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The temperature behavior of the charge-density-wave ICDW) state in one-dimensional conductors is

studied within the framework of a mean-field approach using the exact solution of the self-consistent
equations. The properties of the CDW condensate are found to be dependent on the value of the dimen-

sionless parameter which includes an electron-phonon coupling constant and the density of electrons.
The thermal behavior of the CD% is shown to be similar to that of the Bardeen-Cooper-Schrie8'er {BCS)
superconducting condensate only at sufficiently weak electron-phonon coupling or relatively high elec-
tron density. In the case of comparatively strong coupling or sufficiently low electron density, the
correct mean-field consideration leads to violation of the BCS relation between the phase transition tem-

perature and electronic gap at T =0, and also to a variation of the CDW period, which decreases with

increasing temperature.

I. INTRODUCTION

Recent years have witnessed extensive exploration of
materials with quasi-one-dimensional properties. These
are, for example, conducting polymers (CH)„, organic su-
perconductors (TMTSF)zPF6 (TMTSF is tetramethyl-
tetraselenafulvalene}, and organic tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ) and inorganic
NbSe3, TaS3, and K003Mo03 compounds in which the
charge-density-wave (CDW} state is realized. The CDW
is a self-consistent state of the electrons and the lattice
distortion and has been widely investigated both theoreti-
cally and experimentally (see, e.g., the reviews in Ref. 1).
Frohlich pointed out that the CDW phase would not be
fixed relative to the laboratory frame in an ideal model
(translational invariance) and that it would be possible for
the CDW and the associated lattice distortion to move
along the chain, giving rise to current.

At present there are a lot of theoretical works which
have stressed various aspects of the Peierls-Frohlich
problem, in particular using the mean-field theory.
According to the Peicrls theorem and following
Frohlich, the CDW is often described as a harmonic
wave with the wave vector Q =2kF (k/; is the Fermi wave
number). In this case, the thermodynamics of the CDW
state closely resembles that of a superconducting ground
state. ' At the same time, it has been established that in
the adiabatic approximation some Peierls-Frohlich mod-
els have exact analytical solutions. ' ' The Frohlich con-
tinuum model is classified among such exactly solvable
models. ' ' The exact solution of the self-consistent
equations shows that the CDW is essentially a nonlinear
wave and makes it possible to understand more intimate-
ly the CDW properties and to explain some experimental
observations without requiring additional mechanisms.
Therefore, it is of interest to consider the temperature
properties of the CDW using the exact solution.

Belokolos and Pershko attempted to carry out this
consideration. In their paper the minimum of a thermo-

dynamic functional at a given chemical potential is stud-
ied. In the present paper the self-consistent state of a
one-dimensional electron-phonon system with a given
number of electrons is investigated in the framework of
the mean-field approach. It is shown that at sufficiently
low electron density or comparatively strong electron-
phonon interaction the CDW wave vector depends on
temperature, and the BCS relation is violated.

Of course, it is necessary to keep in mind that the
mean-field treatment of the Peierls transition is not en-
tirely correct, since it neglects the important role of one-
dimensional fluctuations. Due to fluctuations, the transi-
tion temperature is severely reduced as compared to the
mean-field value.

II. SEI.F-CONSISTENT STATE
AT FINITE TEMPERATURE

Let us consider a simple one-dimensional chain of
length L=Na (a is the lattice constant). Without al-
lowance for the Coulomb interaction, the state of elec-
trons, interacting with atom oscillations, is described by
the Frohlich Hamiltonian

~=/ E(k)a/, ak + —y y(q)a/(~a/, q~(bq+b q)
1

ko

+ g AQqbqb (2.1)
q

where ak (ak ) are the Fermi creation (annihilation)
operators of an electron with the wave number
k =2qrn IL [n =0,+1, . . . , +( ,'N 1),—,'N] and t—he —spin
o =+—,', b (b ) are Bose creation (annihilation) operators
of a phonon with the wave number q and the frequency
0, E (k) describes the dispersion law for electrons in the
conduction band, and the function y(q) is specified by the
short-range deformation interaction between electrons
and atomic displacements from their equilibrium posi-
tions. Since the simple chain is under consideration, the
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acoustic phonon mode corresponds to harmonic oscilla-
tions of the lattice. When the main role belongs to wave
numbers small compared to the vector of a reciprocal lat-
tice, k « m. /a, one can use the long-wave approximation

(II ~, —ve), —Ts, . (2.5')

Here the averaging is carried out with the density matrix

~.= X-({~,I, {;~}Ul{-,I)l~, )(~,l({-,)lU'.

y(q ) =2iya
q

' 1/2

4kE(k)=, fl =V. lql,
2m

(2.2)

(2.8)

where vq is the phonon occupation number, and summa-

tion is performed over all possible states of both phonons

{v J and electrons {8, ). Using the explicit form (2.8) we

find

where m is the effective mass of electrons in the conduc-
tion band, V, =av'w/M is the sound velocity in the
chain with the elasticity coefficient w and the atom mass
M, and y is the parameter of electron-phonon interaction.

