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Ke have implemented an efBcient self-consistent Green's-function technique, based on the tight-
binding linear-muffin-tin-orbitals method, for calculating the electronic structure and total energy of
a substitutional impurity located either in the bulk or at the surface. The technique makes use of the
frozen-core and atomic-sphere approximations but, in addition, includes the dipole contribution to
the intersphere potential. Within the concept of complete screening, we identify the surface core-level
binding-energy shift with the surface segregation energy of a core-ionized atom and use the Green s-
function impurity technique in a comprehensive study of the surface core-level shifts (SCLS) of the
4d and 5d transition metals. In those cases, where observed data refer to single crystals, we obtain
good agreement with experiment, whereas the calculations typically underestimate the measured
shift obtained &om a polycrystalline surface. Comparison is made with independent theoretical
data for the surface core-level eigenvalue shift, and the much debated role of the so-called initial-
and final-state contributions to the SCLS is discussed.

I. INTRODUCTION

During the past decade surface core-level shifts (SCLS)
have become important in experimental surface science
and their determination is of great value in the under-
standing of a wide range of surface phenomena. This
includes surface electronic structure, surface structure,
reconstruction, surface defects, surface energies, surface
segregation, and adsorbate interaction. " Since 1978,
when it was Grst shown that this quantity could be de-
tected experimentally, s there has been considerable de-
velopment in the experimental techniques. 2 However,
due to the difficulties in resolving SCLS, the experimen-
tal work on pure elements has so far essentially been re-
stricted to the lanthanide and the 5d transition series
where the comparatively sharp 4f levels can be easily
studied. It is only very recently that data for the less
narrow 3d level of the 4d transition metals have been
reported.

The SCLS is tacitly defined as the difference between
the measured core-level binding energy of a surface atom
and that of the corresponding bulk atom. The theoretical
interpretations of the SCLS have resulted in essentially
two different models. On the one hand, &om the picture
that electronic relaxation following the creation of the
core hole is so localized that the effect of the relaxation
is independent of the geometrical environment of the ex-
cited atom, it is argued that the SCLS mainly reBects
the change in the core-orbital eigenvalue, 2' i.e.,
the so-called initial-state shift. On the other hand, in
the approach advocated by Johansson and Martensson '

the basic assumption is that for metals the symmetric

part of the measured line profile for the core level cor-
responds to an electronically completely screened final
state, in which the conduction electrons have attained
a fully relaxed configuration in the presence of the core
hole. Thereby the SCLS could be identified as the surface
segregation energy of the core-ionized Z atom, 'z and
as a result, SCLS have been estimated for a large number
of elements in the Periodic Table by means of the (2+1)
approximation (equivalent-core approximation) in con-
junction with independent thermodynamical data4's or
tight-binding surface calculations.

The two theoretical approaches predicted not only the
correct magnitude of the SCLS, ' ' but also the change
of sign that was observed to occur in the middle of the
5d transition series. By utilizing electrostatic arguments
the core-eigenvalue shift may approximately be identi-
fied with the bulk-to-surface shift of the valence d band. s

At the surface the width of the d band decreases and if
one assumes an approximate conservation of d charge in
each layer, ' ' ' the surface d band must be positioned
below the bulk d band for a d occupation ng & 5 and
above the bulk d band for nd ) 5. As a result one expects
the core-eigenvalue shift to change sign in the middle of
a transition series in agreement with the experimental
observations. In the complete screening picture, on the
other hand, the SCLS and its sign change is interpreted in
terms of the change of the bonding properties due to the
screening charge, relative to the original bonding of the
unperturbed bulk or surface atom, respectively. ' For
elements with less than half-filled d bands the screening
takes place in the bonding part of the d band and the to-
tal energy of the final state is lowered relative to that of
the initial state as a result of the gain in valence bond en-
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ergy. In contrast, the screening for the heavier elements
takes place in the antibonding part of the d band and this
raises the valence bond energy of the final state relative
to that of the initial state. Since the screening eKect is
more pronounced for bulk atoms than for surface atoms
due to the difference in coordination number, it follows
that the SCLS should be positive in the first half of the
d series and negative in the second half.

