagonal disorder.
The most detailed studies of localization have been per-
formed for a semi-in6nite system described by the
Schrodinger equation

Here E is the energy, and %„and e,„are the wave func-
tion and the atomic site energy at the nth site, respective-
ly. E and c„are expressed in units of a constant hopping
rate between nearest-neighbor sites. The atomic energies
are assumed to be mutually independent random vari-
ables with a common probability distribution. Starting
the iteration of (2) from value (3) and a fixed amplitude
4i at the edge site (which corresponds to choosing the
values of the wave function and its derivative at one point
in the case of a continuum) the localization length g is
defined from the rate of exponential growth of the wave
function (real part of a complex rate y ) at sites N situat-
ed at distances (N —I -N in units of the lattice constant)
much larger than g itself:

Rey =g '= lim N '1n~+z~ .
Q~ oo

(4)

While the localization rate (and the corresponding locali-
zation length g ') for a given realization of the disorder
is a random quantity, it follows from theorems of
Fiirstenberg and Oseledec that, for the large distances
of interest in Eq. (4), a law of large numbers applies,
which leads to a well-defined stationary (i.e., N
independent) central value for g '. In other words, the
asymptotic exponent Rey is a self-averaging quantity
and the study of the localization of eigenstates reduces in

0163-1829/94/50(8)/5295(10)/$06. 00 50 5295 1994 The American Physical Society



5296 J. HEINRICHS 50

N(E)=1 —m. 'Imy (6)

as may be seen, e.g. , by generalizing the Herbert-Jones-
Thouless ' formula for a tight-binding chain with free
end boundary conditions to slightly complex energies. '

The dependence of the averaged density of states on ener-

gy and disorder has also been discussed in several papers,
and anomalous behavior at the special energies above has
been demonstrated ' ' for weak disorder.

The analysis of the eigenstates of the disordered system
at the finite length scales involved in a metallic sample
I. « (0 is much more delicate. Although these states are
directly relevant to the understanding of conduction in
the quasimetallic regime, which has been studied recently
by Pichard, ' we are not aware of any detailed analytical
study of them. Turning to the semi-infinite tight-binding
system above, the wave functions of interest for metallic
conduction are those at distances N «go from the edge,
whose amplitudes may be characterized by an N-
dependent growth rate defined by the exponent

Rey~ =N

Now, since at the finite length scales considered a law of
large numbers (we assume N ))1) may not be valid, one
may need the full probability distribution for describing
the random exponent Reyz, rather than just its mean
value. Moreover, the mean value (as well as the higher
moments) will generally be nonstationary, i.e., it varies
with X and thus describes a more complicated exponen-
tial growth process.

The purpose of this paper is to present an analytical
study of statistical properties of wave functions in weakly
disordered one-dimensional systems described by the An-
derson model at short length scales (N). Part of our
motivation is the application of these results to electrical
transport in the metallic regime, i.e., for samples of
length l. =N «go. However, rather than studying the
actual probability distribution of the growth rate for
finite N (which indeed seems very difficult), we restrict
ourselves to the analysis of its mean value and its vari-
ance, which measures the fluctuations. The importance
of fluctuations in the metallic regime is emphasized by
Pichard's numerical results' showing that the Ohm's law
scaling for the mean resistance may be masked by giant
fluctuations. Pichard has derived Ohm's law for the

essence to the determination of its average over the disor-
der. Thus the inverse localization length go '=(Rey )
has been studied in many papers and review articles
which have appeared over the last two decades. ' ' In
particular, anomalous dependencies of the localization
length on the disorder have been found more recently for
energies in the neighborhood of the center and of the
edges of the energy band for an infinite nondisordered lat-
tice, for weak disorder.

Besides the exponential growth rate of the amplitude,
the phase of an asymptotic wave function of energy E,

Imp = lim X 'Imln+&,
&—+ oo

is also of interest since it determines the cumulative den-
sity of states,

mean metallic resistance analytically for weak disorder,
for energies far from the band edges and from the band
center of a pure system. In contrast to Pichard's work,
our analysis is carried out for the three characteristic
domains of the energy band of a nondisordered system:
the vicinity of the band center, the vicinity of the band
edges, and the intermediate domain between these two
limits. Here we are motivated by the existence of
anomalies of the localization length go near the band
center and band edges, ' for weak disorder. One ex-
pects of course that corresponding anomalies (most likely
of a quite different form) will occur in the wave functions
at finite length scales in these energy domains.