The Hamiltonian (2.1) commutes with the operators of
the total momentum of the system, where

+ g iii( Qz —Vq }v l 4, ) —TSO,
q

F&gw({C, I, {vol)(+,lA, +W

(2.9)

P= g irikakt ak +g fiqbqtbq,
ko q

and with the total number of electrons

(2.3) w= —yx(n, vq—)lp, l',
q

%,= g '[E(k)—iiiVk —p)aJ a„

(2.10)

~.= Xak.ak. .
kyar

(2.4)

s=(a ~, vv ) Ts—, — (2.5}

The state of thermodynamic equilibrium at a given value
of the momentum P= (P) and a given electron number

N, = (A, ) corresponds to the minimum of the thermo-
dynamic potential

ken

X&(q—}(&,+~' , }ak.ak-1

With the unitary transformation

ak =Xitdk)Ai.

(2.11)

(2.12)

lq',.&=Ul{v, ) & (2.6)

which has the meaning of free energy in the reference
fraine moving with velocity V, where p is the chemical
potential and S is the entropy.

The basic approach used for the treatment of the self-
consistent state of quasiparticles which is described by
the Hamiltonian (2.1) is the adiabatic Born-Oppenheimer
approximation. Hence, the wave function (the state vec-
tor) of the system is assumed to be representable in the
multiplicative form in terms of the phonon and electron
variables

%,= g ( 4"i —p ) A it A i
A,a

(2.11')

To do this, the coefficients of the transformation (2.12)
must satisfy the relations

g Pi (k) ' [E(k)—Avk]fi(k )
k

we proceed to the new Fermi operators Az and Az
and require the operator (2.11) to be diagonal in the new
representation,

Here the unitary operator

U=exp g(P b~t P'b )—1
(2.7)

+ ~ XX«}(&e+&'v)fi.(k q} =-&u. @i. —1

q

(2.13)

describes the lattice ground-state rearrangement caused
by the electron-phonon interaction and l%', ) is the ket
vector of electron states in the deformed chain. The
given approximation implies smallness of the kinetic-
energy operator of lattice oscillations in the Hamiltonian
(2.1), and the function (2.6) is an eigenfunction of the
Hamiltonian Ho corresponding to (2.1) without the
operator of the atomic kinetic energy.

At the finite temperature T the system can be in any
possible state (for both electrons and phonons) with the
probabilities w( {C, ), {v ) } described by the Hibbs distri-
bution. Using the known inequality for the free energy
(2.5), we write down

To find the coefficients we introduce the functions

y, (x ) = '
X 1(,(k)e'
k

(2.14a)

fi(k) = —f Pz(x }e ' dx .
v L, —i./2

(2.14b)

Substituting (2.14b) into (2.13) and using the long-wave
approximation (2.2), we find that (2.13}should be valid if

of the continuous variable x. It should be noted that the
function (2.14a) satisfies periodic boundary conditions,
and if (2.14a) takes place then
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. mV
tP&(x)=exp i x gi(x) (2.15)

From the minimality condition for the functional (2.19)
with respect to the coefficients P~ in view of (2.10) and
(2.13) we find

and the function f&(x) satisfies the Schrodinger equation
X n~. 4P k)0dk+q } (2.23)

fi d +u(x) %=@A.2~ dx

8i=Ãi+ —,'mV'
(2.16)

If we substitute (2.23) into (2.17) with allowance for
(2.14b} and (2.2), we obtain the expression for the self-

consistent deformation potential (2.17}

for electrons in the deformation potential

u(x) =—g g(q )(P, +P', )e (2.17)

~e, ) =g (~',.)""~0) =
~ [n„.j ), (2.18)

The electron operator form (2.11') indicates that the
ket vectors of electron states must be

4 2

u(x)= — gni ~|(i (x)(2
w(1 —s ) i

4y a
p, (x ),

ia(1 —s )
(2.24)

where s = V/ V, is the ratio of velocity V to the sound ve-

locity V„and the function

pi(x)= X n~. ~A(x)~' (2.25)
where ~0) is the vacuum state, and ni =0, 1 are the elec-
tron occupation numbers with spin a of the energetic
sublevel Ci. Then for the thermodynamic functional
(2.9) we obtain

F ~ W+g ni (8i —)M)+Q iii(Q~ —Vq)v~ —TSO,
A, o'

(2.19)

describes the spatial distribution of the electron density
along the chain, since it is easy to verify that
(JV,(n))la =pi(an), where

1

kk'0. 0'

where

ni. = yw([ni. ], [v, ])n,.
vq

— w nk, o ~ vq vq

(2.20}

is an operator of the electron number on the nth site of
the chain.

Thus, to find the transformation coefficients (2.12) and
to define the self-consistent one-electron states, it is
necessary to solve the set of nonlinear equations

are the averaged occupation numbers of electrons and
phonons, respectively.

The coefficients P are chosen from the minimality
condition for the thermodynamic functional (2.19). This
condition is equivalent to minimization of the system en-

ergy at the given entropy, which is inherently determined
by the combinatory expression'

So= —ks ~ g [ni Inn' +(1—ni )ln(1 ni )]—
+ g [v& lnv~ —(1+v~ )ln( 1+v ) ]

q

(2.21)

where the first term is the electron entropy, the second
one is the phonon entropy, and kz is the Boltzmann con-
stant. Hence, the mentioned condition is the minirnal-
energy condition at the given occupation numbers n&
and vq, which are determined from the extremum condi-
tion for the same functional (2.19) (maximal entropy at
given energy). This yields

iri' d'4i. 4y'a
, +, gn, , ~q,.~'y, +g„q,=O.

