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Galvanomagnetic properties and band structure of monoclinic SrAs3
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The unusual galvanomagnetic properties of the monoclinic semimetal SrAs3, first-order longitudinal
Hall effect and magnetoresistivity in Hall geometry, are quantitatively described within a two-band mod-

el. The ten model parameters for T~O K are obtained from a fit to 14 low-field coefficients in combina-
tion with high-field Hall data and Shubnikov-de Haas oscillations. The temperature variation of the
galvanomagnetic coefficient can be explained most convincingly with three temperature-dependent pa-
rameters, i.e., electron and hole scattering times and electron concentration, while the anisotropy ratios
are kept constant. An energy gap of 38 meV for the temperature activation of the electrons is derived
from this procedure.

I. INTRODUCTION

A first-order longitudinal Hall effect (LHE) has recent-
ly been observed for the monoclinic compounds SrAs3, '

CaAs3, and AuTe2. The geometrical arrangement for a
LHE is characterized by a magnetic field parallel either
to the current or the Hall field. In principle, such unusu-
al galvanomagnetic coefBcients may exist in low-
symmetry crystals. It has been found, however, that the
occurrence of significant LHE coeScients is restricted to
temperature ranges representing two-band regimes.
SrAs& represents an ideal material for such investigations
since its conduction type changes from two-band
behavior at low temperatures to predominantly n type at
300 K due to an increase of the electron density. The ac-
companying decrease of the mobilities leads to a small re-
sidual resistance ratio p(300 K)/p(4 K) of about 4. The
experimental observations have been interpreted in the
following way: A single band with monoclinic symmetry
cannot produce a significant LHE. A necessary prere-
quisite is the existence of two quasiellipsoidal bands
whose principal axes are rotated with respect to each oth-
er.

The above interpretation of the microscopic origin of
the LHE has been verified in a recent theoretical investi-
gation, where different model band structures were used
to calculate the resistivity and Hall coeScients of SrAs3
in the limit T~O K. It was shown that a single-band
model based on a realistic Fermi surface with monoclinic
symmetry cannot reproduce the magnitude of the experi-
mentally observed low-temperature values for the LHE
coef6cients. However, a quantitative description of the
measured LHE can be obtained on the basis of an ellip-
soidal two-band model. In this case, the electron and
hole concentrations were derived from earlier
Shubnikov —de Haas (SdH) data performed on a different
batch of samples. The remaining eight mobility parame-
ters (four for each band) are exactly fitted to the eight
measured resistivity (three) and Hall (five) coefficients.
As has already been noted in Ref. 3, the parameters de-
duced for the electron band contain two severe incon-
sistencies. The first problem is concerned with the deter-

mination of the electron concentration. In a first approx-
imation, this number was derived from a weak SdH oscil-
lation, assuming a spherical Fermi surface. This as-
sumption is in clear contrast to the extreme anisotropy
obtained from the calculation. The other inconsistency is
related to the conductivity anisotropy in the ab plane.
The fit result of a 3:1 ratio for the T~0 K electron con-
ductivities of Ref. 3 (Table IV) is incompatible with the
experimentally determined 1:4.5 conductivity ratio at 300
K where electronic conduction is dominant.

In this paper we report on further experimental investi-
gations of the galvanomagnetic properties of SrAs3 to
solve the above-mentioned problems. We have measured
several magnetoresistivity (MR} components in order to
obtain an overdetermined nonlinear system for our fitting
procedure. Reliable numbers for the carrier concentra-
tions have been obtained by reexamining the size of the
hole Fermi surface in addition to the high-field limit of
the Hall coefficients (which gives p-n} on the same set of
samples as investigated in Ref. 1. We find values difFering
from those used for the calculations in Ref. 3. The
diSculties with the determination of the signs of the
LHE coeScients have been outlined earlier. ' Our recent
calculations gave some indications that the LHE corn-
ponents p», and p232 should differ in signs contrary to the
values given in Ref. 1. We have again carefu1ly checked
these signs and we indeed find that p», is negative while

p232 has been confirmed to be positive.
The components of the MR tensor which have been

calculated for monoclinic symmetry are discussed in Sec.
II. The voluminous expressions are listed in the Appen-
dix. Section III summarizes the additional experimental
results. %'e present SdH measurements, high-Geld Hall
data, and an experimental method for the exact deter-
mination of MR coefficients in Hall geometry.