When studying the resistance (or the conductance) of a
disordered sample, one has to incorporate explicitly the
nondisordered leads which connect the sample to the
measuring apparatus. Thus the resistance of a one-
dimensional disordered system reQects the nature of the
eigenstates for a disordered linear chain connected at
both ends to semi-infinite nondisordered chains, rather
than those of a free disordered chain. In a first approxi-
mation (for a sufficiently long disordered system) the
relevant eigenstates may be taken to be those for a semi-
infinite disordered chain joined to a semi-infinite non-
disordered chain at its free end. We are thus led to study
eigenstates of an infinite linear chain described by the fol-
lowing Schrodinger equation:

Contact with the original Anderson model, where the
c„'s are defined by a rectangular distribution of width 8",
may be established by making the substitution
so= 8'/12.

In Sec. II, after discussing general aspects of the DOL
junction, we formulate our perturbation expansion of Eq.
(8) for weak disorder and obtain convenient recursion re-
lations for the corrections in the wave functions up to
fourth order, at finite length scales. The fourth-order
corrections in the wave functions determine the next to
leading correction in the exponential growth rates defined
by the real part of

y~=N '1n%~ . (10)

As we now briefly discuss, the study of the next to
leading correction in the averaged growth rates leads us
to introduce a characteristic length scale for the energy
domains in the vicinity of the band center and in the vi-
cinity of the band edges of a nondisordered system.
%'hile for intermediate energies the successive contribu-
tions in (10) are approximately stationary for finite N

+n+/++n —(+~n% =E Pn n 0, +1 +2, . . . '

c.„=0 for n =0, —1, —2. . . ,

where the atomic energies c„ take on nonzero values at
sites n =1,2, 3, . . . of the semi-infinite disordered chain,
while being zero at the sites n =0, —1, —2, . . . of the ad-
jacent infinite nondisordered chain. We choose c.„'s to be
identically disturbed independent Gaussian variables
with zero mean ((e„)=0) and a correlation
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(N »1), it turns out that near both the band center and
band edges they vary strongly with N. This variation is
more rapid the higher the order of the considered contri-
bution, so that there exists a length scale N=N()—:g)
beyond which the weak disorder expansion ceases to con-
verge. The detailed form of g) indicates that near the
band center and band edges the localization of eigenstates
takes place at scales N »g„where the disorder acts as a
large perturbation (which can no longer be treated per-
turbatively). In contrast, at intermediate energies the
growth rate of wave functions is defined perturbatively all

the way up to the asymptotic scales N »$0, where ex-
ponential localization is obtained for weak disorder.

The explicit results for the average growth rate
(Rey)v) and for the characteristic length g, , as well as
for the variance 5(Rey)«)=((Rey)« —

(ReyN )) ), are
presented in Sec. III, successively for energies corre-
sponding to the vicinity of the band center, the vicinity of
the band edges, and the domain intermediate between
these two limits in a nondisordered system. For com-
pleteness' sake we also present in Sec. III the detailed re-
sults for (Imy)«) and 6 (Imy)«), which describe the
statistics of the phase of 'kz. Some concluding remarks,
including further analysis of g„as well as a qualitative
discussion of resistance in the quasimetallic regime, are
presented in Sec. IV. For studying the resistance we use
a simple ansatz for the transmission coeScient of a
quasimetallic sample of length I.=X in terms of the aver-
age growth rate ( Rey)«) of wave-function amplitudes at
scales N «g, in the infinite DOL junction. This allows
us to predict length-scale dependencies for the mean
resistance in the various energy domains above, using the
Landauer formula (1).

II. WEAK DISORDER EXPANSION

A. Generalities

Our treatment will be restricted to the study of eigen-
state solutions of (8) which correspond to Bloch wave
propagation in the ordered region of the system. Thus in
the ordered region of the DOL junction the eigenstates of
interest have the usual form,

sponding to propagation in the nondisordered region, the
DOL system also has eigenstates which are localized in
the disordered region and exponentially decrease in the
ordered one, with energies outside the band (12). Such
states will occur in realizations of site energy levels that
correspond to sufBciently deep potential wells. Their ex-
istence is also suggested by the well-known shift of the
boundaries of the energy spectrum of a disordered chain
with free ends with respect to the band (12) for a pure
chain. '

The cumulative density of states associated with the
eigenstates which are propagating in the nondisordered
region is clearly given by [with dN(E) =«r 'dq]

N(E) =1—qln =m. 'arccos( E/2—) . (14)

On the other hand, the density of states in a long chain
with free ends is generally defined in terms of the phase
Imy as a result of the free end boundary conditions
[such as (3)] which determine the eigenvalue equation for
a free Anderson chain. In contrast, the phases Imy)«
[Eq. (10)] for the case of a DOL junction have no simple
interpretation beyond describing oscillations of the wave
function about exponentially growing (or decreasing) am-
plitudes. As such, they provide complementary informa-
tion about wave functions in the DOL junction, which
has prompted us to discuss the real and imaginary parts
of yN on the same footing in the following.