Experimental SCLS data are as yet not available for all
metals, and in several cases the measurements have only
been performed on polycrystalline samples. In this situa-
tion, where also the main origin of the SCLS has been un-
der considerable debate, there is clearly a strong need for
ab initio calculations which may serve as a guide, against
which model theories and experimental uncertainties may
be judged. As far as ideal and semi-infinite crystals are
concerned, studies of the bulk-surface electronic struc-
ture have been performed for a large number of elemental
metals by means of first-principles slab-supercell calcula-
tions. In the cases where also the accompanying core-
eigenvalue shifts were reported 9 the general agree-
ment between theory and available experimental single-
crystal SCLS data is rather unsatisfactory. 29 M It is gen-
erally believed that the discrepancy occurring in most
cases is due to the omission of the final-state screen-
ing of the core hole. A first-principles SCLS evalua-
tion within the complete screening picture has previously
been performed for the simple metal Al, using a five-layer
slab Green's-function formalism and the (8+1) approxi-
mation for the core-ionized impurity. 8

In this paper we present a theoretical study of SCLS
for the 4d and Gd transition metals where the complete
final-state screening eff'ects are treated by calculating
the electronic structure and total energy of a substi-
tutional impurity in the form of a core-ionized atom,
embedded either in the bulk or at the surface. That
is, we calculate the segregation energy of a core-ionized
impurity and use a Green's-function technique to treat
both bulk and surface as truly infinite host systems
thus avoiding the commonly used slab or supercell ap-
proximations. The method is based on the work of
Andersen and co-workers39 4 and is a straightforward
extension of the tight-binding (TB) linear-muffin-tin-
orbitals (LMTO) Green's-function method, implemented
for surfaces and interfaces by Skriver and Rosengaard. 4s

Comprehensive studies of work functions, 4 surface
energies, ' surface magnetism, o magnetic multilayer
exchange interactions, and stacking fault energies
have recently been performed by means of this technique.
It has also been applied in conjunction with the coherent-
potential approximation to random alloys by Abrikosov
and co-workers, and independently by Kudrnovsky
et al.55 '6

trated in Fig. 1. In the present TB I MTO Green's-
function technique both host systems are treated as
truly infinite without slab or supercell approximations
and completely on the same level in terms of, e.g. , Hamil-
tonian, potentials, and complex energy contour. Hence
the numerical errors in the calculated impurity-solution
energies are reduced to a minimum.

The present impurity technique is closely related to the
work of Gunnarsson, Jepsen, and Andersen and in the
calculation of the Green's-function matrices we utilize the
most localized, tight-binding LMTO representation. 42

We use the frozen-core and atomic-sphere approxima-
tions (ASA) for the potential but, in addition, include
the dipole moments of the charge density in the inter-
sphere Madelung potential and in the electrostatic part
of the total energy. Moreover, the surface calculations are
performed for ideal, geometrically unrelaxed surface lay-
ers. The validity of these approximations for the Green's-
function technique may be judged from the fact that the
computed surface energies4 for most of the 4d series
agree to better than 10/p with those obtained by the
full-potential, all-electron, layer-relaxed, slab-supercell
method. "

Self-consistent electronic structure calculations for
substitutional impurities in bulk systems have frequently
been performed by means of the Korringa Koh-n Ros-toker

(KKR) Green's-function technique. s Koenig et al.s

developed a simplified KKR Green's-function method us-

ing an expansion in LMTO's. Finally, first-principles
studies of impurities located in the vicinity of a surface

by means of a Green's-function technique have been pre-
sented by Feibelman, ss s and more recently by Scheffler

II. TB I MTO CREEN'S-FUNCTION METHOD
FOR IMPURITIES

The calculation of a surface segregation energy is nat-
urally divided into two difFerent steps: (a) bulk-impurity
calculation and (b) surface-impurity calculation as illus-

PIC. 1. Surface segregation of an impurity by means of
difFerent impurity calculations for the bulk (top) and surface
{bottom).
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and co-workers.
The generalized LMTO Inethod and. the theory of

transformations between MTO's in diferent representa-
tions are presented in depth in the papers by Andersen
and co-workers. A detailed description of the TB
LMTO Green's-function technique for surfaces may be
found in the works by Skriver and Rosengaard. Here
we shall restrict ourselves to the issues that are impor-
tant for the bulk-surface impurity problem, with special
emphasis on the construction of the Green's-function ma-
trices, the intersphere potentials, and total energies.

