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We study the two-dimensional electron gas in the presence of a random perpendicular magnetic field.
We examine, in particular, the limit in which the correlation length of the random field is large com-
pared to the typical magnetic length. In this limit, a semiclassical approach can be used to understand a
large part of the energy spectrum. To investigate localization, we introduce a simplified model, in which
electrons propagate coherently on a random network derived from the classical trajectories. The same
network model (with different parameters) also represents electron motion in a uniform magnetic field
and a random scalar potential, in a spin-degenerate Landau level. Requiring that the global phase dia-
gram of our model be consistent with Khmelnitskii’s scaling flow for the quantum Hall effect, we argue
that all electron states in a random magnetic field are localized in the semiclassical limit. We present the
results of numerical simulations of the model in support of this conclusion.

1. INTRODUCTION

There has been much recent interest in the quantum
mechanics of a charged particle in a random vector po-
tential.! ~® This problem arises both within gauge theories
of doped Mott insulators,”® and in the Chern-Simons
mean-field theory of a half-filled Landau level.>'° It also
deserves attention as a counterpart to the much-studied
case of motion in a random scalar potential. In this pa-
per we consider the two-dimensional electron gas in the
presence of a random perpendicular magnetic field, tak-
ing a semiclassical limit in which the spatial variation of
the random magnetic field is smooth compared to the
typical magnetic length. We develop a simplified descrip-
tion of the system in terms of a generalization of the ran-
dom network model, introduced previously by one of us'!
in the context of the integer quantum Hall effect.

The generalized network model also serves, with
different parameters, as a representation of a spin-
degenerate Landau level, and by studying its global phase
diagram we gain insight into both problems. Most im-
portantly, we argue that the Khmelnitskii-Pruisken scal-
ing theory'>!? for the quantum Hall effect carries the im-
plication that all states in a smoothly varying random
magnetic field should be localized. This conclusion is
supported by the results of extensive numerical simula-
tions of our generalized network model. In addition,
these simulations provide information on the delocaliza-
tion transition in spin-degenerate Landau levels, which
leads us to propose an additional interpretation for recent
experiments'*~!® that measure the associated critical ex-
ponents.

Our treatment of the semiclassical limit, reached when
the correlation length for the magnetic field is large, is
complementary to earlier work, which has been con-
cerned with field distributions having a short or vanish-
ing correlation length. In particular, we use the term
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semiclassical in a different sense from Altshuler and
Ioffe,!® and Khveshchenko and Meshkov,?’ who intro-
duced an eikonal approximation appropriate for fast par-
ticles.

While some quantities of interest, most notably the
density of states in energy, are clearly model dependent,
it is reasonable to expect a generic answer to the ques-
tion: are eigenstates localized in a random magnetic
field? Within the established framework of localization
theory, the natural assumption is that, in two dimensions,
they are, no matter how large the conductivity at short
distances. Specifically, the system should belong to the
unitary universality class, since time-reversal symmetry is
broken and the average Hall conductivity is zero. Never-
theless, conflicting conclusions have been reached from
numerical simulations of tight-binding models with a ran-
dom vector potential introduced via the phases of hop-
ping matrix elements. Some authors>!® have suggested
that there exists a range of energies for which the states
are not exponentially localized, and it has been conjec-
tures>® that long-range correlations in random gauge
fields might result in an additional universality class. We
find that this is not the case, although the arguments that
place our model in the unitary class are less straightfor-
ward than one might expect, and involve a detailed dis-
cussion of boundary conditions.

The remainder of this paper is arranged as follows. In
Sec. 11, we develop the adiabatic description of electron
motion in the semiclassical limit. This provides us with a
framework in which to calculate the density of states over
a large range of energies. In Sec. III, we discuss both
classical and quantum scattering of low-energy electrons
near saddle points of the magnetic field. This leads us to
a random network model, in which the links of the net-
work represent electron trajectories associated with con-
tours of zero magnetic field, and the nodes represent the
saddle points. We proceed, in Sec. IV, to discuss the
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phase diagram of this network model, using scaling ideas
and numerical simulations. Our results are summarized
in Sec. V. A brief account of our main conclusions has
been presented elsewhere.?!

II. THE SEMICLASSICAL LIMIT

A. An adiabatic picture

In this section, we review the adiabatic theory for the
classical and quantum motion of a charged particle in a
magnetic field that varies smoothly in space.???* The ap-
proach has close analogs with the application to the
quantum Hall effect of semiclassical theory for motion in
a scalar random potential under a uniform magnetic
field.2*~2® Denoting the correlation length of the random
magnetic field by A and the variance by (B(r)*)=B3,
our semiclassical limit is defined as the regime in which
the cyclotron radius in a field By, [,=(#/eB,)!’?, satisfies
ly<<A. Under these conditions, one can separate the
motion into two components: a rapid cyclotron orbit and
slow drift of the guiding center. We develop a semiclassi-
cal picture for the eigenstates in which wave functions
are concentrated near a given contour of the magnetic
field. This allows us to discuss the density of states over a
large range of energies. We defer to Sec. III a treatment
of the scattering at saddle points of the field strength,
which is necessary for understanding localization in this
system.

Consider first the classical motion in a constant field
gradient. As described by Miiller,?’ there are two types
of classical trajectories. These are illustrated in Fig. 1.
Where the magnetic field is large, the particle follows cy-
clotron orbits whose guiding center drifts along contours
of constant field. Where the magnetic field is small, there
exist snakelike trajectories which cross the B =0 line.
These trajectories have a mean velocity in the opposite
direction to the cyclotron drift. In the context of localiza-
tion in a random field distributed symmetrically about
zero, it is the snake trajectories that are of greatest in-
terest, because extended states, if any exist, will be associ-
ated with the percolation of the B =0 contour. Writing
the magnetic field (0,0, B, ) as

B, (x,y)=—Byby /A , (1)

FIG. 1. Classical trajectories in a magnetic-field gradient.
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the equation of motion, m¥=ei XB can be cast in the
form

lax__  o—b |2
o dt 0T |0 |
)
dldy _ .25 172
v dt [sin“6—V(y)]'/*,
with
b ? b 2
=92 1) L \x

Viy) pll iy iy ~+cosf | ,

where v, is the speed of the particle and 6 is the angle at
which the trajectory cuts the B =0 contour (see Fig. 1 for
b>0). The ratio of the typical cyclotron radius to the
correlation length, e=muv,/eByA, is a small parameter
for a smooth field configuration.