B. Expansion of wave functions

For weak disorder, it is convenient to look for solu-
tions in the disordered region of the form

iqn +if%„=e (15)

and to convert Eq. (8) into an exact two-point recursion
relation for local wave-function exponent increments:

g. =f. f. (—-
namely

e'«(e "+'—1)+e '«(e "—1)=—e„, n =1,2, ... .
(17)

For weak disorder we shall determine g„ in the form of a
perturbation expansion:

%„=e'q", n=0, —1, —2, . . . , gn=
p =1,2, 3, ...

g(p) g(p) —f (p) f (p) (18)

whose quasicontinuous spectrum is con6ned to the ener-
gy band

E =2cosq . (12)

The eigenstate amplitudes of energy E within the band
(12) for the DOL junction are then obtained by choosing

where g„"'(f„"')is a linear functional of the site energies
e„, g„' '(f„' ') is a quadratic functional of the e„, etc. By
inserting (18) into (17) and equating the two sides of the
equation order by order in the site energies, we obtain the
following exact recursion relations for successive order
contributions: g„(p), n =1,2, . . . , N, up to fourth order:

(13)

together with %0=1, as the starting amplitude for deter-
mining successively the amplitudes %„at the sites
n =2,3, . . . by iterating Eqs. (8) for a given realization of
the disorder. Choice (13) is imposed by the form of the
solution (11)—(12}for the site n =0.

In general we expect that, besides the states corre-

g„"+,—ag„'"=is„b,

g (2) gg (2)

g (3) gg (3)

g (4) gg (4)

where

2lq (19a)

(19b)

(19c)

(19d}
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~ 2

I = +s b g'" ——(1+a)g"'
n 2 n n n

ic„b Q+e a g"' —iE b (a+ ')—g"' +E„b g' ' i—a(a+1)g'"g' ' ——(1+3a+2a )g"'

(20)

(21)

ia 2c.4 Fn ba c.„+ba e g'" — (3a+1)g"' +a E g' ' ib—a(2a+1)e g"'g' ' — (1+6a+6a )g"'
4 n n n n n 6

~ 2 2 0

+has g' '+ —'+a+ + g'" ——(2a +3a+1)g"' g' ' ia—(a+1)g"'g' ' ——(a+1)g„' '
n n 2 2 12a " 2 n n n n (22)

The right-hand sides [(20)—(22)] of Eqs. (19b)—(19d) are
obtained after replacing the quantities g'+'»q &p —1

occurring in the equation for the pth-order perturbation,
in terms of g„'~', using the equation for the qth-order per-
turbation. Some further algebra is involved in grouping
various terms in the form displayed, e.g., in (21}and (22).

We are interested in the solution of Eqs. (19a)—(19d)
for energies within the energy band (12). Since these
solutions are not asymptotically stationary in general, we
shall study the complex site-dependent exponent (10)
describing the form of the wave function
[0')v-exp(y)vN)]N steps away from the edge (n =1),
where the iteration of (19a}—(19d} is started for a given
realization of site energies. From (10) and (15), we obtain

1fN . 1' N

y =)viq+ =iq+ —g g„,
n=1

f) =g1=0 (24)

which follow from the expressions (11) (for n =0) and
(13).

On the other hand, by iterating Eqs. (19a)—(19d), start-
ing from value (24},we obtain the exact solutions

n —1

g(1) ib y s an —m —1

m=1
(24a)

where we expressed fz in terms of the increments g„by
iterating (16), starting from the values

&(Rey)v) =
& (ReyN —

& Rey)v &
)'

&

=N g (&Img„Img
n, m =1

—&Img„& &lmg &), (25a)

which measure the fiuctuations about the mean values.