A. Bulk-impurity method

In the present implementation the starting point of
an impurity calculation is the Green's function for the
crystalline host. This is obtained Rom a self-consistent
band-structure calculation which yields eigenvectors u(k)
and eigenvalues e(k) for k points in the irreducible wedge
of the Brillouin zone through the eigenvalue equation

[II~(k) —cl]u~(k) = 0,

where H~(k) is the second-order LMTO Hamiltonian
in the orthogonal (p) representation. The Hamiltonian
Green s-function matrix for the infinite crystal is then
computed for complex energies z by means of the spec-
tral representation

- uq'i (k) [uq'L, (k)l'
(2)

where the sum runs over all band states, q labels a site
in the lattice unit cell, and. L refers to combined angular
momentum quantum numbers (l, m).

The KKR ASA Green's-function matrix is defined by

[P (z) —S (k)]g (k, z) = 1,
where P (z) and 8 (k) are the potential functions and
structure constants, respectively, within a chosen repre-
sentation a. For a localized perturbation in an other-
wise perfect, infinite host system it is most convenient to
work in a representation that has short range. Hence
we transform from the Hamiltonian Green's-function
matrix to the KKR ASA Green's-function matrix in
the tight-binding representation (P), by means of the
expression 2

P~(z) P~(z) 1

1 P~(z)'(, ) (,),P'(z)
(4)

which only involves (l, l')- and energy-dependent scal-
ings. For the potential functions and their energy
derivative, we employ the second-order expressions given
elsewhere. 42'44'46

The calculation of the structural host Green's-function

matrix which enters the Dyson equation below involves a
time-consuming k-point integration over the whole Bril-
louin zone (BZ), i.e.,

g~(I'k, z) = Ug~(k, z)U (6)

where U is the unitary transformation matrix for the
symmetry operator I' of the point group. For a more
general case valid for pure elemental crystals in the fcc,
bcc, or hcp phases, i.e., those which are considered in
this work, Eq (5) b. ecomes equivalent tos

gR, z(z) = e'"' ').U gq q(»z)
IBZ

)(U—& —~ & (R—R )g3y (7)

where the sum runs over the elements j of the point
group. However, even if go is constructed using (7) in-
stead of (5), the computational efFort grows quickly with
cluster size due to the phase factors appearing in these
expressions. Following Gonis et al. ,

s for each (q', q)
pair we therefore only calculate go for a minimal set of
"inequivalent" (R, R') blocks, which do not transform to
one another by a symmetry operation. Hence, if I' is a
symmetry operator represented by U and

b, (R), = I' b, (R)q~, (8)

where R; —Rz —b (R);~ then, in analogy to (6), it is
easily verified that

gz„,a(,q q( ) = ga, ,R, ,q q( ) (9)

It turns out that for an impurity-centered cluster with
2 shells in the fcc crystal [13 atoms, 169 (R, R') blocks]
only 5 blocks need to be calculated using Eq. (7), and
with 7 shells [87 atoms, 7569 (R, R') blocks] this number
becomes 26.

If lattice relaxations are neglected a perturbation from
the perfect host systexn is described in LMTO ASA the-
ory solely by the potential functions. Hence the change
in atomic species at the impurity site and the relaxation
of the potentials on the neighboring sites is taken into
account by

EP~I, (z) = PRI, (z) —Pql,"(z)
and the finite Dyson equation

(10)

gR'I', zL, (z) = gq r, ,qI, (k z)e ' '
~ &. (5)

BZ

Here B denotes lattice sites in a chosen cluster, centered
around the impurity, in which potentials and charge den-
sities will be allowed to relax self-consistently and T is
a primitive translation vector for which R = T+ Q.
As pointed out by several workers, ss'sz'ss the integral
in Eq. (5) may be reduced to the irreducible BZ (IBZ)
due to the transformation properties of the KKR ASA
Green's-function matrix. It transforms as the product of
two harmonics of the kind used in the calculation of the
structure constants. Hence, in the case of no q depen-
dence, i.e., one-atomic-unit cells,
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g(z) + g (z)EP(z)g(z) = g (z),

giving the structural Green's-function matrix g for the
imperfect crystal. Again, the computational efforts grow
quickly with cluster size since the xnatrices here scale with
the number of perturbed sites. Following Slater and
others, ' ' we therefore transform g from the previ-
ously used site and cubic harmonic representation to the
symmetry representation, by means of the unitary trans-
formation

