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Thermodynamics of nucleation in current-carrying conductors
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This work studies the thermodynamics of phase transitions of the first kind in current-carrying con-
ductors when these transitions are accompanied by sharp change of the electric conductivity. The ex-

pression for the work of formation of a nucleus of a new phase in a current-carrying conductor as a func-

tion of the geometrical parameters of the problem is derived. The dynamics of the evolution of a macro-
scopic interphase boundary when both phases form the coaxial cylindrical domains is investigated. It is
shown that the character of equilibrium of an interphase boundary depends upon the mutual location of
phases with lower and higher conductivity. If a low-conductivity phase occupies the external cylinder
the position of the interphase boundary is stable. In the opposite case, namely when the low-conductivity

phase occupies the internal cylinder, the position of the interphase boundary is unstable. It is shown

that the current-carrying conductor melts from the surface at the temperature lower than the melting

temperature. However, during propagation of the liquid (low-conductivity) phase from the surface to
the axis of a conductor, the nuclei of a solid phase (high conductivity) may form inside it. The possible
scenario of melting of the current-carrying conductors is suggested.

I. INTRODUCTION

This investigation is a continuation of previous
works' which analyzed the effect of ponderomotive
forces upon the dynamics of phase transitions, when
these phase transitions are accompanied by a sharp
change of electric conductivity. It was showed that pon-
deromotive forces prevent formation of nuclei with elec-
tric conductivity lower than that of a surrounding medi-
um, and promote nucleation when an electric conductivi-
ty of a nucleus is higher than that of a surrounding medi-
um. Various effects arising during phase transitions of
the first kind were considered using the latter finding.

The analysis performed in Ref. l was restricted to the
case in which phase transition begins inside the conduc-
tor, and only the initial stage of phase transition, i.e., nu-
cleation, was studied. Several important questions —the
dependence of the work of formation of a nucleus upon
its shape and the distance from the conductor's surface,
the work of nucleus formation in a "layered" conductor
where the interphase boundary is already formed, the dy-
namics of the interphase boundary, etc.—remained unex-
plored. A11 these problems are investigated in the present
work. We also study a case when phase transition begins
at the surface of a conductor. In the latter case it is as-
sumed that phase transition skips the nucleation stage,
and the conductor's surface itself acts as a nucleus. It is
shown that unlike the case of a phase transition in a
current free conductor, the interphase boundary in a
current-carrying conductor is not in a state of neutral
equilibrium but, depending upon the mutual location of
phases, can be in a state of stable or unstable equilibrium.
Similar to a previous investigation, ' it is assumed that a
high-temperature phase has lower conductivity, and a
low-temperature phase has higher conductivity. It is
shown that if the external phase is a high-temperature

phase, then the equilibrium position of the interphase
boundary is stable. If the surrounding phase has a higher
conductivity, then the equilibrium position of the inter-
phase boundary is unstable. The phase diagram describ-
ing the rate of phase transition at the interphase bound-

ary p as a function of the volume fraction p of the exter-
nal phase is shown in Fig. l.

It is also shown that during heating of a conductor the
liquid (high-temperature} phase remains unstable over a
wide temperature range with respect to the formation of
solid (low-temperature} nuclei inside it. The results ob-
tained allow us to refine the model developed in the previ-
ous investigation, ' and to relax the assumptions which
were previously adopted when the phase transition in the
vicinity of the conductor's surface was inhibited for some
reason. The qualitative picture of a conductor's fusion as

FIG. 1. Scheme of the phase transition on a phase plane. {1)
Conductivity of the external phase is less than that of the inter-

nal phase. {2) Conductivity of the internal phase is less than

that of the external phase. P-volume fraction of an external

phase.
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predicted by the developed theory is summarized in Sec.
U.

The paper is organized as follows. In Sec. II we derive
an expression for the work of formation of a nucleus with
a conductivity different from the conductivity of a sur-
rounding medium as a function of its shape and the dis-
tance from the conductor's surface. An expression for
the force applied to the center of mass of a nucleus is ob-
tained. It is shown that in the case when the electric con-
ductivity of a nucleus is higher than that of a surround-
ing medium, the nucleus is attracted to the center of a
conductor. In the opposite case the ponderomotive
forces repel a nucleus to the surface.