Translational symmetry ensures that cos6 is a constant
of the longitudinal motion.>® The transverse motion can
be interpreted as oscillation in a potential well, V(y),
whose size and shape depend on the field gradient and the
longitudinal velocity of the particle.

There are strong similarities between the classical
motion and the quantum dynamics in the semiclassical
limit in which field variations are smooth, and the typical
magnetic length [, is small compared with A. In the Lan-
dau gauge B,=—09 A4, /3y, the wave function can be fac-
torized as ¥(x,y)=e’**¢(y), where the wave vector k is
the conserved quantity analogous to —vycos@ in the clas-
sical description above. The Schridinger equation for
the transverse motion represented by ¢(y) is

| E,k)
=

1

2

kA=

2
_A2L+
2A2

dy?
where A=(#/e|VB|)'/? and E, =#/m A? are the natural
length and energy scales of the problem. The energy
spectrum E, (k)/E , is shown in Fig. 2.

For large and positive kA, the particle is laterally
confined to either side of a double-well potential by a bar-
rier of height L(kA)’E, centered on the B =0 line. The

¢ ¢, (3

E/E,

kA

FIG. 2. Dispersion relation for particle in a constant
magnetic-field gradient. Dotted line indicates an energy at
which a pair of snake states is found.
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eigenstates below this barrier are “local Landau levels”
and correspond to classical cyclotron drift on a finite-B
contour at y=typ, =+(2kA*)!2 These states carry
probability current in the positive-x direction. Neglect-
ing tunnel splitting, their energy is

efi

For large and negative kA, the confining potential is a
single well centered at y =0. The eigenstates correspond
to the snake trajectories and carry probability current in
the negative-x direction.?’

Between these two branches of opposite velocities, the
energy spectrum E, (k) must have a minimum. Behavior
near the minimum is of interest because of the associated
singularity in the local density of states. One can see
from the Schrodinger equation satisfied by ¢(y) [Eq. (3)]
that this occurs at positive k, when the description in
terms of local Landau levels breaks down and tunneling
between the two sides of the double well becomes
significant. In this intermediate regime, the wave func-
tion has significant amplitude near the line on which
B =0. To identify the value of k at which this occurs, we
compare the lateral extent of the wave function, ¢(y),
within one of the wells of the potential, with the distance
between the bottom of a well and the top of the central
barrier. The lateral extent is given by
(2n +1)'21(B(y,)), where I(B)=(#/eB)'/* is the local
magnetic length. Comparing this with the position of the
center of the state, y =y,, we find that tunneling is
significant when

kA~(n+1)23 . (5)

We shall take the solutions of this translationally in-
variant problem as asymptotic scattering states in a
simplified model (the network model) which we use to
study localization. In this context, it is useful to note
from Fig. 2 that, unless an energy is chosen especially to
lie close to a minimum of a band, the negative-k states,
called “snake states” by Chklovskii and Lee®! (and also
the local Landau states at positive k), occur in pairs at a
given energy. This leads us to consider network models
with an even number of channels on each link of the net-
work, in contrast to the original single-channel network
for the spin-split Landau level.!! In the simplest case,
one restricts attention to just two snake states. A model
in which these are the only states (over a certain energy
range) has been proposed in Ref. 31, taking the field to
switch abruptly between two values, B, as the contour
is crossed. There exist only two states at energies lying
between those of the lowest two Landau levels in a uni-
form field of strength B, as illustrated in Fig. 3.

Having discussed motion in a translationally invariant
field gradient, let us consider next the effect of a slowly
changing magnetic gradient, for which b =b(x /A). The
motion, in particular the guiding-center drift along
finite-B contours, is analogous to adiabatic motion in a
strong uniform field with a smooth scalar potential, ™28
in which guiding centers drift along equipotentials. We
focus on the behavior of the snake trajectories in the fol-
lowing discussion.
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In classical motion (2), the angle 6 is no longer a con-
stant. It remains, however, a useful quantity if € is small,
so that the variations in the magnetic field are sufficiently
smooth. More specifically, one finds from Eq. (2) that
the distance traveled along the contour in one period of
the lateral oscillations varies as (€/b)!/?A, and hence that
the change in the field gradient in one cycle is small in the
limit €—0. In this limit one can solve the equation of
motion for y by treating the field gradient b as a parame-
ter which varies slowly in time. According to the
Hamilton-Jacobi theory, the action variable for these os-
cillations I = @ my dy is an approximate invariant. One

may use this adiabatic invariance to follow the evolution
of the snake trajectory along the zero-field contour (see
the Appendix).

There is an analogous adiabatic theory for the quan-
tum motion. One may track the wave vector k of a snake
state as a function of position along the zero-field con-
tour. In this context, adiabaticity means that the level in-
dex n remains an approximate quantum number.

More generally, one can construct eigenenergy sur-
faces, labeled by the quantum number 7, in the three-
dimensional space described by the coordinates (r,E).
Each surface traces out the positions of peaks in the local
density of states p(r, E;n) for a given n, and has branches
of two kinds. The first kind exists in regions where the
magnetic field is large enough that Landau levels can be
defined locally, so that the eigenenergy surfaces are well
approximated by E =(n +1/2)%e|B(r)|/m. The second
kind of surface, corresponding to the snake states, follows
the B =0 contours and is parallel to the E axis. These
two kinds of surfaces do not intersect the E =0 plane at
B(r)=0. Instead, the surfaces have minima in energy
near B =0 contours, corresponding to eigenstates of zero
group velocity, as discussed above (see Fig. 2). The
simplification that arises in the adiabatic limit of the
quantum problem is the suppression of hybridization be-
tween states on surfaces of different n.

Let us illustrate the behavior in the adiabatic limit by
considering a specific field configuration which is a form

ok [()

FIG. 3. Dispersion relation for a particle in a discontinuous
field configuration: B(y)=B,sgny. Dotted line indicates an en-
ergy at which a pair of snake states is found.
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FIG. 4. Schematic illustration of the reflection from snake
states onto finite-field contours at a magnetic bottleneck.

of magnetic bottleneck: we take |VB| to increase with
distance along a B =0 contour. Classically, this has the
consequence that a snake trajectory is reflected by the ris-
ing field gradient onto a trajectory on a nearby finite-B
contour (and vice versa). A schematic illustration of this
is given in Fig. 4. In the quantum problem, the rising
gradient causes the minimum energy of a given band with
index n=n,, which varies as Egy,. <|VB|*”, to ap-
proach E from below. This means that the two wave vec-
tors k, g(ng) associated with the two branches of oppo-
site group velocities on the eigenenergy surface n, ap-
proach each other as the magnetic gradient increases. A
strong admixture of these k states must occur near the
classical turning point. In the adiabatic limit A— o, the
mixing occurs only between the states k, g(n,), and hy-
bridization with states on other energy surfaces (n <n)
is weak.