g ', (z) = ) ) ) S&&~ g&&~ ~, ~i~'(z)SR~!i
R g e lm, E'm'
R'qe'

where the symmetrization matrices S are calculated ac-
cording to the scheme given by Ries and Winter. The
first sum in (12) runs over shells s and the index p de-
notes the basis function belonging to a particular column
o. of the representation A. In the symmetry representa-
tion the Dyson equation is block diagonalized and

ga.a(*) = f0

I2BZ
) Q g', (k~~, z)

xU e ~~
I~ ~ ~I i~~d2 (14)

where Q here belongs to the layered 2D unit cell Q =
(Q~~, Q~) and R = (R~~, R~) is a lattice vector of the
cluster centered around the impurity site. The rotation
matrices U~ here correspond to symmetry operations I'~
which belong to the common subset of the surface and
bulk syxnmetry groups.

The rest of the forxnalism follows directly from the 2D
analogy to Eqs. (8)—(13). Hence, for the application of
(8) and (9), R~~ is substituted for R, and in the symme-
try transformation (12) the first sum runs over "rings"
instead of shells, the site-equivalency being determined
by symmetry transformations. The Dyson equation (13)
is block diagonalized into irreducible representations cor-
responding to the point groups Cs„ for the fcc(ill) and

hcp(0001) surfaces, C2„ for the bcc(110) surface, and C4
for the fcc(100) surface. Finally, b,P in the Dyson equa-
tion represents the deviation of the potential functions
from those of the unperturbed surface.

g" (z) + g
'" (z)AP(z)g" (z) = g

'" (z) (13)

may instead be solved separately for each (A, n) set.
It is (13) that, together with the Poisson and scalar-
relativistic Dirac equations, is solved in typically 10—15
iterations until self-consistency is achieved in charge den-
sities and potentials. Convergence speed benefits &om
the use of linear-response theory, in a manner analogous
to the prescription given by Skriver and Rosengaard.
To obtain the linear-response matrix and the site pro-
jected state densities, one needs a partial backtrans-
formation to the nonsymmetrized Green's-function ma-
trix g, inverse to (12), at each iteration step. How-

ever, the computational cost of performing the back-
transformation is small compared to the gain achieved

by block diagonalizing the Dyson equation.

C. The intersphere potential

host host
&qR = qR —qR, &PR = r R —I R (15)

The intersphere contribution VI to the one-electron
potential stems &om the long-range electrostatic inter-
actions present in the system. In a conventional bulk
calculation within the ASA, these are accounted for by a
Madelung potential alone, i.e., an in6nite sum of charge
density monopoles. However, at a surface it is important
to include the dipole terms in the multipole expansion
and we shall do so in the present work.

For the impurity problem it is convenient to work with
the induced changes in the valence monopoles q (net
charges) and dipoles p

B. Surface-impurity method

At the outset of an impurity calculation for a surface,
one needs the surface Green's-function g'(k~~, z) of the
host, sampled on a complex energy contour and on k~~

points in the irreducible part of the two-dimensional (2D)
Brillouin zone (I2BZ). In addition, one needs potential
functions, the electrostatic intersphere potential, and to-
tal energies, as well as appropriate starting charge den-
sities, corresponding to the real surface. These quanti-
ties are generated by a self-consistent surface calculation
for the host material, using the most recent version of
the TB LMTO Green's-function technique for surfaces
and interfaces. In the present implexnentation the
2D layer representation of the underlying bulk-vacuum
Green s-function is obtained by means of the principal
layer technique by Wenzien et al. , avoiding k-point in-

tegration in the direction perpendicular to the surface.
We obtain the cluster Green's-function matrix analo-

gous to (7), i.e. ,

Vi;R = Vo;R+ &V.;R+ &VJ;R+ &Vo t;R

where Vo.R is the intersphere potential in the unper-
turbed hest system and AV „t.R, to be defined below, is
a terxn which acts to maintain the original charge qt" t'

&

of the unperturbed cluster. For the bulk geexnetries used
here qt t'& is always zero, but for a cluster centered in
the surface layer it becomes of the order of one electron.
Finally, AV, .R and AVz. R are the deviations from the
original xnonopole and dipole contributions, respectively.
These are given by

AV. .,~=2 ) (17)

at each site R relative to those of the unperturbed host

system. The definitions of q and p may be found in

Ref. 46. In the presence of an impurity the intersphere
potential at site B may be written
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2~3 )- &Pg (R —R')
]R-R

~

(18)
obtained in the bulk calculation.