In Sec. III we investigate the dynamics of the inter-
phase boundary in a two-layer conductor. It is shown
that when melting propagates from the surface in
current-carrying conductors it can begin at temperatures
lower than the melting temperature of the material. In
the opposite case, when melting begins inside the conduc-
tor, it occurs at temperatures higher than the melting
temperature of the material.

In Sec. IV we consider a problem of nucleus formation
in the two-layer conductor. Expressions are derived for
the critical radii of such nuclei and for the limit values of
temperatures of formation for these nuclei inside the
external layer (phase) and the internal phase.

3=3o+&3
(4)

5j= —jog 2g(a —~r —r, ()

+ (3p —1)ri( ~r —r, ~
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—r, ~

—a ),

where jo is the density of an electric current before the
formation of a nucleus which is considered homogeneous
over the cross section of a conductor, r, is the radius vec-

tor of the center of mass of a nucleus, e~, the unit vector
in a plane normal to vector 3o and directed from a center
of a nucleus, and

(r —r, )jo 1, x &0 ao —a,—
0, .&0,

the conductor's surface, i.e., (a/d) «1, where d is the
distance from the center of mass of the nucleus to the
conductor's surface. Therefore the electric current-
density distribution can be determined for the case of a
nucleus in an infinite medium

II. NUCLEATION
INSIDE HOMOGENEOUS CONDUCTOR

Consider the formation of a nucleus of radius a and
conductivity 0, inside a conductor of radius po and con-
ductivity pro, with a length L &&po carrying an electric
current I. Assume also that the distance from a nucleus
to the conductor's surface and edges is considerably
greater that the size of the nucleus. The change of the
free energy of the system after the nucleus formation was
studied comprehensively in Ref. l. In the latter study the
range of the applicability of the adiabatic approximation,
when the time dependence of the electromagnetic fields is
determined in the first approximation by the instant value
of the nucleus radius a, was also analyzed. Without re-
peating this analysis, note only that in this case the
change of the free energy of the system h4 can be writ-
ten as follows:

b@=b,40+6 W, b, W= Wo —W,

where

, g(~r —r, ~
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+f a

'
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w, (r)= f (6)

Integration in expressions (5) and (6) is performed over
the whole volum, e of the conductor. Direct integration
over 0 &z' &L and 0 &p' &po in expression (6) yields

r r

4z(L —z )
W, (r)=npo ln +1-

po po

Employing expressions (2) and (4), and neglecting the
small terms proportional to the self-inductivity of a nu-

cleus, we found that

68'= 2ga —r —r, 8', r rkio

C
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where h4o is the free-energy change in a current-free
conductor, and ES' an energy change of the magnetic
field: W&(r)=npo ln

z»p„L —z»p, , (7)

2L 1 p
po 2 po

z «po L z «pp ~ (8)

rot =0, div3=0 .
C7

(3)

The nucleus formation is considered to occur far from

where jo(r) and j(r)-current densities before and after
formation of a nucleus, respectively.

Electric current distribution in the adiabatic approxi-
mation can be determined from the following equations:

Since it was assumed that a nucleus is located far from
the edges of the conductor and its surface, in the follow-
ing it is suRcient to use expression (7). In the Appendix
it is shown that the second integral in formula (5) over
the domain outside the nucleus is of order po/L . Thus
relations (5) and (7) allow us to determine the electro-
dynamic component of the work of nucleus formation
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2, yi ' 4z(L —z )
(9)

where V, is a nucleus volume, z, and p, are nucleus coor-
dinates, and g, is a geometric factor depending upon the
shape of a nucleus. In the case when a nucleus has the
shape of a spherical ellipsoid with a main axis in the
direction of an electric current,

efFects of these forces are negligible.
With the logarithmic accuracy expression (9) for

z; =(L /2) (a particle is formed at the center of a conduc-
tor) recovers the results derived in Ref. 1. Consider now
the stage of the developed phase transition when there ex-
ists a macroscopic interphase boundary, and the dynam-
ics of the phase transition is determined by the evolution
of this interphase surface.

(oo—o, )(1 n—, )

2 o,n, +oo(1 —n, )
' (9') III. DYNAMICS

OF THE INTERPHASE BOUNDARY
IN A T%0-LAYER CONDUCTOR
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az g

& ap
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(10)

where n, is a depolarization factor in the direction of an
electric current. Its generalization for the case of arbi-
trary direction is well known and is not considered here.