III. DETAILED RESULTS

The pth-order contribution in the perturbation series
(18) is a linear functional of products of p-site energies.
Since, for the Gaussian randomness (9), averages of prod-
ucts of odd numbers of site energies vanish, we require
the g„ to fourth order [Eqs. (24a) —(24d)] for obtaining the
first two leading contributions to yN, i.e.,

&}„&—= q+&}"„"&+&y"'&+
N

=iq+ —y (&g„'"&+&g„' '&)+0(s,') .
n=1

(26)

As discussed at the end of Sec. I, for energies close to the
band center and the band edges, we define a characteris-
tic length g, as the length N =No=—g, at which the per-
turbation series (26) for & Rey)v & ceases to converge, i.e.,

b, (lmy )=&(Imp —&Imp &) &

N
=N g ( & Reg„Reg &

—
& Reg„& & Regm & )

n, m =1

(25b)

n —
1

g(2) —g I' a n —m —1 (24b)
~&Reyg'&~=~&ReyP'&~ .

1 1

(27)

n —1

g(3) —y g an —m —1

m=l
n 1

g(4) y A n —m —1 n =2, 3,4, . . . ,

(24c)

(24d)

Averages of products of four Gaussian site energies in
& g„' '

& factorize in the form

EEE Jk E&i

As discussed in Sec. I, we expect the complex exponential
rate yN at finite distances to be a strongly fluctuating
quantity. Therefore we can only study the behavior of
some typical values of ReyN and Imy)v (unless it would
be possible to find the full probability distribution), such
as the mean, the root-mean-squared values, etc. In Sec.
III we analyze in detail the mean values &Re@)v & and
& Imyz & [given by the mean of (23)] and the variances

(28a)

s g(P)
&
—

& s g(P)g(q)
&
—0 (28b)

The averaging of g„' ', using (9), (20), (24a), and (24b)

where we have used Eq. (9). Furthermore, in averaging
I and A in (24b) and (24d), using (20) and (22), it is
useful to note that since g„' ' depends on c, for
1 m n —1 but not on c for m ~n, one has
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yields the simple closed form expression (g„' ')
=i2 's()a(a —1) (a" ' —1),whose substitution in (26)
leads to the exact result

2

(y"'& = ——'
(a —1)

m=1 n=1 n=1

am y an '(1—a (" ")1

2
m=1 n=l

N N m

A)v= g a g (n —1)a "+ g (n —m)a , (31)

1 1 —a 2(1—a )X 1+—
N 1 —a2 1 —a

(29) n=1
an+)(a 2m—

a
—2n} (32}

2
Ep

b(Reyl)/}= 2 [( A//+BN)+c c ]., .
4N

2
Gp

b(lmy~) = [( Al)/
—B/)/)+c. c.],

4 2

where

(30a)

(30b)

In a similar way, the evaluation of (25a) and (25b) to
order so, using (9) and (24a), yields exactly

For our purposes it is not particularly useful to perform
the remaining summations in (31) and (32) at this stage.

On the other hand, the averaging of (22) after inserting
(24a) —(24c) is straightforward using (9) and (28a) and
(28b). For the clarity of later discussions of (g„(4)), it is
convenient to present the explicit expression of (A ) in
terms of simple partial geometric sums labeled
Sk(/'), p =1,2, 3, in the following. After a fair amount of
algebra, we obtain

m+1
+ (3a+1)a2™S''+

m —1 2S'"+1+a w aS'' +3 7+ +a + 1 a' "S''
m 2 ~ k 2 &g 2 12 m

m —l m —1

+—'(2a +3a+1)a ' " S"'S' '+2S' '+4a y a S' '+a (a+1) y a "S' '(S' '+2S/, ')
k=1 k=1

m —1 m —1 m —1 j—1

+—'(a+1)a ' —'S' '+(5+a '} g Sk '+a g a "Sk"+a '(1+a) g a ~ g a "Sk '

k=1 k=1 j=l k=1

m —1 j—1

+a (1+a) g a' S'"S' '+2S'"+4a g a "S'2'
J J J k

j=l k=1

j—1

+a
—

2(a + 1 ) y a kS(2)(S(2)+2S(2)}
k=1

m —1

+a 4(2+5a+3a ) g a Sk
'

k=1

(, )2 (1+a)
m 4 4

m —1

+(1+a) g a"
k=1

m —1
'2

m —1

a kS(2) +4
k=) k=)

1 1 2S"'S"~+ Sk"'+-
2a2 m a2 a

k —1
k+/S(2)2

1

1=1

k —1 —jS(2)
j=l (33)

where

1
—P(k —1)

S„'&'= ', q=1,2, 3.
1 —a

(34}

Although (A ) could be given in a fully closed form by
performing the various site summations in (33), which
would further enable one to obtain the general forms of
(g„' ') and (y&), the resulting expressions are far too
complicated for transparent analysis in various domains
of the energy band (12}. In contrast, {33)is well suited for
this purpose. Equations (29}—{33)considerably simplify
for energies in the vicinity of the band center and in the
vicinity of the edges of the band (12), respectively. In ad-

I

dition, at these energies the dependencies of (Rey/)/) and

(ImyN) on the disorder parameter andlor on N are
quite anomalous, as compared to the results for the inter-
mediate domain of (12},i.e., energies sufficiently far from
both the band center and the band edges. For these
reasons we present separate discussions below for the
neighborhood of the band center, the neighborhood of
the band edges, and, finally, for intermediate energies be-
tween these two limits.