The solution energy of a substitutional impurity in the
ulk may be expressed as6o

where the sums run over the perturbed sites that are
included in the cluster. Per consistency, AV„ is included
in Vl also for the bulk impurity calculation, although here
the dipole moments are rather small. Finally, the excess
charge in the perturbed region

+gtotal —) +'gQ'
R'

is typically 10 s—10 electrons and is distributed uni-
formly over the N, „t sites in the first two shells outside
the cluster. This then forms an additional monopole con-
tribution

&oue —&quot i

~-N„t)R —R„t[ (20)

to the intersphere potential Vl, ~ and maintains the
charge neutrality of the complete system.

D. The solution energy

E —) En
R

(21)

where the sum runs over sites in a cluster or in a unit
cell. For the electrostatic contribution to ER we have

Estat;R Est~t;g + (Vo;R + 2++8;R)+OR + +Vp;RgR~

(22)

where E,, , R refers to the unperturbed system, the factor
1/2 is introduced to correct for double counting, and q~ is
the total charge at site R. For a sufficiently large cluster
the contribution due to AV „t becomes very small and is
safely neglected in Eq. (22) for the present applications.

In the underlying surface calculation for the host ma-
terial, the surface energy Eg is calculated as the sum

Es =) Egq
Q

(23)

over the surface region of the difFerence

In the Born-Oppenheimer, the local-density, the
atomic-sphere, and the frozen-core approximations, the
total valence-electron energy E may be calculated ac-
cording to the prescription given in Ref. 46. Furthermore,
within the ASA the total energy E including the elec-
trostatic contributions may be partitioned into atomic-
sphere-dependent terms E~, i.e.,

Eb„',„=Eq, + ) (EIt — R )
RgQg

(25)

where Eg, is the atomic-sphere projected total energy of
the impurity atom located at site Qs in the host envi-

ronment and E' ~ is the total energy per atom of bulk

impurity species. The sum in Eq. (25) runs over the
rest of the sites in the cluster, incorporating the induced

changes of the total energy of the host atoms due to the
presence of the impurity. Similarly, the solution energy

of a substitutional impurity located at the site Q, in the
surface region may be expressed as

E;„'„=Eq.+ ):(Ez-Ez ) -E' '
RWQ.

(26)

1
AE "'"= epAn ——. g(z)dz,

'L7r
(27)

which refers to the whole crystal but may be projected
onto a particular site by taking EE& ' ——hE' "/N„
where N, is the cluster size. In (27), 6n is the total
valency change and the generalized phase shift g(z) may
be obtained from

~( ) =l (d t(G"'(z)[G'( )l '})
where G '~(z) is the unrelaxed and G~(z) the relaxed
Hamiltonian Green's-function matrices in the p repre-
sentation and branch cuts in the logarithm are avoided

by choosing the phase continuous on the complex energy
contour, on which the integral in Eq. (27) is evaluated. ~

E. SCLS and segregation energy

To calculate core-level binding energies Johansson and
Martensson introduced a Born-Haber cycle which con-
nected the initial and 6nal states of the core ionization
process and used it to study the shift of the core-level
binding energy between bulk and &ee atoms. When the
cycle is applied to the shift in core-level binding energy
between bulk (6) and surface (s) atoms one obtains the
expression

where the sum runs over host and vacuum atomic spheres
centered around the impurity site.

In the presence of a localized defect the induced
changes in the one-electron energies are sensitive to vio-
lations of the Friedel sum rule. If these changes b,E
are extracted through a local summation at each site,
this causes a slow convergence in the total energies with
respect to cluster size. We therefore employ the less
sensitive formula

between the total energy E obtained in the surface
calculation and projected ento the atomic sphere at site
Q in the surface region and the corresponding energy Es

b, ' = [E, h" ~ E,. p'(Z) —E, '„']

[E, ' +E, ' (Z) ——E, '] (29)
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~bs Ez+1 Ezc S S (31)

in which case the equation may be used to estimate the
surface core-level shift and the related segregation energy
&om known surface energies. From the parabolic behav-
ior of the surface energy through the 4d and Gd series, it
becomes immediately obvious that 6,' changes sign in
the middle of the series.