When g, (0 the optimal shape of a formed nucleus
corresponds to a maximum of ig, i. If the conductivity of
a nucleus o, is less than that of the bulk of a material

g, )0, then the optimal shape of a formed nucleus corre-
sponds to the minimum of a coefficient g, . Expression
(9') shows that minimum of a geometric factor g, is
achieved for the nuclei flattened along the axis (n, —1).
Such nuclei have to be separated from each other by a
distance which is considerably higher than their transver-
sal dimensions. In the opposite case, the distribution of
the electric current will be completely difFerent and closer
to that in a cylinder with low effective conductivity. The
longitudinal dimensions of these nuclei during their evo-
lution have to remain considerably smaller than their
transversal dimensions. Therefore formation of such nu-
clei cause stratification of the conductor into separate
cylinders. Since at this stage we consider only those nu-
clei which during their evolution cause the transition of a
whole conductor into the new phase, the formation of nu-
clei flattened in the direction of the axis is not analyzed
here. On the other hand, if one considers the feasibility
of formation of the long threadlike nuclei with longitudi-
na1 dimensions b &)po, the logarithmic factor does not
enter into expression (9) (see below and also Ref. 1). The
ponderomotive barrier then becomes considerably lower
than that for nuclei with diff'erent shape, e.g., for a spher-
ical nucleus. Therefore in the following it is assumed that
the long-thread-type nuclei are most favorable for phase
transition to the phase with lower conductivity, if this
phase transition begins inside the conductor.

Expression (9) determines not only the renormalization
of the chemical potential' but also ponderomotive forces
applied to the center of mass of the nucleus (inhomo-
geneity):

I P1j=, P=l ——
Kpo po

The change in the energy of a magnetic field with
respect to a homogeneous conductor can be determined
similarly to expression (1), 6W= Wo —W.

Using expressions (11), b, W can be represented as fol-
lows:

1 IhW=
2 4 [Ft|Wii+F22W22+2F|qW|2],

2c po
(12)

where coefficients F;k and W, are determined by the ex-
pressions

Ek= 1— o =o,(1—P)+o 2P,

With the accuracy of terms of order po/L, we find that
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Consider a hollow cylindrical conductor with external
radius Po and conductivity 0.2, with an internal coaxial re-
gion of radius p, and conductivity o, . According to (3)
the electric currents in these two cylinders are deter-
mined by the following expressions:

Jf71 J&2

o,(1—P)+o2P ' o &(1 —P)+o'2P

where

Expressions (9) and (10) show that if the conductivity
of a nucleus is higher than that of the surrounding medi-
um g(0 then particles are forced to the center of the
conductor. In the opposite case g) 0 the nuclei are re-
pelled to the periphery of a conductor. Analysis of sys-
tems where the dynamics of inhomogeneities under the
action of ponderomotive forces has a significant efFect is
of interest in itself. For processes occurring in exploding
wires, and for the characteristic times involved, the

p1 epo+—ln
2 4L2

12 7p 2LP1P0 ln
Poe Po

1/2 + 2'" 2L

Using the identity

F„(1 p) +F22p +2F,2p(—l —p)=—0,

(13)
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we find the following formula for 5W:

dW= (1—P) ln(1 —P)P(P)+ f(P) P(1 —P}
C 0'

where

(14)

01
P «min 1,

02

For the calculation of ET2, we used the condition

02
1 —p «min 1,

0'1

(20)

(21)

f(p) =
o(p)

For p=O and 1, EW=O, which corresponds to the ex-
tremum change of a magnetic energy as a function of P
during the phase transition of a conductor.

Equation (14) was derived under the assumption that
the volume of the conductor does not change during the
phase transition. In compliance with this assumption, in
the following we consider the specific volumes of phases
v, =v 2. Then the dependence of the thermodynamic po-
tential upon the parameter p is given, according to (1), by
the following formula:

@(P)=P(P)No, P(P)=P)(1 P)+Pg+P—vof(P),

(15)

where No is the number of particles in the system, p, and

p2 are chemical potentials of phases 1 and 2, respectively,

p =I /rrpoc, and

The difference 1 —p is considered sufficiently large so that
the surface energy can be neglected.