In summary, we have argued that motion in a smooth
random magnetic field is semiclassical in the sense that
the quantum wave functions have close analogs with clas-
sical trajectories, including those found in the neighbor-
hood of B =0 lines. An adiabatic picture has been
developed for the quantum motion by treating the system

d_B nmax 1
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locally using our understanding of motion along straight,
parallel magnetic-field contours (3).

B. Density of states in the semiclassical limit

We now discuss the density of states in the semiclassi-
cal limit, introduced above. There are several relevant
energy and length scales. The largest pair are the typical
cyclotron energy E,=eB,/m and the associated magnet-
ic length /,. In addition, the typical gradient of the mag-

netic field defines a length scale
lgope =A(VB=B,/A)=(I§1)'?, and an energy scale
Egope =EA=E((l, /A)?3 << E, for the states near zero-

field contours. There is also an even smaller scale,
E g qae =g /A)E, associated with states near a saddle
point, typified by B(x,y)=Bgxy /A%

For the bulk of the spectrum, the density of states is
dominated by contributions from local Landau levels on
the finite-B contours. The low-energy limit to the regime
of applicability of the local-Landau-level description has
been discussed in Sec. IT A in the special case of a con-
stant magnetic-field gradient [see Eq. (5)]. The result can
be expressed in terms of energy as

E/Ey>>Q2n +1D*3(1, /0)Y3 . (6)

Details are presented in the Appendix.

There is also a high-energy limit to the regime in which
the local-Landau-level picture applies. It is necessary
that the lateral extent of the wave function,
(2n +1)1/2[(B), should be small compared to the correla-
tion length A. Taking the typical field gradient to be
B /A and using (4), we find the condition

E/Ey<<(B/By)XML/1y)* . @)

In other words, as A /l;— o, the local-Landau-level pic-
ture is applicable in the energy range

(A1 >>E /Ey>>(1y /A, (8)

except for the snake states on the B =0 lines and the
finite-B states with n>n, ~(E/Ey,,.)*’*. Taking the
probability distribution of the field strength at a point to
be B, 'P(B/B,), the contribution of the local Landau
levels to the density of states is

pbulk(E)’:f_: B, 2, WS[E—E,,(B)]P(B/BO)
_2mE "™ 1 2E 2E o
TE, /S, 2n+1? | | 2n+1)E, 2n+1E, ||’

where /(B) and E,(B) are the local cyclotron length and energies, respectively. We have ignored snake states, which
are also present in this energy range: their contribution to the density of states is small because they occupy only a
small fraction of the system area.

At energies above the range (8), wave functions spread out over many correlation lengths, and the physics should be
similar to that of a particle in a white-noise magnetic field. In this case, the density of states approaches the zero-field
value.?? Let us focus instead on the low-energy part of the spectrum. At energies below the range (8), the leading con-
tribution to the density of states comes from the states of low group velocity near minima in the dispersion relation of
Fig. 2. We use the WKB approximation (outlined in the Appendix) to estimate the resulting contribution to the low-
energy density of states. The quasi-one-dimensional motion of these states means that the contribution of each band to
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the density of states has an inverse square-root singularity. Let the probability distribution for each component of the
field gradient B’=(VB), , be given by (A/By)P(AB'/B,). The contribution per unit length of B =0 contour to the

density of states is

mlgope & E/E 172

Piine( E) =

f slope w
#a' S0 (2n + DXE /E gope

with 0, =(2n +1 )"%3w/a, where a and a' are constants
of the order of unity. Thus, assuming that P(0) is finite,
the contribution to the density of states per unit area is

Piine/A~ g /AVE /E gop. - (1

Note that the square-root divergences of each band have
been smoothed out in the averaging. The energy depen-
dence of the density of states at low energies is the same
as in Eq. (9): [ppuy < E for P(0) finite]. This behavior is
in contrast to that in a magnetic field with a short corre-
lation length, for which there is a peak in the density of
states near the bottom of the spectrum.*

To discuss the density of states at still lower energies, it
is necessary to consider wave functions near saddle points
of the magnetic field. In the extreme low-energy limit,
one should consider rare occurrences of large patches of
low magnetic field. Thus one expects strongly localized
Lifshitz tail states in the low-energy limit. This regime
has been studied by other authors,*?° and we do not dis-
cuss it further.

In the remainder of this paper we shall be concerned
with the nature of eigenstates in the energy range (8), in
which states are either weakly localized or extended.

III. THE RANDOM NETWORK MODEL

A. Localization in the semiclassical limit

In this section, we introduce a network model to study
localization in a random magnetic field in the semiclassi-
cal limit. We follow closely the philosophy of previous
work on localization in a uniform field and a smooth sca-
lar potential,'"?*~?7 which identified extended states at
energies for which the semiclassical trajectories percolate.

Consider first a field distribution which is symmetric
about a nonzero mean value (B ). We argue that cyclo-
tron drift along B=(B) contours should percolate
through the system and that extended states will be found
at energies E (n)=(n +1)e#i{B)/m.’* Let us focus on
the delocalization on a particular eigenenergy surface.
Away from the critical energy, the classical guiding-
center motion consists of drift along contours closed
around hills or valleys of the energy surface, and so the
corresponding eigenstates are localized. This geometrical
picture, however, omits quantum tunneling. Tunneling is
important near saddle points of the random field, at field
values close to B= (B ), and connects disjoint portions of
contour at the same field value. The effect of interference
between different tunneling paths has been studied in the
context of the integer quantum Hall systems, where the
semiclassical trajectories reside on equipotentials. Quan-
tum critical behavior, different from that at the classical
percolation threshold, is found at the delocalization tran-

_w)1/2

[P(0d?)+P(—w)?*ldo , (10)

r

sition.¥ 7% Chalker and Coddington'! studied this local-
ization transition using a model in which the links of a
square network carry quantum-mechanical amplitudes
representing the guiding-center drift along an equipoten-
tial. Tunneling near saddle points is described by scatter-
ing matrices at the nodes of the network. As the critical
energy E,, corresponding to the classical percolation
threshold, is approached, the amplitudes for transmission
and reflection at saddle points become equal. The locali-
zation length diverges as |E —E,| ¥, with v=2.310.1,%
in agreement with numerical calculations using other
models** and experimental observations on systems with
large Zeeman splitting.'®

We believe from the arguments sketched above that
the same network model is also applicable to semiclassi-
cal motion in a random field with finite mean. As pro-
posed in Ref. 5, we expect that, for (B )70, there is a
delocalization transition which belongs to the same
universality class as the transition at the center of a spin-
split Landau level. This is in agreement with scaling
theory,'>!® which states that the zero-temperature scal-
ing flow is determined by the average Hall conductance
of the system.