In Sec. IV, we describe the two-band fit for T~O K.
We use 14 low-field coefficients together with information
about the carrier concentrations from the high-field mea-
surements. The fit gives a satisfactory agreement with
the measured values. In particular, the anisotropies for
the hole and the electron band reproduce very well the
hole efFective mass values from the temperature-
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dependent SdH data and the (electron) conductivity an-

isotropy at 300 K. The remarkable success of the fit for
T~0 K gave us the confidence to model the temperature
variations of the galvanomagnetic coefficients using a
minimum number of temperature-dependent parameters.
Thus we keep all anisotropies and the hole concentration
at the T =0 K values. The temperature dependencies of
the measured resistivity and Hall coeScients can be
displayed semiquantitatively by fitting isotropic, energy-
independent hole and electron relaxation times and the
electron concentration. The remaining deviations be-
tween experimental and theoretical results are discussed
in Sec. VI.

II. T%0-SAND MODEL
FOR MONOCLINIC SYMMETRY

sor elements. SrAs3 crystallizes in the space group
C2/ni. In the notation of the second setting, b is the
twofold axis and the monoclinic angle P is situated be-
tween the axes a and c. Following the usual nomencla-
ture the orthogonal laboratory system x], x2, x3 is ad-
justed with x2 parallel to a and x3 parallel to b T.he mo-

bility tensor p is then expressed by

P» P]2

P)2 Pu
0 0 P33

The relation between current density j and electric field E
in the presence of an external magnetic field B is given
for a single band by the Drude approximation

j=qnv=qn[p(E+vXB)] . (2)
The simplest version of a two-band model for mono-

clinic symmetry based on the assumption of energy-
independent relaxation times has been outlined in Ref. l.
Within this model LHE coefficients are obtained as a
consequence of the existence of nondiagonal mobility ten-

Solving this equation for an arbitrary direction of B gives

j=o(B)E,
with

P33PB ] +P»

P33PB]B2 PB3 +P]2

P33PB]B2+PB3+P

P33PB 2 +P22

P33P ] 3 P33P» 2 12P33 ] 33P 2 2P33 ] 2P33 2

P33P ] 3 P33P ]]B2 +P]2P33B]

P33P 2 3 P22P33 ] P ]2P33 2

P33PB 3 +P33

(4)

where the abbreviations

2P =P]]P22 P]2

and

&totE '

The tensor of the total specific resistivity p„, follows
through inversion of o„,. The tensor elements p;i(B)
contain polynomials in B„B2,and B3 up to order 11 in
the numerator and up to order 10 in the denominator.
The low-field galvanomagnetic coefBcients are now ob-
tained from the expansion

P; (B)=P;,. +P~I Bk+P kIBkB(+0{3). (8)

The Hall coeScients are simply determined from the
first-order terms of the numerator by setting all B;=0 in
the denominator. The calculation is more complicated
for the MR tensor elements. First, the even terms in B
up to order 2 are retained. Then the respective
coefficients for the zero-field resistivity are substracted.

N = 1+P]]P33B2+P22P33B] +PB3 2P]2P33B]B2

have been used.
For the case of the existence of two bands, the indivi-

dual contributions of holes and electrons have to be add-
ed:

( ~(h)+ o(e) )E

I

Finally, all B, are set to zero in the common denomina-
tor, and the magnetoresistivities are given by the
coefficients of the second-order terms in the numerator.