Let us emphasize that the anomalies of the average ex-
ponential growth rates near the band center and band
edges are quite distinct from the so-called Kappus-
Wegner anomalies in the inverse localization length go
at these energies. The Kappus-%'egner anomalies, which
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have been extensively studied, ' arise from the break-
down of a perturbative expansion for weak disorder,
within the stationarity domain (N~ oo ). In the present
treatment of exponential rates at finite length scales N,
the perturbation expansion is well behaved for any ener-

gy, yet the forms of (Rey~ ) and ( Imyz ) and the vari-
ances 6(Reyz) and b, (lmy'z) are found to differ drasti-
cally for the three energy domains above. Note, however,
that in addition to the smallness of the correlation pa-
rarneter Ep, the validity of our weak-disorder expansion is
restricted to short length scales, N «g„near the band
center and band edges.

and, from (26),

+ [17n —31n + 12
8

+n (5n —7)( —1)"]],
4

E,p(y"') = ——N —1 —-'( —1)"
2

+ 17N2 7N 2

4 3 3

~ 4
1 E,p

(g„' ') = — {(n —1)[1+—,'( —1)"]

(3g)

A. The vicinity of the band center

Near the center of the energy band (12), we expand the
parameter a in (19a) as

1)N
2

+0 —+O(E )
2

N
(39)

a = —1+z, (35a)

where, to second order in E,

E2 2

z=x+iy, y = —E, x =
2 2

(35b)

2 2

(Rey' ') =—1 E—2 EO 2 N
N 4 3

3N
4 12

+ '(N ——'}(——1) +0
4

By inserting (35a) and (35b) into (29) and expanding to or-
der E, we obtain for N ))1,

Equations (39) and (36a) enable us to determine the
characteristic length g„defined by (27). At the band
center E =0, we obtain

gi—-—2+1+0(so) .1
(40)

Ep

Finally, we consider the fluctuations of the real and

imaginary parts of the complex rate yN near the band
center. For simplicity we restrict ourselves to the lowest
order in so. Rather than starting from Eqs. (30)—(32) for
the variances at an arbitrary energy (12), it is simpler to
expand g„"' [Eq. (24a}] itself for E~O, and to substitute
the result in (25a) and (25b). Using Eq. (9) we thus ob-
tain, to order E,

and

a+2

(Imy' ') = — 1 ——'( —1)N 8

(36a)

(36b)

b,(Re@~)=
E E N m

g (
—1)~ g ( —1)"U

n=1

N

+ g (
—1)"U„

n =m+1

(41a)

The precise sense in which (36a} is viewed as being anom-
alous (Sec. I) is discussed in Sec. III C.

Next we consider the fourth-order contribution in (26)
near the band center, for which we shall restrict ourselves
to the lowest (linear) order in E~0. It is obtained by ex-
panding (24d), and (33) and (34) to linear order in E, us-
ing (35a) and (35b) and performing various summations
over lattice sites. Note that for E =0 only the first three
terms in (33) are nonzero, while to order E several terms
in this expression can be ignored since, by inspection,
they are seen to be of order E . On the other hand, we
recall that in all explicit calculations of this section the
site summations reduce to either simple geometric pro-
gressions or sums of integer powers of consecutive in-
tegers, which are found in standard mathematical tables.

We obtain successively

( A ) =i co f m —
—,
' —

—,
'

( —1)

+ [17m —10m +1—(3m +1)(—1) ]],8

(37)

and

N m2

6(lmy~)=, g (
—1) g ( —1)"V

& m=1 n=1

where

+ g (
—1) V~

n =m+1

(41b)

and

U „= g (m —k —
—,')(n —k —

—,
' },

k=1

n —1 E2 E2
V „= g 1 — +(m —k —4)(m —k —1)

2

E2
+(n —k —4)(n —k —1)

2
(43)

Performing the site summations in (41a) and (41b), we ob-
tain, after somewhat tedious algebra,
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b, (Rey }= N ——'+0
12

(44a)

T

g2
b(imy )=e '0 —+ N[1+( —1)"]—-', [5—{—1)"]+o (44b)

Since 5(ReyN ) vanishes to order eo at the band center,
we conclude that at this energy the ensemble of random
growth rates ReyN' is well described by the mean value
(36a) for finite N, at least if the third and higher moments
are small. Away from the band center 6(Reyz) varies
less rapidly with N than (ReyN{') [Eq. (36a)], and so
ReyN' may be regarded as self-averaging for large N,
within the domain of validity of the weak-disorder expan-
sion.