A different picture, however, arises when the average
field is sufficiently small that tunneling between the state
on the percolating contour and snake states on a nearby
B =0 contour is important. In the following, we focus on
the case in which the average field is exactly zero, so that
the zero-field contours are the ones which percolate. The
geometrical properties of the classical snake trajectories
on these contours suggest a possible scenario for a delo-
calization transition in this case of zero average field. At
very low energies, there is a Lifshitz tail of states which is
certainly localized. These localized states arise because
very low-energy particles, traveling along snake trajec-
tories, are reflected at magnetic bottlenecks where the
field gradient is large (Fig. 4). At higher energies, there
are fewer regions where the field gradient is large enough
to create such bottlenecks for the particle. Thus, with in-
creasing energy, the classical trajectories become more
extended, and a candidate for a delocalization energy is
the corresponding percolation threshold. We will, how-
ever, present numerical results showing that, because of
quantum interference, even the states arising from these
percolating trajectories are localized.

The crossover region, as (B ) approaches zero, be-
tween the zero-mean and finite-mean cases is narrow pro-
vided that the correlation length is large. We speculate
that, in this region, the extended states levitate in energy
with decreasing (B ), as is believed to happen in quan-
tum Hall systems on decreasing the uniform field.>® 4!

We model the system with zero average field at or
above the percolation threshold for the B =0 contours as
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a random network in which the links represent snake
states on these contours. As demonstrated in Sec. II A,
these states generically occur in pairs so that, in contrast
to the model for a single Landau level, each link of the
network model should carry an even number of channels.
For our numerical work, we choose to stay close to the
percolation threshold and study the double-channel net-
work. Networks with more channels per link will have
larger conductances at short distances, making it more
difficult to reach the asymptotic scaling behavior.

It should be noted that, although finite-B contours are
closed, some of the state corresponding to cyclotron drift
on these contours will hybridize with the snake states be-
cause of reflections at magnetic bottlenecks, as described
in Sec. IT A and Fig. 4. However, we expect that this
affects only the local topology of the resulting percolating
network and has no influence on the universal aspects of
the localization phenomenon that we study.*? This belief
is supported by previous experience with the single-
channel version of the model'! for spin-split Landau
levels—the critical behavior extracted from the network
model is the same as that obtained*®* 3¢ for a disordered
potential projected onto the lowest Landau level.

Considered as a model for motion in a random scalar
potential, the nodes of the network allow tunneling near
saddle points of the potential. Similarly, the nodes in the
double-channel network allow scattering between snake
states near saddle points of the magnetic field, where the
percolating zero-field contours approach and possibly in-
tersect each other. We discuss next the classical dynam-
ics near these saddle points, and demonstrate that it is
chaotic.

B. Classical scattering at the zero-field saddle points

Let us consider classical motion near individual saddle
points in the magnetic-field strength, using the field
configuration (1) with b(x /A)=x /A. We argue that the
adiabatic picture breaks down as the classical trajectory
crosses the saddle point, and that the subsequent motion
is highly irregular.

The approach to the saddle point is simple in the clas-
sical adiabatic limit. Consider a snake trajectory ap-
proaching the saddle point along the positive-x axis. We
show in the Appendix that the trajectory cuts the x axis
at angles which are successively closer and closer to 6=0
as the particle approaches the saddle point at x =0. Al-
though the adiabatic approximation [that the magnetic
gradient changes little on the oscillatory timescale pro-
portional to (e/b)!/?] fails as the gradient b goes to zero,
it can be shown that the approach to the origin is col-
limated. Thus, the particle eventually crosses the y axis
within a small region of radius O(€’/!?1), traveling at an
angle to the x axis of O(e!/1?)

The subsequent motion of the particle, however, is
complex and unpredictable. In the neighborhood of the
saddle point, the snake trajectories along the x axis are
directed toward the origin, while those along the y axis
are directed away from it. Suppose that a particle arrives
at the saddle point from the negative-x axis. The typical
motion is as follows. After the particle has crossed into
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FIG. 5. Simple trajectory. €é=10"*. Distance is plotted in
units of A.

the region x > 0, initially traveling nearly parallel to the x
axis, it is reflected back toward the origin. It then follows
a snake trajectory along the y axis, and away from the
saddle point. However, a complete exit from the saddle
point is not assured even at this point. The particle may
find itself on a trajectory (of low longitudinal velocity)
which is easily reflected at a magnetic bottleneck where
the magnetic-field gradient is large. Indeed, repeated
reflections back toward the saddle point may occur be-
fore the particle eventually leaves the saddle-point region.
This, in effect, randomizes the final motion with respect
to the initial conditions.

We have examined numerically the classical trajec-
tories at an isolated saddle point with field strength given
by B(x,y)=B,tanh(x /A)tanh(y /A). We start a particle
at a point on the negative-x axis with an initial velocity at
an initial angle 6;, to the axis. Both simple trajectories
(Fig. 5) and chaotic trajectories (Fig. 6) with repeated
reflections are found.

Our analysis suggests that scattering at the saddle
point destroys any information about the initial condi-
tions of a trajectory. Both the exit direction
&, =tan"!(y /x) and the exit angle 6, have irregular

1-0*ﬁﬁﬁ—rﬁ"ﬁu.