2m dx w(1 —s ) i

(2.26)

gi(x ) =g„k(x ) =e'""u, k(x),
(2.27)

The equations (2.26) in this form coincide with the ones

given in Ref. 7. The exact solutions of the set (2.26) are
expressed through elliptic functions. ' The self-

consistent potential (2.17) is shown to be the single-gap
periodic Lame potential, ' whose spectrum has one for-
bidden band (the energetic gap) splitting the initial con-
duction band into two bands of allowed states. Therefore
the quantum number I, labeling the electron states in

(2.16) is a double quantum number, A, =—[v,k], which

gives both the number of allowed bands, v, and the states
within these bands, namely, the wave number k in the

space of the reciprocal lattice of the periodic potential
(2.17).

Using the results obtained previously in Ref. 7, we can
write the solution of the set (2.26) as

vq = exp
iri(Qq —Vq )

k~T

@q—P
n& = exp +1

g T
(2.22)

cT(x +co +3,„)
u„k(x)=C (k)e, exp

7 o (A,„)cr(x+a)'}
where

A.,=A,,( )=aia+cov (2.28)
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or the half-periods e and g' of the double-periodic
Weierstrass elliptic function p(z) =p(z+2mco+2nm')
In the case under consideration the period 2' is a real
number specifying the spatial periodicity of the solution
(2.27), and 2''=i2ro is a purely imaginary number con-
nected with the periodicity in space of the reciprocal lat-
tice. Often one draws on the symmetrical notations for
the half-periods

N~ —N, N2 — N N, N3 —N

Standard constants of elliptic function theory are the
values p(ro/)=e~ (j =1,2, 3) where e~ are the roots for
the right-hand side of the differential equation for p(z),
i.e., p'(co )=0, with e, &e2&ei, e, &0, e3 (0, and
e, +e2+e, =0. ((co, )=ri, , i.e., rl, =g(ro)= ri is a—real
number, and iIi =g(co') —= r}' is a purely imaginary one.

The wave function (2.27) satisfies the Bloch theorem
u„k(x+2') =u „k(x). In this case the number k has the
meaning of the wave number and is related to the param-
eter a by

k=i g(A,„)— (2.29)

For the functions (2.27) the following formulas exist:

if„„(x)i =(—1)"+'iC„(k)i [p(A.,)—p(x+co')],

(2.30a)
2

= [p(A, ,}+2p(x+co')]g, k .
X

(2.30b)

Substituting the functions (2.27) into Eq. (2.26) and bear-
ing in mind (2.30a) and (2.30b), we obtain the eigenvalues
8i =C„(a)—:8„(k):

@„(a)= —2A —p(A, „}2'
where

(2.31)

A =a. g ( —1) +'n„(k }IC (k)12p(A ) .
kvo

Here the notation

4m' aK—
i' w(l —s )

(2.32)

(2.33)

is introduced. Due to nonlinearity of Eqs. (2.26), the nor-
malization coefficient C (k) should satisfy the relation

is a solution parameter. Here the number v takes the
values 0 and 1, a is a real parameter, and C„(k)—:C„(a)
are the normalization constants.

Henceforth we employ the standard notation of elliptic
function theory, " namely, p(z ), o (z ), and g(z) are the
two-parametric Weierstrass functions on the complex
plane. As the parameters there, we can use either the in-

variants g2 and g3 defining the differential equation

p'(z) =4p'(z) —g, p(z ) —g,
=4( p —e, )( p —e2)( p —e, ),

g ( 1) ii, (k)IC.(k)l'= —.
ovk

(2.34)

The expressions (2.31) together with (2.29) give the
spectrum of one-electron states in the parametric form
(through the parameter a). Restricting the values of the
parameter a by the main domain

—N(a+N, iN=N', (2.35)

we come to the broadened band scheme in the space of
the wave vectors. For the lower band, v= 1, the values
of the wave numbers are within the range of the first Bril-
louin zone of the periodic potential with the period 2':
—m'/(2'} (k rr/(2'), and the energy (2.31) has values
in the range

$2

2m
( —2A —e )~C(k)~ ( —2A —e ).

2@i 2 (2.36a)

The upper band, v=0, is defined by values of the wave
numbers outside the first Brillouin zone iki &n/(2'),
and its energy is

$2
80(k) & ( —2A —ei) . (2.36b)

Therefore, the lower band of width

fi
(e, —e2) (2.37)

is separated from the upper one by the energy gap

2k= (e2 —e~) . (2.38)

According to (2.25) and (2.30a) the distribution of the
electron density along the chain is a periodic function
(the charge density wave} with period 2':

p, (x }=—[A —p(x+a)')] .1

K
(2.39)

The constant A can be found from the condition that the
total number of electrons is equal to a given number X,.
Integrating (2.39) over the whole chain, we find

2KkFA= (2.40)

where kF =en, /(2a) is the .Fermi wave number for the
free electrons and n, =N, /N is the concentration of elec-
trons in the chain.