When conditions (20) are satisfied, expressions (16) and
(18}yield

pl p2 p vo pl gl 0'1
(22)

Expanding p1 and p2 in the vicinity of the equilibrium
state of a current free conductor pz=p~„and keeping the
linear terms, we find that

PmVO 02
hT, =

$2 $1 &1
(23)

where $, and $2 are specific entropies of phases. Similar-

ly, using expressions (16), (18), and (21) for the determina-
tion of 6T2, we find

0'2 CT 1
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f(P)=(g(P)) (1—P) ln(l —P)+g(P) P(1 —P) .
o(p)

(16)

or
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T2=
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Remaining in the framework of the thermodynamic
approach, Eq. (16) can be supplemented by the following
relation: '

Note that when the high-temperature phase has a
lower conductivity,p, f

~p
=Pl P2 Pmvo

gp
~

o; )ok if s; &sk (i, k =1,2),
then the following relations are valid:

(25)

which describes the phase transition at the interphase
boundary in terms of macroscopic kinetics. The equilib-
rium position of the interphase boundary P' at fixed tem-
perature and electric current is determined by condition
P=O, or

I 1 I 2 PmVO (18)

Define temPerature hT& =T& —To, at which P =0,
and temPerature ETz =T2 —To, at which P' = 1, where
Tp is phase equilibrium temperature for a current free
conductor. Evidently, in the temperature range

ET=5 T)(1 y)+ET2y, 0 y—1 (19)

the equilibrium position of the interphase boundary p*
occurs inside a conductor. Condition (19) determines the
temperature range where there exists stable or unstable
layered states of a conductor.

In order to determine ET„we take into account that
since p is considered small, the following condition is
satisfied:

0L PmVO S
~T1L ~T2L & ~T2L TO0.S 0L

(26)

where ho=To(si —ss) is the latent heat of the phase
transition.

Expression (26) implies that a liquid phase can be
stable at a temperature lower than a melting point if it

b, T, &0, b, T, )0.
Consider now the processes when conditions (25) are

satisfied, and let us analyze two cases. In the first case
the external phase has the lower conductivity and the
internal phase the higher conductivity. In the second
case the external phase has the higher conductivity and
the internal phase the lower conductivity. For conveni-
ence, in the following we denote a low-temperature and
high-conductivity phase by index S, and a high-
temperature and low-conductivity phase by L, referring
to solid and liquid phases, respectively.

Expressions (17) and (18) imply that when the external
phase is a liquid phase (cr2=oL, cr, =o s ) the equ. ilibrium
position p is stable. Expressions (23) and (24) yield
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occupies the external region of a conductor. It is irnpor-
tant to note that here we mean the stability with respect
to the phase transition at the interphase boundary, but
not the stability with respect to the formation of internal
solid nuclei. The latter case is considered separately
below.

Consider now the second case, when the liquid phase
occupies the internal region of the conductor. Then the
equilibrium position of the interphase boundary p' is un-
stable. Thus at temperatures b T,s & b, T & b, Tzs in a
conductor with external solid crust with p) p*, the solid
phase will eventually spread over all the conductor. If
the position of an interphase boundary p& p', the con-
ductor will be completely occupied by the liquid phase.

It can easily be seen that the temperature b, Tzz, which
corresponds to the total instability of externally located
solid phase, is lower than the temperature b, T2L corre-
sponding to the stable internally located solid phase. Ac-
tually this the same situation which was analyzed in de-
tail in Ref. 1, and which can be summarized as follows.
If the phase transition propagates only from the axis of
the conductor, then melting begins at temperatures
4 T2s )0, since at temperatures b T & 5Tzs internal
melting requires the formation of a macroscopic seed
liquid volume. The probability of nucleation of such a
seed via fluctuations is negligibly small. Until
b, Tzs & STAN&, the liquid phase formed inside the conduc-
tor and propagating toward its surface is unstable with
respect to the formation of internal solid nuclei.

In this investigation primary consideration is given to
the case when melting propagates from the surface inside
the conductor. The characteristic feature of this process
is that the liquid nuclei are not formed inside the solid
phase until the temperatures up to -AT2&. Neverthe-
less, considering the surface to be a macroscopic "nu-
cleus" we assume that melting can begin directly at the
surface skipping the nucleation stage. In order to
proceed further, we must determine the work of nucleus
formation in a layered conductor.