B. The vicinity of the band edges
and

(A )=is ( 'm—+m ——"m +—"m ——")
m 0 3 4

n —1

(g„"'&=is', y (A )
m=1

0
8~ + 59n 109~

(47)

(48)

In terms of the deviation from the value at the band
edges we have

~4
(y' ') = — ( 'N +—'N4—"N—+ "—N— —

3 60 20 24 6

a =1+z, (45a) (49)

where

z=iy — +O(y ), y = —2arccos
2

' 2
(45b)

By substituting this expression into (29), we obtain, to or-
der p

2 2

(Rey ) = —— ——+—'so N N
N

' 1/3

760

13 +O(e2/3 ) (50)

We note that, like (yg'}, (yN') is real at the band
edges. Again we may use (49) and (46a) to obtain the
characteristic length g„at the band edges, using
definition (27). This yields

y 7N 13N
6 10 4

2

(Imy' ') = — N(N —1}y—+O(y ) .

(46a}

(46b)

whose nontrivial —,'-power dependence on eo is the same as
that obtained for go at the band edges by Derrida and

Gardner, from a completely different approach. '

Turning to the analysis of the mean-squared fiuctua-
tions of yz, it is again convenient to expand (24a) to or-
der y from the beginning (which requires going to order
z in the z expansion). We thus obtain, for energies E
close to the band edges,

n —1

g„'"=hi g sk 1+—— +(n —k —1)(iy —yz)
2 8

The remarkable (or surprising) features of the average ex-
ponential rate (46a) are its negative sign for large N and
its strong variation with N. This implies, in particular,
that at short distances the wave functions in the disor-
dered region of the DOL junction are weakly localized
near the interface site (rather than in the interior of this
region, as in the asymptotic, strong-localization limit
N~ oo }.

Next we consider the fourth-order contribution (yIv'}
to the average rate. For simplicity, we shall give the final
expression at the band edges, as the latter is typical of the
behavior at neighboring energies as well. At the band
edges Eqs. (45a} and {45b) yield Sz~'=k —1, and all other
powers of a in (33}reduce to unity. After summing the
remaining series in (33) as indicated above, and collecting
terms, we obtain successively from (33), {24d), and (26)

2

(n —k —1—)(n —k —2 }
2

(51)

N m N

b,(ReyN}= g g S „+ g S„
1V

(52a)

yap Nm N

4(lmy„)=, g g U „+ g U„m~n n~m

where

whose substitution in (25a) and (25b) yields the variances
to order c0 in the form
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n —1 2
3'S „= g 1 — —(m —k)(m —k —1)

4 2

2'
(n——k)( n —k —1) 3'

2
(53)

6(Rey~)= [2(1—a)+a —a +']
4N (1—a)'

+0
N2

(56a)

The explicit evaluation of (52a) and (52b), using (42) and
(53), is straightforward, though somewhat tedious. We
obtain

b, (lmy~) =—
2

[2( 1 a) a
—x+ N+ i

]4N (1—a)'

2 3

b, (Rey ) =—N —'+—— +N 2N —+—y
&o, 1 N 2 1 2

3 ' 4 5 2

2

+0
N2

(56b)

1+0
X

2

5(lmy ) = "N' N— N—+1—+0 — y
Ep 1

24 5

(54a)

(54b)

Thus we find that b,(Rey~) at the band edges (y =0)
grows less rapidly with N than the mean value (Rey~z')
[Eq. (46a)], while b, (lmys, ) grows with the same (cube)
power of N as (ImyN') [Eq. (46b}]. In this sense both
Rey'N' and Imyz' are self-averaging quantities at the
band edges.

C. Intermediate energies

For energies sufficiently far from both the band edges
and the band center (i.e., energies for which ~a

—
1~ is

not small) Eq. (29) reduces, for N &) 1, to the real expres-
sion

2 2
~2] &o a 1 &o 1

(7'~ ) +0
2 (a —1)2 N 2 4 E~—(55)

This is the familiar Thouless result for the inverse locali-
zation length for weak disorder. It shows, somewhat
surprisingly, that at intermediate energies the growth
rate of the wave function in the metallic regime,
1 «N «(0, has already reached its asymptotic value at
large distances corresponding to the insulating regime
(i.e., for N )&go).