The relations (2.34) and (2.32) with allowance for (2.40)
and the explicit form of coefficients C (k} determined
from the normalization condition of the wave function
(2.27) give the self-consistent relations for determining
the unknown parameters, namely, the chemical potential
p and the half-periods N and N'. However, to yield three
unknown values, a third condition is necessary. This
remaining indeterminacy is related to the fact that, in in-
tegrating the set (2.26}, there appears an additional in-
tegration constant involving the invariants g2 and g3.
To determine this constant it is necessary to carry out an
additional minimization of the free energy with respect to
one of the parameters. For this purpose we write down
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the free energy (2.19) using the explicit form of the solu-
tion (2.27),

n (k)
„„g/co+p(iL, )

(2.44)

2
1 1 ~2 4kF

g2
— + —X L

2m K 12
1—g n „(k)=

crvk

2kF
(2.45)

fi vkF + —,
' IV X, + g A'(0 —Vq )v —TSO,

mm

"(A,, )

rt/N+ P(A,„)
n, (k) =0, (2.46)

where

(2.41) where

dp"(z)=—,=6p'(z) —
—,'g, .

Z'

& =—g ( —1)"+'n. ,(k ) l C„(k ) l'p(A, ,) ~+ p(A, „)
oak CO

For minimization of (2.41) with respect to one of the pa-
rameters we use the method of Ref. 3 based on the homo-
geneity relations for the Weierstrass functions, "

p(tz l tco, tN ) —t p(z leo, co ),
gz(tco, tN ) —t gz(co, co ),
'g(tN, tN )=t YJ(N, CO ) .

Having solved Eqs. (2.44) —(2.46) for p, co, and co', we
can determine all characteristics of the CDW state, both
the energetic ones, for example, (2.37) and (2.38), and the
form of the charge-density wave itself (2.39) in the mov-
ing reference frame. Using the representation in terms of
Jacobi 8 functions, " the expression (2.39) can be
represented in terms of two equivalent expansions

2
n, n mnx

p, (x)= 1+ cos
ct 2akF co „=~ sinh(n'co/co)n

S~tting N=tN and co'= tco', consider the parameter t as a
variational one. In this case the Jacobi parameter de-
pending on the ratio co'/co remains unchanged. Then the
part of the free energy (2.41) depending on the parameter
tis

where

n, copcop1—
a &CO

NO
co

77 /2'
co „= „cosh (n/2co)(x+2con )

(2.47a)

(2.47b)

fi 1 1
g —~ + +——X.+

2m gt 12 g ~t g2 —2
COp—,COp

=
2kF 2

(2.48)

(2.41')

Here the overbar marks the quantities depending only on
co and O'. In general, the dependence on the parameter t
is also inherent in the average occupation numbers
n (k) which are determined through 4',(a). However,
by virtue of (2.22) BF/Bn, =0 Differen. tiating (2.41')
with respect to t and equating the derivative to zero, we
obtain the condition

are the values of the half-periods co and co at absolute zero
temperature. The first expansion (2.47a) is the Fourier
series, and it is useful for analyzing the spectrum of the
current oscillation caused by the CDW motion, and the
second one (2.47b) shows that the CDW is a lattice of sol-
itons having the width 2co and spaced by 2co.

Now let us analyze the relations (2.44) —(2.46) and in-
vestigate the temperature behavior of the CDW in some
limiting cases.

y ( —I)""n.,(k) lc„(k)l'p(~. ) + p(~. )
oak

2kFK
g +

K 12

Then we use the normalization condition

(2.42)

III. CDW STATE AT LOW TEMPERATURE

In the relations (2.44) —(2.46) there are functions de-
pending explicitly on the parameter a. Therefore, it is
convenient to proceed from summation over the states to
integration over this parameter. Having summed over
the spins, we can write down the relations of self-
consistency in the following first form:

f ly.k(x )I'dx =1,

giving the normalization coefficients

1 )
v+ 1

L q/co+p(A, )
(2.43)

f n, (a)da+ f n (a)da=
0 Q 2K

f n~(a) ~+p(ia+co) da

(3.1)

Substituting (2.43) into (2.32), (2.34), and (2.42) with al-
lowance for (2.40), we obtain after some simple transfor-
rnations the three self-consistent relations

+ f no(a) ~+p(ia) da=k~, (3.2)

f n, (a)p "(ia+co)da+ f no(a)p "(ia)da=0, (3.3)
0 CO
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where

n (a)= exp
C„(a)—JM

ksT
(3.4)

and C„(a) is given by the expression (2.31) with al-

lowance for (2.40). Below we confine ourselves to the
case of the CDW at rest, V=O, with C,(a }=C,(a).

Since the average occupation numbers (3.4) are func-
tions of the energy of one-electron states, it is useful to
proceed to integration over energy. Then the expressions
(3.1)—(3.3) are transformed to the second form

it is convenient to use the first form of the self-consistent
relations. In this case the integrals in (3.1)—(3.3) can easi-

ly be calculated. The condition (3.3) holds only in the
case when the chemical potential p is located in the for-
bidden band, i.e., n, (a)=1 and np(a)=0 .Then from
(3.1) and (3.2) the values (2.48) follow at once. The case
of T=O was analyzed in detail previously. Here it
should only be noted that the CDW characteristics, for
example, the relation between the gap width (2.38) and
the width of the filled (condensate) band (2.37},depend on
the value of the parameter

«(@) d
n(C) d

p v'p(g) z v'p(g)

JET—
+ ~ —JE E

&P(@) ~ &P(b )

=2+m, ,

I".-(e)d P("dC J'-".-(~)" P("de=0,
dC z d8

where

P(8)=8[8 —(J+X)8+JX ]

C(X —8)(J—8} at 0& t &2
C(6' —X)(C—J) at C&J,

(3.5)

(3.6)

(3.7)

(3.8)

cop kg

COp K

s% N7l~

8m' a
(3.14)

This parameter is seen to define the ratio of the size of
solitons in the expansion (2.47b) to the distance between
them. The value r) 1 corresponds to the Frohlich limit
and at r & 1 the CDW is a lattice of bisolitons'
sufficiently distant from each other.