The two-band expressions for the five independent Hall
coefficients and for selected MR tensor elements are
presented in the Appendix. All results have been careful-
ly checked by applying symmetry considerations (inter-
changing the indices I and 2, interchanging band types)
and by examination of the one- and isotropic two-band
limits.

Within the framework of our model the LHE
coefficients in monoclinic symmetry are explained by the
existence of nondiagonal mobility components. Consid-
ering the MR tensor the same argument holds for all
symmetry-allowed coefficients p;Jk& with i' and kl
and Ii,j I XIk, l I (MR coefficients like pi2, 2 are allowed
even in cubic symmetry). The two-band model produces
two special relations in addition to the conditions follow-
ing from symmetry. In particular, the longitudinal MR
component p3333 turns out to be zero, while the existence
of p»» and p2222 relies on the nondiagonal mobility. The
other special relation is given by identities equivalent to
P233] P]332-

III. EXPERIMENTAL RESULTS

We have reexamined and supplemented our earlier
measurements on SrAs3 (Refs. l and 4) by the following
investigations: (i) verification of the signs of the LHE
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coefficients; (ii) high-field limit of the transverse Hall
effect (THE); (iii) ineasurement of selected magnetoresis-
tivity tensor elements; and (iv) recheck of the size of the
Fermi surface from SdH oscillation periods.

A. Hall efFect

The determination of the sign of a LHE coefficient
yields an additional complication in comparison to THE
components whose signs are completely fixed by the
direction of two crystallographic axes. The sign of a
LHE component depends on the chirality of the crystal-
lographic coordinate system with respect to the laborato-
ry system. The absolute direction of the c axis can be
determined using a four-circle x-ray diffractometer. The
x-ray beam has to be focused on the edge of the sample
because of the strong absorption of the mm-sized single
crystals. We found a much simpler method by using the
electron channeling mode of a scanning electron micro-
scope. The c-axis orientation can be derived from
characteristic electron channeling patterns once the pat-
tern has been identified from preoriented samples. We
have investigated the signs of the I.HE component on a
series of samples oriented with the above-mentioned
method. We can confirm our earlier result that pp3$
should be positive. For p&3&, however, our earlier assign-
ment has to be revised; p&3& is definitely negative. Thus
one of the experimental values used for the fits in Ref. 3
was wrong by 200%%uo.

In the case of closed hole and electron orbitals which
should apply for the semimetal SrAs3, the difference p —n

of the carrier densities can be obtained from the high-
field THE:

p; k(B~ ~ ) =—l(p —n), (ijk) C I(321),(132),(213)] .
1

(9)

Figure 1 shows magnetic-field-dependent measurements
of the THE coefficients p&i, and p$3$ These coefficients
have different signs for B-+0 T. At high fields, they both
converge to the same value of about +100 cm /C which

corresponds to p —n=6X10' cm . This result clearly
indicates that the density values used in Ref. 3 cannot be
correct. The structure superimposed on the Hall curves
are due to SdH oscillations and will be discussed below in
context with the MR data.

B. Magnetoresistivity

p(B,a) =pi&&B cosa+pi33i(B sina)(B cosa)

pp3 JB cosa +—,
'
pp33]B sin2a (10)

This measurement geometry offers two advantages. First,
the LHE coefficient pp33 for a=90' vanishes and the a
scale can be determined exactly from the THE. Second,
no further B term is contained in Eq. (10) since pz», and

pp333 are identical to zero. However, a small misalign-

ment of the voltage contacts has to be taken into account.
This leads to an admixture of contributions parallel to

For monoclinic symmetry the MR tensor contains 20
independent elements. In practice, not all the elements
can be determined experimentally. The MR coefficients

p;Jk& with i =j =1 cannot be measured since the easy
cleavage plane does not allow for the preparation of sam-
ples with the long side parallel to direction 1. A reliable
determination of p;Jk& with i,j =1,2 or k, 1=1,2 is com-
plicated by the fact that an unambiguous substraction of
the background is not possible since p, &40. Finally, for
the measurement of p»» and pi3$3 the necessary rotating
sample holder was not available. Thus we are left with
eight measurable MR tensor elements in addition to three
resistivities and five Hall coefficients.