0.5

-0.5

Jl!\llll}l!ll]Jlll

1 —
~1.0 N NS FW R

-1.0 -05 0.0 0.5 1.0
X

FIG. 6. Chaotic trajectory. €é=10"*. Distance is plotted in
units of A.
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FIG. 7. Exit data for incoming particles with a given 6.
The data for outgoing direction ®,,,=tan '(y /x), and exit an-
gle 0, are given for one particular initial position. The dwell
time, measured in units of the time taken to traverse the (unsta-
ble) straight trajectory along the x axis, is averaged over initial
positions. €=1075.

mn

fluctuations for small changes in the initial angle 8, (Fig.
7). They also change unpredictably for small changes in
the initial position. As an illustration of the repeated
crossings of the saddle point, we present the dwell time of
a particle in a region of radius 3A around the origin,
averaging over initial positions (Fig. 7). One can see that
there are indeed trajectories which spend a long time in
the saddle-point region in the scattering process. We also
present, in Fig. 8, the distribution of 8, for an ensemble
of incoming particles with a uniform distribution of 6.
This shows that the distribution of outgoing trajectories
is wide, covering all snake trajectories, in spite of the col-
limation effect on the incoming particle.

C. The two-channel network model

The complexity of the classical motion suggests that
quantum scattering at the saddle point should also be ir-
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FIG. 8. Histogram of 6,, averaged over starting positions
and angles. €e=10"°.
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regular. Incoming and outgoing snake channels at a
given energy E can be labeled by their wave vector and
band index, k,(E), corresponding to cos6 in the classical
dynamics. The classical results of Sec. III B suggest that
scattering at the saddle point randomizes the band index.
This leads us to model quantum scattering at a saddle
point using a random scattering matrix. The applicabili-
ty of random matrix ensembles to scattering problems
has been studied extensively for quantum billiards. Al-
though nonuniversal low-energy structures are not in-
cluded in this approach, it is believed that random matrix
theory provides a description of universal stochastic
properties of quantum chaotic systems.*>*

We begin by recalling the form of the scattering matrix
used in the single-channel network model for a Landau
level in a random scalar potential. Each link of this net-
work carries quantum-mechanical flux in a given direc-
tion. Let ¢, ; and v, ; denote the incoming and outgo-
ing current amplitudes on the left of the saddle point;
similarly ,, g and ¢, x denote fluxes on the right of
the saddle point. The transfer matrix T relates ampli-
tudes on the left of the saddle point to those on the right:

lz}out,R T d}in,L
= (12)
Il)in,R djout,L
Imposing flux conservation, this matrix can be
parametrized as
e® 0 |[cosh sinhe 0
T=1, ,#||sinh6 cosho o9 (13

The scattering is characterized by a single parameter 6,
which we call the “node parameter,” and by the phase
shifts @, , 3 4. The transmission probability is 1/cosh?6:
there is perfect transmission at 6=0 and perfect
reflection for 6— o (see Fig. 9). More generally, it is
useful to note the following duality transformation: if the
amplitudes v, p With ¥, ; are exchanged, 6 should be
replaced by 6’, where

sinh®' =1/sinh@ . (14)

Thus tunneling is maximal when the scattering is sym-
metric: sinh@=sinh6'=1. In the context of potential dis-
order, this symmetric point corresponds to the center of
the disorder-broadened Landau level, at which the locali-
zation length diverges, and the limits of small and large 6
correspond to low- and high-energy tails of the Landau
level.

out

in \/ out in

L R L R

out /\ in out in

sinh 6 < | sinh 6 > 1

FIG. 9. Transmission and reflection at a node, for different
values of the node parameter 6.
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In a generalization of this network model, we may have
N incoming channels and N outgoing channels on each
side of the saddle point, so that ¢, 1, You 1> Yin r> and
Your,r are now N-component spinors. The transfer ma-
trix can be parametrized as

U 0|lc s
0 U,j|s C

U, 0

T= 0 U,

) (15)

where U, , 3 4 are U(N) matrices which rotate the indivi-
dual spinors, and C and S are N XN diagonal matrices,
with diagonal elements cosh6; and sinh6; (i =1,2,...,N),
respectively. This decomposition separates scattering on
the network into two contributions. One contribution is
represented by U(N) mixing on each link. For N =2, it
is characterized by phase shifts on the incoming and out-
going amplitudes and also by a mixing angle ¢:

ip
e’ 0

ip
0 et

i
PRI

ip
0 e

—sing
cos¢d

cos¢d

U= sing (16)

The other contribution is represented by the node param-
eters, and consists of tunneling processes at each node
which conserve the channel index i.

The channels in the network model correspond to
snake states in our semiclassical limit of electron motion
in a random magnetic field with zero mean. As discussed
in Sec. III A, the minimum number of channels for this
random-field problem is N =2 because these snake states
generically occur in pairs.

To model disorder, we consider (with some exceptions:
see below) the mixers U on each link to be independently
and isotropically distributed with the Haar measure. In
addition, the node parameters 6, and 6, must be chosen
so that the network has the symmetry of the random-field
problem. Taking (B ) =0, the mean Hall conductance of
the system should be zero, which requires that the pla-
quettes of the lattice with clockwise and anticlockwise
circulation be statistically equivalent. In the most gen-
eral case, one can consider the node parameters to be in-
dependently distributed, with a distribution which is in-
variant under the duality transformation (14). In a model
of this kind, one expects a crossover from behavior de-
scribed by classical percolation theory at short distances
(due to clusters weakly coupled to the rest of the system),
to quantum behavior at long distances. Experience from
the single-channel network has indeed shown that fluc-
tuations in the node parameters are irrelevant for the
quantum critical behavior.’”"*> For simplicity, we there-
fore concentrate on networks with identical nodes. Possi-
ble networks are then specified by two parameters 6, and
6,. From the condition that the average Hall conduc-
tance vanishes, random-field networks lie on the line [as
for Eq. (18)]

sinh@,=1/sinh@, (random field) . 17
A schematic illustration of such a network is given in
Fig. 10.

Two-channel network models also describe motion in a
uniform magnetic field with a random scalar potential,
including the spin degree of freedom of the electron. In
this case, U(2) mixing arises from spin-orbit scattering.
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FIG. 10. Schematic illustrations of a random-field (rf) net-
work and a network representing a spin-degenerate (sd) Landau
level. The two channels are denoted by full and dashed lines.
U (2) mixers are represented by shaded discs.

In particular, the spin-degenerate system, in which there
is no Zeeman splitting, is represented by networks with

0,=0,=0 (spin-degenerate Landau level) , (18)

so that electrons in both spin states have the same tunnel-
ing rate through the saddle points (see Fig. 10). On
sweeping the Fermi energy through the Landau level, the
system follows line (18) in the (6,,60,) parameter space
from 6=0 to 6=c. With Zeeman splitting, this line is
displaced so that the two spin states have different tun-
neling rates at a saddle point: schematically, one can
take 6,=(1+g)0 and 6,=(1—g)6, where g represents
the electron g factor, with |g| < 1.