Similarly, we obtain the asymptotic forms of variances
(30a} and (30b} at these energies by retaining only the
leading terms proportional to N in (31) and (32). The re-
sults are Az= —Na(1 —a) [a (1—a) ' —a ] and

B~=Na (1—a},from which we obtain

The stationarity of the mean value of y~z~' [Eq. (55}] and
the 1/N decay of the variances imply that the distribu-
tions of the real and imaginary parts of g„' ' in Eq. (23) are
asymptotically stationary (i.e., independent of n), with
mean values given by (55). This follows from the familiar
discussion of the central limit theorem. ' This shows
that the mean value (55) is actually a central limit for the
exponential growth rate of wave functions at intermedi-
ate energies, for finite distances N)&1. It is then quite
natural to refer to strong departures from the simple
behavior described by (55), (56a}, and (56b), which are
found near the center and near the edges of the energy
band, as anomalies. As shown by the sets of equations
(36a} and (36b) and (44a) and (44b), on the one hand, and
(46a) and (46b) and (54a) and (54b), on the other, the
anomalies consist basically of nonstationary variations of
the averages and of the variances, particularly in the vi-

cinity of the band edges. Some more specific anomalies
include, e.g. the factor of two differences between Eq.
(36a} for E =0 and Eq. (55) when extrapolated to F. =0,
as well as the negative sign of (ReyIv') near the band
edges noted above.

We now analyze the next higher correction to the
mean value of y~. The dominant contribution to (g„' )
for large n at intermediate energies comes from terms
proportional to n in (24d). There are two types of terms
in (33} which lead to contributions proportional to n in
(24d): the first type are terms proportional to m —1 in
(33), which arise from various summations in which the
summands are independent of the summation index (an
example of such terms are the terms proportional to
gk:i'Sz '};the second type are terms proportional to a
with m-independent coefficients [e.g. , the term propor-
tional to a S'" in (33)]. By including these two types of
dominant contributions, we obtain, after some reduc-
tions,

ic.o4a

(A ) = (m —1)a ——'(1+3a ')+ (a +Sa +5a '+1)1

(1—a ')' 2

+——a —5+ (a +Sa+5+a )
1 Q —1

4 1 —a
(57)

where the first square bracket gives the contribution of the terms of the first type, and the second square bracket
represents the contribution of the terms of the second type. Next we combine (57), (24d), and (26) to obtain the final re-
sult:
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(y(4) )—
4 N+2 N+1

(a —1} a —1
I

——', (1+3a ')+ (a +5a +5a '+1)
1 —a

T

+——a —5+ (a +Sa+5+a ) +01 Q 1

4 1 —a
(58)

which shows that to this order (y~) is stationary (i.e.,
independent of N) up to oscillatory terms. This supports
the approximate validity of the central limit property of
the exponential rate yz beyond lowest order in our
weak-disorder expansion. The stationarity of (55) and
(58) for finite N »1 shows that this expansion is stable
for large N, in particular for N »g0. The localization of
eigenstates at intermediate energies is thus a truly pertur-
bative effect for weak disorder: the disorder which causes
the localization acts as a small perturbation at any length
scale. pN- IrNI —1 —

Itiv I
(61)

qualitative differences between the form of (ReyN) at
short and long scales (inverse localization length} and, in
particular, their sign difference near the band edges [see
(46a)].

We now wish to relate the average exponential growth
rates of the wave functions in Sec. III to the resistance of
a metallic sample of length L =N, using the Landauer
formula (1). In the metallic regime the transmission
coefficient is close to unity, so that

IV. CONCLUDING REMARKS

A more precise interpretation of the length scale g„
defined by (27), may be obtained by comparing it with the
localization lengths derived by Derrida and Gardner' for
energies near the center and edges of the energy band
(12). Such a comparison is justified in the present case,
since the localization length in a long disordered chain is
independent of the boundary conditions at the edges
[such as Eq. (24) for the DOL junction, or Eq. (3) for an
open chain]. This is demonstrated, e.g. by its definition
in terms of the trace of a product of a large number of
transfer matrices. ' ' From the Lyapunov exponents
given in Ref. 10, we obtain

8.77
0

so
for E=O, (59}

for E =+2 . (60)

By comparing, respectively, Eqs. (40) and (59) and (50)
and (60), one sees that in both cases g, scales with the dis-
order parameter (e0) in the same way as does the localiza-
tion length. It follows that, at the scale g„ the (identical)
successive order contributions in the average growth
rates of the wave functions also scale as g0 with disorder.
This indicates that g, can be viewed as a characteristic
length scale at which strong (nonperturbative) localiza-
tion efFects set in for weak disorder near the band center
and band edges. The length gi which separates the small
perturbation (weak localization) and large perturbation
(strong localization) domains is between two and nine
times smaller than $0.