The coefficient pp33i represents a MR in "Hall
geometry" since it contains a magnetic-field component
perpendicular to the voltage-current plane. For the mea-
surement of this coefficient we proceed in the following
way. A sample with the current in direction 3 and volt-
age contacts parallel to direction 2 is rotated around
direction 2, with a denoting the angle between the mag-
netic field and direction 1 [see Fig. 2(a)]. U and I are re-
lated by the angle- and field-dependent resistivity p(B,a):
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FIG. 1. Magnetic-field dependence of the THE coe%cients p13z (left side) and p321 (right side) measured at T = l. 5 K.
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U direction 3. As shown by the measurements, this back-
ground can be considerable since it contains the zero-field
resistivity p33 and the normal MR coeScient p33I] ..

pzG(a)=p33+p33]]B cos a+p3333B sin a2 2 2 2

P33+ (P3311+P3333 B

+ (P3311 P3333)B
2 2

The even part in B of the measured voltage is now fitted

by an expression of the form

UM(a) = U]]+ U, cos[2(a+al )] . (12)

30-
(b)20—

With —a& determined from the Hall voltage [odd part in

B, Fig. 2(b)], the MR coefficient p2331 is given by the value
of the oscillating part of U]]r at the angle a/331 45' —air
[Fig. 2(c)]. We find a value of

P233I
=—5 X 10 (13)

CVs

which cannot, as usual, be normalized by the correspond-
ing zero-field resistivity since p23=0. To our knowledge,
we present here the first measurement of a MR coefficient
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FIG. 2. (a) Geometric arrangement for the measurement of
the MR coeScient p233I (b) Angular dependence of p32l derived
from the odd part in B of the voltage U. (c) Even part in B of
the voltage U (points). The curve represents a St according to
Eq. (12}.P$33] is evaluated from the oscillatory part of the volt-

age UM atua
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FIG. 3. (a) SdH oscillations of p» (B& ) at T= 1.5 K. (b) Os-
cillating part of the curve in (a) as a function of 1/B.
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TABLE I. Two-band fit parameter for T~O K.

n, p[cm '] cm
vs

cm
22 V

cm
F33

cm'
912

holes
electrons

1.3x 10"
0.7x 10"

59 700
—53 000

13 500
—108 000

256 000
—356000

8700
50 100

in Hall geometry.
At high magnetic fields the MR coefficients show SdH

oscillations as a function of 1/B. The oscillation period
is given by the cross sections of the Fermi bodies perpen-
dicular to the applied field. The size of the Fermi bodies
is fixed by the carrier density. Since we had some doubt
that the density values determined in Ref. 4 on an early
batch of samples with lower mobilities were applicable in
the present case, we remeasured the oscillation period for
a definite field direction [Fig. 3(a)]. Plotting the oscillat-
ing part of p2i versus 1/B [Fig. 3(b)], two different oscilla-
tions with periods P of 5 T and about 2 T can be
identified. The lower frequency is assigned to the motion
of electrons. Then the high-frequency oscillation should
be connected with the hole Fermi surface. This value has
to be compared with 11.75 T, which has been found in
Ref. 4 for the same orientation. Thus the hole density
has to be reduced by a factor (5/11.75)~~ =0.28. We
obtain p =1.9X10' cm when again we postulate the
existence of two ellipsoidal hole Fermi bodies connected
by the twofold axis. Combining the results from SdH and
high-field Hall measurements, we use p =1.9 X 10' cm
and p —n =6X10' cm as starting values for the two-
band fit described in Sec. IV.