We see that the random-field line (17) and the spin-
degenerate line (18) share a common point on this phase
diagram, namely the symmetric point:
sinh@,=sinh0,=1. Therefore, conclusions about the
behavior of one of these systems carry implications about
the behavior of the other.

IV. LOCALIZATION IN THE NETWORK MODEL

A. Phase diagrams

We have arrived at a network model which represents,
on different lines in its parameter space, electron motion
either in a random magnetic field or in a spin-degenerate
Landau level. We now discuss the phase diagram for lo-
calization in the full parameter space of this unifying
model.

In the absence of scattering between channels, the
model would consist of two uncoupled networks, each as
studied in Ref. 11. States are localized, except (in the
respective networks) on the lines sinh6,=1 and
sinh6,=1. In this paper, we are concerned with the
consequences of coupling the two networks. We summa-
rize first the implications of the conventional scaling flow
diagram proposed by Khmelnitskii'? for the integer quan-
tum Hall effect. Following Khmelnitskii,*® let us consid-
er sweeping the Fermi energy through a spin-degenerate
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Oxx 1 A

0 1 Oxy

FIG. 11. Khmelnitskii’s scaling flow diagram for the integer
quantum Hall effect. Fixed points of the scaling flow are denot-
ed by ®. The dashed line indicates the trajectory followed by
the bare conductance on sweeping the Fermi energy through a
spin-degenerate Landau level, which is the short-distance
behavior of the 6,=6,=6 network for 0<6< ». o0,, and o,
are measured in units of e2/h.

Landau level, traversing the line 6,=6,=6. Along this
line, the Hall conductance o,,, measured at short dis-
tances in units of e2/h, must vary smoothly between
0,,=0 at 6=0 and o0,,=2 as 6— «, following the tra-
jectory indicated by the dashed line in Fig. 11. In partic-
ular, at the center of the spin-degenerate Landau level,
sinhf, =sinh#,=1, the Hall conductance has the value
o,,=1 and scaling flow is toward a localization fixed
point. Additionally, there are two isolated points on ei-
ther side of the Landau-level center, at which o,, = and
3, respectively, and from which the system scales toward
delocalization fixed points. Since any trajectory from
6,=6,=0 to 6,=60,= must, on this analysis, share
these features, one is led to the phase diagram of Fig.
12(a). In this phase diagram, there are two distinct mo-
bility edges in the spin-degenerate Landau level. Conse-
quently, all states are localized on the line
sinhf,=1/sinhf, which represents motion in a random
field.

In this connection, one point requires further discus-
sion. We have argued that a network representing the
random-field problem, with sinh0,=sinhf,=1, also de-
scribes the center of a spin-degenerate Landau level. The
equivalence leaves us with the apparently paradoxical re-
quirement that the average Hall conductivity be zero for
the former system, but e?/h for the latter. The paradox
is resolved by noting that different boundary conditions
apply to the network in the two cases. In a random field,
there are no extended current-carrying edge states, while
at the center of a spin-degenerate Landau level an edge
state contributes one unit to the Hall conductivity. We
illustrate this in Fig. 13, comparing the effects of a scalar
confining potential on the two systems. Edge states in a
random magnetic field carry local currents, in a direction
determined by the local sign of the magnetic field, which
fluctuates along the boundary. By contrast, in a uniform
magnetic field, edge currents flow in the same direction

(a)
sd/,/'

sinh 6,

0 ' sinh 0, 0 ' sinh 0

FIG. 12. Schematic phase diagrams. States are extended on
the bold lines and localized elsewhere. Dashed lines indicate
the parameters of spin-degenerate (sd) and random-field (rf) net-
works. (a) The phase diagram required by the scaling theory of
the integer quantum Hall effect. (b) An alternative.

all along the boundary.

Returning to the phase diagram, we consider only the
simplest alternative to Fig. 12(a). It is chosen to accom-
modate two features: extended states in a random field, as
found in some simulations,>”® and different critical
behavior in spin-split and spin-degenerate Landau levels,
as suggested from some experiments.”*”!® In the
language of scaling flow for the quantum Hall effect, the
latter requires that the two delocalization fixed points in
a spin-split Landau level should coalesce if the Zeeman
energy is small enough, yielding Fig. 12(b). In this event,
states are delocalized only at the center of the spin-
degenerate Landau level (with, potentially, critical prop-
erties in an additional universality class), and there exists
a segment of the random-field line along which the locali-
zation length is divergent. We argue below that the re-
sults of our numerical simulations support the phase dia-
gram of Fig. 12(a).

V large

B>0

FIG. 13. Edge currents. The edge of the sample is defined as
the boundary with a region of high potential V. (a) Random
magnetic field: sign of magnetic field denoted by +/—. (b)
Landau level in a random potential: sign of potential denoted
by + /—. For clarity, only one of the degenerate spin states is
drawn in (b). Edge currents contribute to the Hall conductivity
in case (b) only.
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B. Numerical results

We use standard numerical transfer-matrix techniques
(see Refs. 47-49) to calculate the localization length &,,
in long samples of the network, of width M, imposing
periodic boundary conditions in the transverse direction.
We study systems having width M =8, 16, 32, 64, and
128, and length 1.2X 10 links, obtaining &,, with statisti-
cal errors of less than 1%. We extract the bulk localiza-
tion length £, at each point studied in the phase diagram
of the model, using a conventional one-parameter finite-
size scaling analysis. This method depends on the as-
sumption that the data from systems of different sizes and
at different points in the phase diagram are all described
by a scaling function f(x) of one variable, so that
Eu/M=f(£,/M). In fact, it is clear from the scaling
flow (Fig. 11) that this cannot be the case everywhere,
and that the analysis requires some circumspection.
Most obviously, at some points in the phase diagram, sys-
tems with large values of £,, /M for small M (correspond-
ing to a large bare o,,) will scale to the delocalization
fixed point, while at nearby points, systems which are
similar for small M, will scale to localization fixed points.
There are two circumstances in which these difficulties
are avoided. First, on the random-field line, the value of
0, does not renormalize and a one-parameter analysis is
always appropriate. Second, at sufficiently large scales,
all flow comes close to the line joining the delocalization
fixed point to the localization fixed point, and a one-
parameter description again applies. In practical terms,
we require in the second case that §,, /M for the widest
system studied should be smaller than its value at the
delocalization fixed point, (£,,/M)*~1.2.1