In the strong-localization region, N »g'i, the effects of
the disorder are nonperturbative near the band center
and band edges. %'hile this is obvious in the present
work, it is also demonstrated by the studies of the locali-
zation length for weak disorder. ' Indeed, at these en-
ergies the inverse localization length cannot be expressed
as a power series expansion in the strength of the disor-
der, for weak disorder. ' This may be the origin of the

Here we argue that the averaged transmission coefficient
for a disordered sample of length n may be represented
by the physically plausible expression

& It„I')= exp( —2I(Rey„) IN), (62)

which interpolates between the exact expression for the
transmission coefficient of a long sample in terms of the
localization length $0,

ItN „I = exp( —2N/(0), (63)

—= lim —( lnI+NI) = lim —( lnI'IiivI)
1 o . 1

g0 ~ mN x ~N (64)

[where the last equality follows from the independence of
the localization length of the boundary conditions at the
edges of the sample where the iterations of Eqs. (2) and
(8) are started], and the limiting value ItN 0I =1 for
N~O. Equation (62) assumes that the rate of exponen-
tial decay of the transmission coefficient with sample size
N is determined by the exponential growth rate of wave
functions at scale N in a DOL junction. The approximate
validity of (62} for short samples is further supported by
the fact that at intermediate energies it leads to the same
expression for the mean resistance [Eq. (69) below] as the
one derived by Pichard' from a 6rst-principles treatment
for weak disorder. Here our aim is merely to analyze
the mean resistance in terms of the mean growth rates,

I (ReyN ) I, of the wave functions and to discuss the resis-
tance in the domains of anomalous behavior of these
wave functions (i.e., near the band center and band
edges). We note that it has not been possible to discuss
the resistance in the latter energy domains by means of a
first-principles treatment for the transmission coefficient
of tight-binding systems. ' This is due to the formal
divergencies of transfer matrices in Ishii's formalism at
the band edges, as well as at higher orders in a weak-
disorder expansion at the band center.

For lengths N «g„where the perturbation results for
(Rey&) discussed in Sec. III are valid in the domains
E~O and E~+2, we have
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2~(«q„) ~N «1, (65) coincides with the inverse localization length. %e then
obtain, from (61) and (62),

and since g, & go these length scales are comprised within
the metallic domain. On the other hand, for intermediate
energies, (65) is nothing but the definition of the metallic
regime since the growth rate for finite N( »1) [Eq. (55)]

(p„&=21(«y„&IN,

and by inserting successively (36a), (46a) and (55), we
have (for N » 1)

(p~) = 1 E— +—1 —
( —1)z N N N

N 3 8

7
12

E~O, (67)

(p ) =soN ——+— '(N ——1)— (N——N+1), E +2,N 1 8 4 + z

3 2 2

21'
(ptv ) = for intermediate energies, (69)

to lowest order in the disorder. Here Eq. (69) coincides
with Pichard's result for the Ohmic resistance for weak
disorder at intermediate energies. Equation (67) displays
Ohmic resistance at the band center with an enhanced
classical resistivity, ' N '(pN ) -4/gc [compare Eq.
(59)]. Finally, Eq. (68) demonstrates a strongly non-
Ohmic behavior for the resistance near the band edges.
We emphasize that Eqs. (67)-(69) are valid for lengths
N «g, which are significantly smaller than the localiza-
tion length, which is generally regarded as the upper lim-
it for metallic behavior.

The resistance of a disordered sample is a random

quantity for which the average discussed above may de-
scribe only typical behavior. The study of resistance fluc-
tuations at any energy, starting from the Landauer for-
mula, would require a detailed derivation of the transmis-
sion (or reflection) coeflicient similar to that discussed by
Pichard' for intermediate energies, for weak disorder.
We recall that in the scaling theory of Anderson et al. ,

'

which treated a one-dimensional disordered system as a
sequence of random barriers, the relative rms fluctuation
of the resistance in the metallic regime is independent of
sample length; i.e., the resistance is marginally non-self-
averaging in this case.
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