IV. MODEL PARAMETERS FOR T~O K

We use 14 low-field galvanomagnetic coefficients (three
zero-field resistivities, five Hall coefficients, and six mag-
netoresistivities) for the determination of ten two-band

model parameters. In addition, we fix the difference in
densities at p —n =6X 10' cm . For the least-squares
fit we apply the routine E04UPF which is contained in
the NAG Fortran library. The calculations are per-
formed on a Convex 3820.

For the mobilities we use starting values on the order
of 10 cm /Vs. Such values are obtained from the ap-
proximate relation for the low-field magnetoresistivity:

Ap =()uB)' . (14)
P

Furthermore, the mobility tensors have to be positive
definite. In the course of the calculations we realized that
the least-squares routine was not able to move the densi-
ties away from their starting values. Therefore, we varied
manually the hole density in the range from 1 X 10' to
2 X 10' cm while keeping the difference p —n constant.

The best fit with a mean deviation of 23% is obtained
with the parameters listed in Table I. In Table II, we
compare the calculated with the experimental values.
The most important result is that the correct sign is
found for all Hall coefficients. With two exceptions the
experimental values are reproduced by the two-band
model within a deviation smaller than 20%. The MR
coefficient r3322 is underestimated by a factor of 3. The
deviation is even larger for the longitudinal MR
coefficient r2222 which, however, would be zero in an iso-
tropic model. In contrast, the coefficient pi33i which de-
scribes the MR in Hall geoinetry shows a small difFerence
between calculated and experimental values.

TABLE II. Comparison of experimental galvanomagnetic coefficients with calculated values using the band parameters listed in
Table I.

experimental
calculated
rel. error

p„[Qcm]

5.22x10
5.74x 10-'
0.10

pi2 [Qcm]

5.95 x 10
7.0x 10
0.18

p33 [0cm]

1.21x10-'
1.08 x 10
—0.11

P132
cm
C P»3

cm
C P»1

cm'
C P131

cm
C P2»

cm
C

experimental
calculated
rel. error

12.3
10.5
—0.15

—9.2
—8.1
—0.12

—29.0
—23.2
—0.20

—11.6
—9.5
—0.18

17.4
20.2
0.16

experimental
calculated
rel. error

cm4
3311 V s

8. 15X10
7.74x 10'
—0.05

cm4
3322 2 2V s

3.45x 1O"
1.07 x 10'
—0.69

cm4
2211 V s

1.74x 10"
2.05x10"
0.18

cm
2233 --2 2V s

1.99x 10'
2.23 X 10
0.12

cm4
2222 w w2V s

8x 10'
O. 6x 1O'
—0.93

CIn'
f2331 C V

—5X10
—4.95 X 10
—0.01
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The parameters for electrons and holes obtained from
the two-band fit for T~0 K can be checked individually

by examining whether they are consistent with other ex-
perimental results. The assumption of isotropic relaxa-
tion times implies a linear relationship between mobility
and inverse mass tensor:

„c,c*
31'

10'

p =q~m (15}

Hole effective masses have been determined earlier from
the temperature dependence of the amplitudes of SdH os-
cillations. There, the ratios eIectrons

m,* =20 and
m*

b

m*+
=6.3m'

b

(16)
FIG. 4. Cross sections of the electron and hole ellipsoids in

the ac plane to illustrate the relative orientations. The ellipses
are not in absolute scale.

have been found. These values agree well with the corre-
sponding mobility ratios

(A) (h)
F33 F33

(~)
=19 and (~)

=4.3 .
922 P&i

The hole relaxation time r'"' as given by

'"'m '
@33mb

e
(18)

2@=arctan
2p

Pi& P22

amounts to r'"'=3.6X10 ' s, where we have used

m& =0.0245mo from Ref. 4.
The electron band parameters can be tested with the

resistivity anisotropy at room temperature. At 300 K,
the three THE coefficients have a nearly identical value
of —1.1 cin /C, which is indicative of a predominant
electron conduction. Assuming a temperature-
independent anisotropy, the 300-K resistivity anisotropy

pzz/p33 4. 5 should be produced from @33/p2$ which
amounts to 3.3. This is more convincing evidence of the
applicability of the two-band model.