We first present our results for the random-field line,
sinhf,=1/sinhf,. To obtain the full scaling function
f(x) from the range of system widths that it is feasible to
simulate, we find it necessary to include some generaliza-
tions of the model. With random U(2) coupling of the
two channels, the localization length remains large, even

IRl
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= = —
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20— —
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5 10 20 50 100

Width M

FIG. 14. The localization length in the random-field network
as a function of system width. Open squares ([J) represent net-
works on the sinh8;=1/sinh8, line with isotropically distribut-
ed U(2) mixers (sinh6;=1,1.8, from top to bottom); solid
squares () represent network with random nodes; crosses ( X)
represent sinhf;=1/sinhf,=0 networks with fixed ¢
(0<d<m/4).
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FIG. 15. Bulk localization length £, as a function of sinh#,,
in the random-field network: squares (B) represent networks on
the sinh6,=1/sinh6, line with isotropically distributed U(2)
mixers; the circle (@) represents a network with random nodes.
Inset: one-parameter scaling function &,, /M = f (£, /M).

in the limit of sinh6; —0. To obtain the small-x behavior
of the scaling function, the regime scaling toward locali-
zation, we have therefore also studied a range of net-
works with sinh6, =0, sinh8,— «, and fixed mixing an-
gle (0 <¢ <m/4). Our data are presented in Fig. 14. The
data shown include a network with random node parame-
ters chosen from a distribution which respects, at each
node, the constraint that 6, and 6, are symmetric under
the duality relation (14).

The bulk localization lengths which we obtain remain
finite everywhere on the line sinh6;=1/sinh8,. They are
displayed in Fig. 15. The largest localization length (of
the order of 10* lattice spacings) is found for the network
with totally symmetric scattering: sinh6,=6,=1. Our
results thus select the phase diagram of Fig. 12(a) in
preference to that of Fig. 12(b).

We consider next the spin-degenerate Landau level de-
scribed by (18). On this line, over a narrow range on ei-
ther side of the level center (0., ~0.88), the bulk local-

- -
E
F \_\‘ N
= r -
Ny E e
. e 7]
01 = e
= ~3
[l I i L1 1 H | | =
5 10 20 50 100
Width M

FIG. 16. Localization length in the spin-degenerate Landau
level, as a function of system width. Data are presented (from
top set to bottom set) for 6=1.2, 1.3, 1.4, 1.5, 1.7, 2, 2.5, 3, 4,

and 5.
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ization length is so large ( > 10*) that, with the important
exception of its value at the band center (where, as indi-
cated above, the scaling analysis simplifies), we are unable
to determine it reliably. We have analyzed data (Fig. 16)
for 6=1.2. The divergence in the localization length, as
the level center is approached from the band tail (6 >>1)
is examined in Fig. 17, comparing the two alternative hy-
potheses represented by Fig. 12. According to the for-
mer, one must simultaneously determine the position 6,
of the upper mobility edge, and the value v of the critical
exponent. Since large uncertainties are associated with
such a two-parameter fit, we simply demonstrate that
there exists a choice of 6, for which the data are con-
sistent with the exponent value v=2.3, obtained in previ-
ous simulations'!**~37 of localization in spin-split Lan-
dau levels. Moreover, this fit appears better than one
taking sinh@, =1. This provides further support for the
phase diagram of Fig. 12(a). We suggest that it would be
of considerable interest to analyze experiments'*!® on
localization in spin-degenerate Landau levels with the as-
sumption that there are two distinct mobility edges, as in
this figure. (This scenario has been discussed in detail by
Polyakov and Shklovskii,*® and also by Wang, Lee, and
Wen.’!) It should be noted that our result is different
from the scaling picture of Ref. 18, which allows for a
single mobility edge when the Zeeman energy is exactly
zero.

Finally, we attempt a precise determination of the criti-
cal exponent v in our model. To do so, we study the line
sinhf,=2, which is comparable to introducing Zeeman
splitting. In addition, in order to reduce the localization
length to measurable values in the range sinhf;~=1, it is
necessary to decrease the coupling between channels on
each link. We achieve this by abandoning again the iso-
tropic distribution for the U(2) mixing matrices, and re-
stricting the mixing angle to the value sing=0.3. The
data are presented in Fig. 18. The localization length
diverges as the region sinh8,~1 is approached from ei-
ther side. We fit power laws to each divergence, assum-
ing a mobility edge at 6;,=6,., obtaining exponents

3 sinhf, v
~ -« 1.00 5.8
: e 135 2.3
SR
=} ¥§ 1
27 *\3
= =1
1 }— .03
- .01
L -2 -1 0 1 2
Logyo é./M
I R A e
—-1.5 -1.0 -0.5 0.0 0.5

Log, [sinh@® — sinhé,]

FIG. 17. Divergence of the localization length in a spin-
degenerate Landau level. Comparison of fits to the form
&, ~|sinh@—sinhf.| ™", with a single mobility edge
(sinh,=1.00, v=5.8) and with two mobility edges
(sinh@, =1.35, v=2.3). Inset: one-parameter scaling function.
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FIG. 18. Network at sinh§,=2. Localization length as a
function of system width, on either side of the delocalization
transition. Open circles (O) represent data for sinh6, <1:
sinh6,=0.9, 0.8, 0.7, 0.6, 0.5, and 0.25 (from top set to bottom
set). Solid squares (1) represent data for
sinh@, > 1: sinh8,=1.1, 1.2, 1.3, 1.5, 1.75, and 2 (from top to
bottom). Inset: one-parameter scaling function.

v_(6,.) and v, (6,) on each side. Solving the equation
v=v_(6,)=v,(6.), we obtain v=2.45 and sinh8,=1.00
(see Fig. 19). This exponent value is remarkably close to
the most precise determination for spin-split Landau lev-
els, v=2.34+0.04.%

V. SUMMARY

In summary, we have carried out a numerical study of
a random network model representing both spin-
degenerate quantum Hall systems and localization in a
random magnetic field. We conclude that in the model
representing motion in a random-field problem there are
no extended states. This network model provides a useful
description of electron motion in a random magnetic
field, which is complementary to the tight-binding model
with random flux studied by other authors. Our results
are consistent with those of Sugiyama and Nagaosa,’ but

-0.020 -0.010 0.0 0.010 0.020

Log,e sinh#6.