From the standpoint of the one-electron spectrum, at
T=0 the CDW state represents a semiconductor (dielec-
tric) with a completely filled lower (valence) band and an
empty upper conduction band. When the temperature T
is finite, some of the electrons occupy the upper band.
The appearance of electrons with the average occupation
number n, (C)=np(C) in the conduction band is accom-
panied by the origination of holes in the lower valence
band. Hence, one can consider the average occupation
number of holes in the lower band,

J=X+2b,= (e —e ),1 3 (3.9) nl, (8)=1—n, (C) . (3.15)

fi kF

2m
(3.10)

The energy in (3.5)—(3.7) is calculated from the bottoin
of the lower band 8,(0) and

As is usually accepted in semiconductor theory, we calcu-
late the electron energy from the bottom of the upper
band Cp(co) and the hole energy from the upper edge of
the lower band C, (co), and introduce the chemical poten-
tials of electrons p,, and holes pz

n(8) = exp +1p)

B
p, =lu —C, (0) . (3.11) V, =@p(~)—I I h =I @i(~»— (3.16)

Since the Eqs. (3.5}-(3.7}explicitly contain the spectrum
characteristics X and 5 given by the expressions (2.37)
and (2.38), it is reasonable to solve these equations for the
quantity J given by (3.9) and the parameter

J e&
—e3

(3.12)

which has the meaning of the elliptic integral modulus. "
The half-periods m and 9 are then defined as

co=+A /2mJK, co=+I /2mJK' . (3.13}

Here, as in (3.6), K =K(k} and E'=E(k} are the 'total el-
liptic integrals of the first and second kind, respectively,
K'=K(k'), E'=E(k'), and k' =1—k .

At the absolute zero temperature, when

1 at 4(p
0

which are connected by the relation

v, +a~=». (3.17)

—+A' /2m f 1@+J d8
n, (8)

~ nh(6)(X —4)
2m /A' d4

„n,(6 )(J+8)+ d@

=co—,(3.18)
7T

2K

2mJ E
2& pe E 2K

(3.19)

Then the self-consistent relations specifying the CDW pa-
rameters can be written in the third form
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d+Pk(A'} d+P, (D)I nk(8) d6' —f n (6) d@=0,
0 d 0

(3.20)

—K'QJ/6F =r +2, J
Vr @F

1/2
m.k~T g/k T 1+ki2

e
mkk' /

(3.27a)

n, k(C) = exp
@+Pe,k +1 (3.21)

1/2
2

1/2
mk~ T

e
—6/k TkB

and

E 1+k'
2k &2

(3.27b)

Let us consider the case of sufBciently low tempera-
tures at which the following inequalities hold:

»1, »1, ' »1.Pe, h

k~T k~T '
k~T

(3.23}

In this case the average occupation numbers (3.21) are
small and can be represented in the form

Pk(6')=8(26+6')(X 6),—P, (8)=e(24+8)(J+6") .

(3.22) " 1/2
ri'ks T

B

2k'"

—wK 1—
1/2~k, T

e
gF

1/2n.k~ T

—g/k T 2k'B

k

1+k'
e (2rE+E') .

2kk i3/2

(3.28)

Excluding the parameter J from (3.27a}, we obtain the
equation for the modulus

—p, k /ks T —C/ks T
n,

Then from the condition (3.20) we find

I,
p, —

ph =kaT ln Ih

where

(3.24)

We now consider two limiting cases.
(i) At large values of the parameter r, r) 1.5, the solu-

tion of (3.28) corresponds to small values of the modulus
k, k «1. Using the expansion

E=—(1+—'k ), E=—(1——'k ),4 7

2 4 7

4E'=ln — E'= 1k'
we find from (3.28) and (3.27b)

(3.25)

Integrals similar to (3.25) arise also in (3.18) and (3.19).
By virtue of the inequalities (3.23) we let, introducing a
small error, the upper limit in the integrals Ih tend to
infinity, and the integrand functions f, k(8) can be ex-
panded in powers of 6/L, 8/J, and 6/b, . Then the in-
tegrals (3.25) can be expressed in terms of the expansions

J=BF(1+—,'k ),
1/2 (3.29)

nk TB —s/ki) T
k 4e 0= ek =k0—

Hence, for the characteristics of the one-electron spec-
trum of the CDW state at low temperatures we have

C(e,k)( T)I
n=0

(2n —1)!!
e x" ' dx=

0 2n

(3.25')

in powers of the small quantities kz T/X and kz T/b.
From (3.24) and (3.17) we find

' 1/2~k, T
'

b(T)=b, 1 —20 250

—ho/k~ T
e

50=—b,(0)=8AFe

o/ka
e

' 1/2
m.k~ T

X( T ) =X0 1+16e
250

X0——X(0)=eF(1—Se ') .