The existence of nondiagonal mobility tensor elements

p, 2 corresponds to hole and electron ellipsoids whose
principal axes are rotated with respect to the laboratory
system in the ac plane. The rotation angle gr is obtained
from the relation

tally determined periods and the fitted mobility tensor
components. We obtain p = 1.3 X 10' cm and
n =0.5X10' cm, in good agreement with the values
given in Table I.

V. TEMPERATURE DEPENDENCE
OF THE BAND PARAMETERS

Starting out from the T~O K fit results, we try to
model the temperature dependence of the band parame-
ters based on the assumption of isotropic relaxation times
r'" and ~'"' Negl. ecting second-order effects this means
that the mobility anisotropies and are due to correspond-
ing anisotropies of efFective masses and, thereby, do not
change with temperature. As a further approximation
the hole concentration is fixed at the low temperature
value of l.3 X 10' cm 3. The remaining three
temperature-dependent parameters are 6tted to 12 gal-
vanomagnetic coeScients up to 70 K. For T & 70 K, we
use only resistivities and Hall coefficients since the MR
becomes too small to be measured accurately. The fit re-
sults are summarized in Fig 5. The. variation of the gal-
vanomagnetic properties of SrAs& with rising tempera-

I4-
3-

4m

+PnPii

3/2 ' 3/4
~ @22+@&&tan 8

@33(1+tan 8)

(20)

Figure 4 shows the relative positions of the elliptic cross
sections in the ac plane. The absolute sizes are not in
scale.

Equation (15) and the assumption of ellipsoidal Fermi
bodies leads by simple geometrical considerations to a re-
lation between the volume of the Fermi bodies and their
cross section in the a 'b ' plane:

I

E

~ W

0
E

10:5

6-
5-
4

10:g
6-
S-

I

0

:1018

-8

:1017

-8

I I

100 200 300
T [K]

O

~ ~

CD

Q
CD

A

where e=(n/2} y Using —n .=2[2/(2n) ]V and
S + =2me/AI' we can carry out a further cross cheek

by calculating the carrier densities from the experimen-

FIG. 5. Temperature variation of hole and electron mobili-
ties, and of the electron density as obtained by fitting the
temperature-dependent galvanomagnetic coefBcients. The hole
density p is fixed at the low-temperature value.
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FIG. 6. Comparison of calculated (symbols) and measured
(lines) Hall coeScients as a function of temperature.
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FIG. 7. Comparison of calculated (symbols) and measured
(lines) zero-field resistivities as a function of temperature.
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FIG. 9. Logarithm of the calculated electron density as a
function of 1000/T. The slope for T & 80 K corresponds to an
energy gap of 38 meV.

VI. CONCLUSIONS

ture is caused by a decrease of the hole and electron mo-
bility by a factor of 40, and by an increase of the electron
concentration factor of 50, between 0 and 300 K. The
temperature dependencies of electron and hole mobilities
turn out to be qualitatively similar. Assuming the same
temperature variation for both bands would not worsen
the fit significantly. Thus the description of the
temperature-dependent galvanomagnetic properties of
SrAs3 can be achieved in our two-band model with a
minimum number of independent temperature-varying
parameters.

Figures 6—8 clearly show that the measured tempera-
ture dependencies are remarkably well reproduced by our
simple model. In particular, the sign change of p»2 at
115 K and the vanishing of the LHE coeScients for
T & 150 K are described quantitatively. The increase of
the electron concentration with rising T may be due to a
temperature activation across an energy gap. Plotting
inn versus I/T (see Fig. 9) leads to an energy gap of 38
meV via the relation n -exp( E /2kT). —The electrons
must stem from a heavy-hole band whose contribution to
the conductivity is not significant. In summary, the tem-
perature dependence of the electrical properties of SrAs3
seem to be caused by an intrinsic high mobility hole
band, and by highly mobile electrons which are tempera-
ture activated from a heavy-hole band across an energy
gap of 38 meV.