FIG. 19. Network at sinh6,=2. Determination of critical
exponent by matching v (6.) and v_(68,). Horizontal line indi-
cates the value: v=2.34.
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differ from those obtained by other authors®* studying
the lattice model, who suggest that there are extended
states near the center of the band. We have also estab-
lished a relationship between localization in a random
magnetic field and localization in a spin-degenerate quan-
tum Hall system, by exploiting a semiclassical limit in
which the disorder varies smoothly over magnetic length
scales and constructing a network model with a parame-
ter space covering both phenomena.
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APPENDIX

1. Classical adiabatic theory

We describe here the classical motion of a charged par-
ticle along a B =0 contour on which the field gradient
varies smoothly with position. The equation of motion in
the field configuration (1) has been given as Eq. (2). The
particle has a snakelike trajectory, cutting the B =0 con-
tour at an angle 6 (Fig. 1). For b >0, it moves in the
negative-x direction. It can be easily shown that, for a
constant magnetic gradient VB =bB,/A, the amplitude
of the lateral oscillations of the snake trajectory is
Ymax =2(€/b)/2A|cos(8/2)|. The period of the oscilla-
tion is proportional to (e/b)!/? and diverges as — 180°,
and similarly for the longitudinal distance Ax traveled in
one period.

The lateral oscillation about the B =0 line provides us
with an adiabatic invariant:

1= mp dy
172

€ :
— | sin’l6

=2muyA

X f 0277 cos’w(1—sin*1@ cos’w)!dw . (A1)
The action I is an approximate invariant of the motion
when the field gradient changes only over length scales
much greater than Ax. Within a segment of the contour
which is long compared to Ax but short on the scale of
the correlation length, one can still identify an angle 6
which specifies the motion of the particle. The evolution
of 0 between segments of different field gradients b is
determined by the requirement that I remains constant.
From Eq. (A1), one sees that this angle 8(x) increases,
and the drift velocity ( « cos@) decreases, as the particle
moves toward a region with a high magnetic gradient. In
fact, I has a maximum at 6=6,~135° corresponding to a
figure-of-eight orbit with zero drift velocity. This means
that the particle cannot travel indefinitely into regions of
higher and higher magnetic gradients. Instead, it will be
reflected at the turning point x, given by 0(x,)=86,. The
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trajectory of such a particle will eventually join with a
finite-B contour (see Fig. 4). Thus a region of large gra-
dient behaves like a “magnetic bottleneck” for particles
traveling on B =0 contours.

Consider next the situation when the particle ap-
proaches a saddle point in the magnetic field at the ori-
gin, b(x/A)=x /A, from the positive-x axis. For con-
venience, let us take the unit of length to be A and the
unit of time to be A/v,. As the field gradient b(x) de-
creases, the angle 8 becomes small so that

I/mvoh=2m(e/b)" *sin’L0 , (A2)

and sin*l@xb(x) as b—0. Note that the adiabatic
theory breaks down when b ~o(e), because Ax then
exceeds the correlation length A. Nevertheless, one can
continue to follow the motion of the particle since the
equation of motion can be approximated by Stokes’ equa-
tion when dx /dt ~—1:

d2

et
The trajectory near the origin is therefore described by
Airy functions, Ai(z) and Bi(z). One can match the adia-
batic theory to the Airy-function trajectories in a com-
mon domain of validity: x~e€’ with 0<y <1. For
z=xe /*>>+1, the shape of the snake trajectory has
the asymptotic form

(A3)

y(z)=a[cos¢ Ai(z)+sing Bi(z)]

sin (A4)

3/2 ™
%z/+¢+—l,

7125174 4

where a and ¢ are constants determined by initial condi-
tions. By matching the angle of incidence 6 given by the
adiabatic theory (A2) and by the Airy form (A4)
(at the point x,=¢!’%, say), one obtains
a =4me>’® '/%5in’16,,, where 6, and b, are initial
values of the trajectory at some point x, far from the
origin. Substitution into the first line of (A4) gives

y(0)~e’12 | y'(0)~e'/12, (AS5)

Therefore, in the adiabatic limit €é—0, the approach to
the saddle point is well controlled. The particle is col-
limated into a small region around the saddle point, trav-
eling nearly parallel to the x axis.

2. WKB approximation for double-well potential

We summarize here the results, from the WKB ap-
proximation, used in the text for quantum motion in a
double-well potential described by Eq. (3). Let A be the
unit of length and E, be the unit of energy. We study
only states of positive k in the classically allowed region
above the energy barrier %(kA)z. Using rescaled vari-
ables u =y /(8E)!/* and a=k /(2E)'/?, the Schrédinger
equation becomes

1 d?

TR0 gur TeTuIT =0,

(A6)
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The quantization condition on the action I is

(n+1)m=I(E,k)

172 N —
=(2E)"* fo‘”“’ V2[l—a—u®ldu . (A7)
This WKB scheme is valid when the energy of the parti-
cle is high enough that the double-well potential is
smooth on the scale of the particle wavelength. For Eq.
(A6), this means that 23/3E >>(1—a?)", or, in terms of
dimensionful quantities,

E/E,\>>L(kA). (A8)

We see that this approximation complements the local-
Landau-level regime, in which the particle does not tun-
nel between the two sides of the double well.

d’E __ 9 /3k?

dk? |\E=E_, oI /3E
V24 f(1+a0)1/2 1+ay—u?
3(1+ay) Yo l—ao-{--u2

Note that this is independent of the band index.

172
2—aptu?)du .
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From the quantization condition (A7), one can esti-
mate the turning point in the spectrum E, (k). The turn-
ing point where dE/dk vanishes is given by
(OI(E,k)/0k);=0. We find that the minimum for band
n occurs at an energy E_;, and a wave vector k;, such
that

Emin(n)/EA2%(kminA/aO)22%[A(n +%)Tr]4/3 ’ (A9)

where a is determined numerically to have the value
ay=0.65, and 1/ 4 is the integral in Eq. (A7) evaluated
at a=ay,.

One can also estimate the curvature at the bottom of
each band in the WKB approximation. This is needed
for estimating the singular contribution from this part of
the spectrum to the density of states. We find

(A10)
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FIG. 10. Schematic illustrations of a random-field (rf) net-
work and a network representing a spin-degenerate (sd) Landau

level. The two channels are denoted by full and dashed lines.
U(2) mixers are represented by shaded discs.



FIG. 4. Schematic illustration of the reflection from snake
states onto finite-field contours at a magnetic bottleneck.