(3.30a)

(3.30b)

=6+—k Tl +— (k T) +.
4 X 4 X(X+2k)

(3.26)
1 X+25 3K+4
4 X 4 X(X+26 ) ~(T)=co0=

F
(3.31a)

For the spatial characteristics of the CDW (for the half-
periods co and co) we obtain

Using these values in (3.18) and (3.19) and neglecting
the quantities of the order of k~T/5 and k~T/L, we
derive the set of equations for the parameters J and k:

1/2
2k~ T ao/k&T

co(T)=co0 1+— 0 8 (3.31b)
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E'= —(1——'k' )
7T

4

we find from (3.28) and (3.27b)
1/2

3w/4~ kB T.

8m 8F

—6/k TB

k'=k 0+

1/2'rkB T

0 F

/k~ T
kp 4e

(3.32)

In this case for the temperature dependences of the CDW
energy and spatial characteristics we derive the expres-
sions

' 1/2

Q(T) g 1 eel/4T e 0 B~kBT —6 /k T

50=-,'8, (1—8e /'),
(3.33a)

' 1/2
nkB T

X{T)=SO 1+—e~
7 &0

—6,0/k~ T
e

0
1/2

mkB T
co(T}=coo 1 — e /4'

—h,o/k~ T
e

(3.33b}

(3.34a)

' 1/2
~kB T

@(T)—@ 1+ em/4~
2n Xo

—ho/k~ T
e (3.34b)

As can be seen from comparison between formulas
(3.30a)—(3.31b) and (3.33a)-(3.34b), the temperature
behavior of the CDW state, although to some extent
similar in the bisoliton and Frohlich limits, is, neverthe-
less essentially difFerent. First, in the Frohlich limit the
CDW period (3.31a}is practically independent of temper-
ature, whereas in the bisoliton limit this period (3.34a} de-
creases with increasing T. Secondly, at T~1.5 the tem-
perature dependence of the energetic gap (3.30a) is more
pronounced than that of the condensate bandwidth
(3.30b), and at v&0. 5 the pattern is reversed. This
difFerence lends itself to the following physical interpreta-
tion. In accordance with the expansion (2.47b) at v&0. 5,
the CDW is a lattice of bisolitons suSciently distant from
each other. At finite temperature T the thermal dissocia-
tion of some of the bisohtons into solitons is possible.
When the length of a chain is fixed, the appearance of
new solitons decreases the average distance between
them. With increasing temperature, the fraction of disso-
ciated solitons increases; this leads to a decrease of the
COW period. Now let us take notice of the constant
term in (2.47b) (vanishing at T=O) which can be inter-
preted as the density of the free electrons, which are uni-
formly distributed and not coupled into solitons. When
we substitute (3.34a) and (3.34b) into this term, we see

(ii) In the bisoliton limit when the parameter T is small,
x&0.5, the solution of {3.28) corresponds to modulus
values close to unity, i.e., k' =1—k «1. Using the ex-

pansions

K=ln, , E=l, K'= —(1+4k' ),4

IV. THE TEMPERATURE OF THE PHASE TRANSITION

At the temperature Tp of the phase transition the ener-

getic gap in the one-electron spectrum of the CDW state
vanishes. ' To determine the values Tp we use the self-

consistent relations in the second form (3.5)-(3.7) setting
T=Tp. Since b,(T )=p0 and J(TF)=X(TF) then the po-
lynomial (3.8) is reduced to the form

P(C)=8(8 Xp)— (4.1)

For the critical temperature the relations (3.5)—(3.7) can
then be written as

f n(e )dA' m.

(Xp
—to')3/8

(4.2)

n(C }dC (4.3)
o V'@

f n(C)3/Xd8=

where Xp:X(Tp ) and p,:p](—Tp ).
The relations (4.2) —(4.4) are a set of three equations for

obtaining Tp, X(TF},and I4,(Tp}. At an arbitrary value
of the parameter r=kpla=+6'F/8„ .the analysis of

(4.4)

that its order of smallness exceeds the accuracy of obtain-
ing the formulas (3.33a)—(3.34b). Thus, at low tempera-
ture in this limit, all electrons remain coupled with soli-
tons whose number increases with increasing T. Since
the electrons participate with equal probability in gen-
erating each soliton, the average number of electrons cor-
responding to one soliton decreases with increasing T.
This leads to a self-consistent increase of the soliton
width 2'. Decrease of the distance between solitons in-
creases the overlap integral between wave functions of
electrons belonging to neighboring solitons. This fact
afFects, in the first place, the broadening of the electron
band L (3.33b) generated due to the splitting of the soli-
ton level 8, =A' ~ /(2m ).

In the Frohlich limit, v. 1.5, bisolitons are strongly
overlapping and, figuratively speaking, there is no free
space between them. Hence, the unique channel of
thermal dissociation is the electron ejected into the band
of free states. In this case, the CDW period is not
changed and the constant term in (2.47b) is nonzero and
increases with increasing T. The appearance of the free
electrons is accompanied by decrease of the average num-
ber of electrons involved in generation of one soliton; this
leads to the self-consistent increase of soliton size 2'.
With increase of the soliton diff'useness the amplitude of
the periodic potential (2.24) decreases. In this case the
potential shape is defined mainly by the first harmonic of
the expansion (2.47a}. The decrease of the amplitude
u (x ) afFects in the first place the decrease of the energetic
gap 2b„whose value can be obtained from the solution of
the Schrodinger equation (2.16) in the almost-free-
electron approximation.