10—
I

0
I

20

l

I
I

40
T tK]

I

60

FIG. 8. Comparison of calculated (symbols) and measured
{lines) MR coeScients as a function of temperature.

%'e have shown that a significant LHE as observed for
the monoclinic semixnetal SrAs3 can be explained quanti-
tatively within a simple two-band model. The model pa-
rameters for T~0 K which were obtained by fitting 14
galvanomagnetic coefficients are consistent with an ear-
lier determination of the hole mass anisotropies. The
temperature variation of the galvanomagnetic
coefficients, in particular the Hall coeScients, can suc-
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cessfuHy be modeled with three temperature-dependent
parameters. We do not believe that the remaining devia-
tion between experimental and calculated values can be
reduced within the framework of a Drude-type model.
Energy-dependent relaxation times and nonellipsoidal
Fermi bodies could improve the theoretical results.

The main result of our present work is the conclusive
evidence that the LHE in SrAs3 is indeed produced by
two bands with difFerently inclined ellipsoids. We con-
clude from the equivalence of the experimental results
that the same arguments can be used for CaAs3 and
Au Te2.
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APPENDIX

The two-band expressions for the zero-field resistivi-
ties, the Hall coefficients, and selected MR coef6cients
are given for monoclinic symmetry. We have omitted all
MR coefficients with the index combination i,j = 1,2 or
k, / =1,2. These terms are rather complicated and were
not considered for the measurements. Each band is de-
scribed by five parameters, the density n and the four mo-
bility tensor elements p11, p22 p33 and p12. Primed and
unprimed symbols are used to distinguish between the
two bands. The types of the charge carriers are defined

by the signs of e and e'. We introduce the following ab-
breviations:

o; =enp, , +e'n'p, ';, i = 1,2, 3

&12=enp12+e n p12

~=O'1O'2 O'12,
—2

60=o.36
2

P11P22 P12
I I I2=P11P22 P 12

The zero-field resistivities have the simple form

1
P1 1 & P22 & P33

O3

For the Hall coefficients, we obtain

1
p213

= (en—M +e 'n 'M'),

1
P132 g

[o' 12( P12P33+ P12P33 )
0

o'2( P11P33+ P11P33)]

P321 [o'12( np12P33+ n P12P33)
50

o'1( P22P33+ P22P33) ]

1
P131 g [ n n (P33 P33)(P22P12 P22P12) l

0

1
P232 [

'
'(P33 P33)(piip12 P11P12)]

0

The MR coefficients are given by

(A 1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

1
p3311 [«e'n'(p33 p33) [nep22M+n e p22M ]]o 360

1
p3322 ~ [ene'n'(p33 P33) [nep'»M+n'e'p»M']I

o 350

(A8)

(A9)

(A 10)

P2211 gg Iene n P33P33[(P22 P22)o I (P12 P12)+12]]'

1
P2222 gg [ P'33P33( + ) (P11P12 P11P12) ]

0

1
p2233 2 [«e'n'[«M'(piip12+piip22 —2pi~', ~»)+«M(p'»M —2p»M')

Q2

+e 'n 'M'(p
1
1M' —2P 1 1M ) +e 'n '(pi 1p'12+ p 1 1P22

—2P i~ izp 1 1 ) ]],
1

P3231 g (P33 P33)(P12M P 12M )
0

1
p3232 ~ ene'n'(P33 P33}(p'„M—p„M'),

0

1»»1= ~
' '(P33 —P33)(pz2M —P22M'),

0

(A 1 1)

(A12)

(A13)

(A14)

(A15)

(A16)

P3132 P3231 ~

The MR coefficients with i,j = 1, 1 are obtained from Eqs. (A11)—(A13) by interchanging indices 1 and 2.

(A17)
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