IV. NUCLEATION IN A CONDUCTOR
WITH DEVELOPED INTERPHASE BOUNDARY

considered in the Appendix, arrive at

hW, , =2p V, g,, (28)

Calculating the integral in (28) over the volume of the
conductor, we Snd that if a nucleus is formed inside the
internal cylinder (b, 8';, =68'&, ),

b, Wi, =2p V, gi, I'i,

4z, (L —z, )
I 1=in
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Po 0' po
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where a «p, &po(1 —P).
For a nucleus formed in the external cylinder,

0'2
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CT
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2

Po

2
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2
Po

where p, )po(1 —P).
When p~0, i.e., only the internal phase exists, expres-

sion (29} recovers formula (9}. Similarly, when P~ 1, ex-
pression (9) recovers formula (30). Expressions (29) and
(30) allow us to determine the size of the critical nucleus
for a layered conductor as was done in Ref. 1.

Assume that temperature bT satisfies condition (19)
where b, T, and b, T2 are determined by expressions (23)
and (24). The size of a critical nucleus of a liquid phase
inside the internal solid phase is

Denote the magnetic energy of a layered conductor
calculated in above by Wo. The work of nucleus forma-
tion is determined as before:

6W;, =Wo —W;, ,

a1L =

PS PL

2aoo

b, 8'1a

No

20!

p f)&1.(x P)
' (31)

where W,, is a magnetic energy after formation of a nu-
cleus a in the ith (i=1,2) cylindrical layer. Assuming
that a nucleus is formed far from the surface of a conduc-
tor and at a distance d ))a from the interphase bound-
ary, we can use solution (4) with the corresponding pa-
rameter

where No is the number of particles in a nucleus, a is the
coefBcient of the surface tension, and

20 g
8, =M(x) —I,

(o; —o, )(1—n, )

2 o,n, +o, (1 n,)— (27)

o =oz(1 P}+orP, —
2L 1L

where o.
, conductivity of a medium where the nucleus is

formed. Taking (11) into account, and as before neglect-
ing the self-inductivity of the nucleus and the small term

oz 1 (os —o.}(1—n, )

og
' " 2 l7, n, +lTs(1 n,)—
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4z, (L —
zg )

I )1(P)=in 2 +P,
Po

~s+ [P(1—P, }+(1—P)ln(1 —P)],
2

pa=1—
0

Po

The minimum temperature Tl" at which such nuclei
may already form is determined from the condition

2'
pp&1 —P .

p eu(xP)
(32)

The characteristic value of the parameter 2a/p for
exploding wires (2a/p ) —10 cm. Therefore the con-
dition (32) can be rewritten as 8,L =0 with a good accu-
racy. For the minimum temperature of internal melting
b, TP', the latter condition yields

ET2s 2o's P~ vp 2ws
T'l."'=

1
g,.r„=Tp g,.r„. (33)

CT p o'

where

2A

p (}2s(xP. P)
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2c7L
82s(x P P) M(x) k2 r2s(P P)
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&02o, , no+(1ln,)—

4z, (L —z, )
I 2s =ln +P,

Po

~L ~S+ (1—P}[ln(1—P, )+P, ] .

Relations (32) and (33) imply that except for the special
case which was considered in Sec. I, ET'I"') b, T2s and
therefore the minimum temperature for the onset of melt-
ing of a conductor from inside is attained for long nuclei
with length b »po aligned in the direction of electric
current. Then (with obvious stipulations) b, T2s can be
considered the temperature for the internal melting of a
conductor. This is exactly what was assumed in the pre-
vious investigation, ' where this temperature was denoted
by a2, . From expressions (31}and (32) it follows that the
formation of the interphase boundary increases the pon-
deromotive barrier and causes a positive shift of the melt-
ing temperature ET@'.

Similarly, one can determine the temperature of forma-
tion of a liquid nucleus in an external solid phase b Tg "',
and also the temperatures of formation of solid nuclei
ETs"' and ETs"' in internal and external liquid phases,
respectively.