The general feature of the behavior of the CDW state
is the decrease of the energetic gap 2h( T), which tends to
zero when the temperature approaches the value Tp of
the Peierls phase transition. ' '
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Pi(Tp)
p, ,(Tp) &0, »1

B TI'
(4 5)

hold. In this case, using the known methods for the es-
timation of Fermi-Dirac integrals, from the relations (4.3}
and (4.4}we find

these equations requires numerical calculations. Howev-
er, in the limiting cases one can obtain asymptotical solu-
tions.

(i) The first limiting case corresponds to the assump-
tion that at the temperature TI, the electrons in the sys-
tern are strongly degenerate. The implication involved is
that the inequalities

p, (Tp)=hp 1+0 (4.6a)

X(Tp)=hp 1+0
2

kB TP
(4.6b)

Using the values obtained in (4.2}, taking into account the
identity

(e'+ 1) =— 1 —tanh—1 x
2 2

and the intermediate integration by parts, we obtain the
expression

F ln F+ F F F

0 cosh 8/2k' Tp 2k' T

„ln[(+8p+ 8+Q8 p)/(Q 8p+ 8—Q8p }j+ =2m r (4.7)
0 cosh28/2k& Tp 2k' Tp

By virtue of the inequality (4.5) which can be written as
Cp/(ks Tp) »1, the basic contribution to the integrals
(4.7) is given by the values of 8 that are considerably
smaller than Cp. Then the logarithmic functions in (4.7)
can be expanded in the ratio 8/Cp and in the first ap-
proximation the known Kuper result' can be obtained:

and from (4.4) in view of (4.11) and (4.12}we obtain

X(Tp)= 3k~Tp .— (4.13)

Using Eqs. (4.12) and (4.13) for (4.2), for the temperature
of the phase transition we have

ke Tp = e86Fe— (4.8}
4 16 «kF

ks Tp =—Qh p 6', 4(1,—,'; —
—,
'

)=, (4.14)

b 0
= 1.76k' Tp . (4.9)

(ii) The second limiting case, when analytical solution
of Eqs. (4.2)—(4.4) is possible, corresponds to the assump-
tion that the quasiparticles are nondegenerate at the tem-
perature TI, . This means that at T=Tp the chemical po-
tential p,(Tp) is disposed below the edge of the one-
electron states, i.e.,

where C=O. S77 is the Euler constant. Since in our cal-
culations the inequality (4.5) has been used, the solution
obtained is valid at r & 1.5 only. In this case the phase
transition temperature Tp and the energy gap b,0 at the
temperature of absolute zero (3.30a) are related by the
BCS relation' '

where 4(a,p;z) is the degenerate hypergeometric func-
tion 4(1,—', ;

——,')=0.4. Substituting (4.14) into (4.12) we

obtain

exp
ks Tp

=1.58' r . (4.15)

=32kBTP= ~ho . (4.16}

From this with allowance for the inequality (4.10) it fol-
lows that the solution obtained is correct only at small
values of the parameter r; r ((1. According to (4.14) and
(3.33a), in the soliton-type CDW limit, the temperature

Tp and the energy gap Ao at T=0 are related by

&1.
kB TP

(4.10) V. DISCUSSION

—glkB TP @~kBTp
n 8)=e e

Substituting (4.11) into (4.3) we find

(4.11)

exp

1/2

mkB TI,
(4.12)

Then the Fermi distribution function (3.11) turns into the
Maxwell-Boltzmann distribution of classical statistics

As has been shown above, in the weak electron-phonon
coupling case or at comparatively high electron density
when the parameter ~ is greater than 1.5, the phase tran-
sition temperature Tz and the electronic gap ho at T=O
are connected by the BCS relation. The well-known ' '
similarity of the thermal behavior of the CD% conden-
sate in the Frohlich limit to that of the BCS supercon-
ducting condensate follows from the self-consistent rela-
tions (3.18)—(3.20). According to Sec. III the modulus
k(T) decreases with increasing T. Thus, at small k(0)
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corresponding to the Frohlich limit the inequality

—~1.5
N

(5.1)

is always valid and the Jacobi parameter

q =exp( r—S/co) is small. Then, using the formulas of el-

liptic function theory" one can obtain the following ex-
pressions for (2.37) and (2.38):

0

fi m.

2m 2'
2

e,(o,q) =
'2

(5.2a)

fi
82(0,q) =LCe

4@i 2' (5.2b)
0.0

~ ~ ~ ~ I ~ ~ I ~ ~ I ~ ~ II ~ ~II ~ ~ I ~ ~ ~ ~ E ~ ~ ~ I ~ ~ ~ ~ ~

0.2 0.4 0.6 0.8
7

~ ~ ~ ~ I ~ e ~ ~ a I ~ a ~ a ~ ~ ~

10 12 14 16

where e(u, q) are the Jacobi
(j= 1,2, 3,4).

With the inequality

BT «1

theta functions

(5.3)
0

k~Tp

FIG. 1. Chemical potential p&(T&) vs z.

7r

3.27-
(5.9)

valid up to the critical temperature it is possible to ex-

pand the integrand functions of (3.18)-(3.20) in powers o
8/X. Neglecting the terms of order (k.T/X) and

(2h/X), we find that the condition (3.20) can be satisfied
if

Pe =Pa

so that the relation (3.19) leads to

(5.4)

co(T)—coo=
2kF

' (5.5)

i.e., in this limiting case the chemical potential p is locat-
ed at the center of the gap, and the CDW period does not
depend on temperature. According to (5.5) and (5.2a),
the condensate bandwidth X is close to the Fermi energy

With allowance for (5.4), (5.5), and (5.2b), after
changing the integration variable the condition (3.18
may be reduced to the well-known BCS relation' which
determines the temperature dependence of the electronic
gap 26(T):

At an arbitrary value of the parameter r the analysis of
the relations (4.2)-(4.4) requires numerical calculations.
The results are presented in Figs. 1 and 2. Figure 1

shows the value of p&(T~) as a function of the parameter
It is shown that the chemical potential p(T&) coin-

cides with the Fermi level CF at r~ 1. At v &0 2 the
=0.123value of p (T ) becomes less than 8F, and at r= .

fthe chemical potential at Tp coincides with the bottom o
the electron band. Thus, formulas (4.13), (4.16), (5.8), and
(5.9) are valid for r &0.123.

In Fig. 2 the ratios bo/(k~Tz) and 2'(Tp)/(2coo)
versus the parameter r are presented. It is shown that
the mean-field approach leads to violation of the BCS re-
lation at r& 1.2. A significant variation of the CDW
Period with temperature may 5e observed at ~ & 0.8.

As is mentioned in the Introduction, the mean-field
treatment of the Peierls transition is not entirely correct
and, strictly speaking, not valid near the phase transition

temperature. First of all, the variational consideration o

ln =2I(u),
~(T)

where u =h(T)/(k~ T) and

00 dxI(u)=
+x+u (e "+"+1)

(5.6)

(5.7)

10.0

8.0

6.0

2'(Tp) =n. —2CO0~1. 37 (5.8)

In this case, according to Eq. (4.16), the relation between
h0 and Tz reads

But when the parameter v is less than unity Eqs.
(5.4)—(5.6) must break down. According to the results
obtained, when v &&1 the CDW period is a function of
temperature, decreasing with increasing T, and tends to
the limiting value

1/2

4.0

2.0

0.0
O.Q

~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ s ~ ~ ~ ~~ ~ ~ ~ ~ - I ~ ~ ~ ~ ~ ~ I ~ ~ I ~ ~ I I ~ ~ ~ ~

0.2 0.4 0.6 0.8 1.0 ).2
7

1.6

FICx. 2. Ratios hp/(k& Tp ) and co( Tp ) /cop vs 7.
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the free-energy functional (2.5) neglects the important
role of one-dimensional thermal fluctuations. Due to
these fluctuations, no phase transition can occur in a
purely one-dimensional system at finite temperature. '
(For a system of coupled chains the phase transition is re-
stored at TAO. ) Secondly, the adiabatic Born-
Oppenheimer approximation (2.6) is valid only for a
suSciently wide electron band and under moderately
strong electron-phonon coupling. When the electronic
gap is less than the characteristic phonon frequency (un-
der suSciently weak coupling or near the phase transi-
tion temperature), the quantum fluctuations due to non-
adiabatic terms in the Hamiltonian would destroy the
gap and would lead to a normal-metal state in the chain.
Probably fluctuations ' are mainly responsible for the
fact that the experimentally determined' ratio
kp/( ktt Tp } is significantly larger than the mean-field
value. Note also that the adiabatic approximation (2.6) is
not appropriate under extremely strong electron-phonon
coupling, when the polaronic effect plays an important
role and leads to a significant narrowing of the electron
band (increasing the effective polaron masses) due to the
Debye-Wailer factor.

Finally, the long-wave (continuum} approximation will
be justified only when

kFa &1, ~a &1 . (5.10)

This imposes constraints on both the concentration of
carriers (electrons or holes) in the chain and the
electron-phonon coupling constant. The maximal con-
centrations which may be considered correspond to a
nearly quarter-filled (or nearly quarter-empty) band.
With these maximal values of k~, the continuum approxi-
mation is valid only at r-1 (for r (1 it is necessary to
take into consideration the discreteness of the chain}.

The Frohlich current-carrying sliding mode has been
observed experimentally in CDW materials such as
NbSe&, TaS&, (TaSe4)21, and Kp 3Mo03 (see, e.g., Ref. 1,
and references therein). The electron configuration in
these materials corresponds to just the same nearly
quarter-filled band. As likely as not, the value ~~1 is
realized in these compounds. In most of them, tempera-
ture dependence of the CDW period is not observed, '

and the temperature behavior of the gap 26(T) and the
amplitude Au of the periodic lattice deformation poten-
tial (2.24), hu = u(co) —u(0) =46,(T) [e.g. , in NbSes (Ref.
18)] are in agreement with a BCS-like formula.

The predicted peculiarities of the CDW thermal
behavior at ~ & 1 may be observed in materials with lower
carrier concentrations in the chains.
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