To advance the investigation of melting from the sur-
face, which is our main goal, we now determine the tem-
perature of formation of a solid nucleus in an external
liquid phase ETs"'. From the formula for the critical size
of a nucleus (30), we find that

The maximum temperature at which solid nuclei still
may appear in a liquid phase can be determined from the
condition 82s =0, or

pm Uo 2(7L~Ts"'= Tp 4.r2s ~

o 0
(35)

Expressions (34}and (35) show that, at a given value of
P„ temperature ETs"' is higher when an interphase
boundary appears. At a given value of P the temperature
b, Ts"' is at a maximum for P, ~P. The maximum tem-
perature when formation of solid nuclei inside an external
liquid phase is still possible can be determined from the
following formula:

gT= —2T P U 0 CT

~p cTa + 20L ) 8
Po

(36)

Due to the logarithmic coefficient this temperature can
be quite high —To. Thus using data from the experi-
ments with exploding wires for W, Al, and Cu, the
values of a parameter r=(p Up/Ap) for p =2.85 Kbar
are &~=0.08, &A&=0.27, and ~cu 0. 15, respectively.
For a conductor similar to that used in Ref. 6 with a
cross section area S=0.14 mm and length L =4 cm, the
logarithmic factor ln[(L /pp)e] =11.5 is quite large, and

compensates for the relatively small values of the param-
eter ~.

V. CONCLUSIONS

Summarizing our obtained results, in the following we
present a possible picture of the dynamics of nucleation
in current-carrying conductors. Assuming that melting
from the surface can begin without formation of nuclei of
a liquid phase, we can consider that melting begins at
temperature ET,I Tp(p vp/kp)(1 y). Up to this
moment the electric current attains its maximum value
and the characteristic temperature 4T&L which can be
attained in the experiments with exploding wires similar
to hT, L

——0. 1To. The liquid phase is separated from
the solid phase by an interphase boundary which relaxes
to its equilibrium value P'(T). However, in this process
solid nuclei may form inside the liquid phase. The
characteristic size of the critical nucleus a2s is deter-
mined by expression (34), where one may consider
M(X)=0 (ET=0). For the parameters of the experi-
ments, the size of the critical nucleus a2s -10 cm and
the nucleation rate at this stage can be quite high. Dur-
ing nucleation the released latent heat of the phase transi-
tion compensates for the cooling of the interphase bound-
ary during melting and thus promotes melting. At the
same time it smooths the temperature gradients in the vi-
cinity of the interphase boundary, which delays forma-
tion of shock waves.

As melting continues and the temperature approaches
AT2s, formation of long liquid threads at the axis of the
conductor theoretically becomes possible, and phase tran-
sition inside the conductor also begins. If threads with a
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length much longer than the radius of a conductor are
formed, they grow toward the surface of a conductor.
However, these liquid domains are unstable due to forma-
tion of internal solid nuclei inside them. This is the situa-
tion in which none of the phases is stable, that was ana-
lyzed in the previous investigation. ' In the case in which
there is no mechanism which can support such coherent
nucleation of long liquid threads, the temperature for the
formation of liquid nuclei is given by formula (33), and
6TI"' can be higher or lower than 5T2L . When
b, Tt"'& ET2L, the solid phase melts without the forma-
tion of internal liquid nuclei. In the opposite case, the
solid phase will be dispersed into the liquid nuclei.
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Use the following indefinite integral:
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APPENDIX

Estimate the second integral in formula (6):

3Q

u2+ A2

sgn(u )

A.

1

(u 2+ A 2)3/2

—3/2

1+
' —1/2

1+
Q
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—a) W, (r)dr .3p —1
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Since 21(~r—r, ~

—a)=1—g(a —
~r

—r, ~), and taking into
account that due to the factor 3JLt

—1 the integral over
the spherical nucleus with the accuracy of terms of order
a/po vanishes, integration in (Al) can be extended over
the whole volume of a conductor. We rewrite (Al) as fol-
lows:

Inspection of the expansion the right-hand side of (A3)
into a power series of a parameter A, /u, shows that the
zero-order terms vanish. The logarithmic singularities at
the ends of the integration interval associated with the
term ln(u+u, )(1—u —u;) are only virtual, since at the
end of the integration interval one has to use expression
(8) instead of (7), and in any case their contribution can-
not compensate for the order of magnitude po/I. .
Therefore the ratio of integral (Al) to the first integral in
(5) is of the order of po/l. .
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