With the recent advance in computational techniques
the surface segregation energy may be obtained directly
kom first principles and there is no need for the equiv-
alent core approximation. Moreover, the complete sepa-
ration in Eq. (30) of the SCLS into surface energy- and
impurity-dependent parts becomes somewhat superficial
on the basis of the present techniques, where the seg-
regation energy is obtained directly from two di8'erent

impurity calculations. In particular, one should not try
to identify the impurity term E, + "(Z) above with the

solution energy E;„,'& in Eq. (26), since the former already
contains terms related to the surface energy itself.

In a slab or a supercell approach the surface segrega-
tion energy, defined as the energy required to interchange
an impurity atom in the bulk with a host atom at a par-
ticular surface site Q„may be calculated as the differ-
ence between the total energy of a system consisting of
unperturbed bulk plus surface with impurity and the to-

in terms of the solution energies E; ~ of the core ionized
Z* atom in the Z bulk or Z surface and the correspond-
ing cohesive energies E, h. When written in this form
the first and the second set of square brackets in (29)
represent the energies necessary to replace a Z atom by
a Z' atom at the surface and in the bulk, respectively,
and their difference is the energy of surface segregation
of a Z* atom in a Z host.

Unfortunately, none of the terms involved, except the
cohesive energy, can be obtained experimentally. Neither
could these terms, at the time the Born-Haber cycle was
introduced, be calculated &om first principles. To con-
nect the surface core-level shift to measurable quantities
one therefore introduced the equivalent core approxima-
tion where a Z atom with a deep core hole is represented
by the element of nuclear charge Z + 1. Thereby the
surface core-level shift may be identified as the heat of
surface segregation of a Z + 1 atom in a Z metal, which
in favorable cases may be estimated from alloy studies.

A different estimate of the surface core-level shift may
be obtained if one regards the surface energy Es as the
difference in cohesive energy between surface and bulk
atoms. In that case (29) may be written '24

&". = (Es" —Es) + Ã;", "(Z) —E; ',"(Z)l (3o)

and this form has the advantage that it separates the
contributions to the SCLS into two distinct parts: (a)
a surface energy difference, which especially for transi-
tion metals is usually thought of as the dominant con-
tribution, and (b) an impurity contribution, which may
be defined simply as the remaining "cross term" needed
to identify (30) with the surface segregation energy of
a (Z+1) impurity in the Z metal host. s If the impurity
aspect may be neglected Eq. (30) simply becomes

tal energy of a system containing a pure surface plus bulk
with impurity. However, in the present case it is more
convenient to obtain the segregation energy in terms of
the impurity solution energies defined in (25) and (26).
If we write down the expression for the total energy of
the two systems mentioned above and make use of the
atomic-sphere projection, we find

imp sol sol
segr surf Ebulk SiQs & (32)

The complete procedure may be described as two im-

purity calculations where the first involves a TB LMTO
bulk calculation, the construction of the Green's-function
matrix for the structural host, and a self-consistent bulk-
impurity calculation which gives the solution energy of
the core-ionized host atom Eb„&'k . The second step in-
volves a TB LMTO surface calculation, which gives
the atomic-sphere partitioned total and surface energies,
the construction of the structural host Green's-function
matrix corresponding to the real surface, and a self-
consistent surface-impurity calculation, which yields the

solution energy of the surface impurity E,'„,'f . Finally,
all the results are combined to give the SCLS in the form
of the surface segregation energy of the core-ionized host
atom.

F. Details of the calculations

The parameters that must be chosen at the outset of
an impurity calculation by the present technique are the
cluster size, the density of k points, the complex energy
sampling, and the form of the exchange-correlation po-
tential. We apply the (minimal) spd basis set that has
been used in the previous study of the surface energies of
metals. For the bulk k-space integration in (7) we use
1785 points in the irreducible dredge of the Brillouin zone
for the bcc structure, 1505 points for the fcc structure,
and 1500 points for the hcp structure. For the surface k~~

integration in (14) we use 256 special points in the irre-
ducible part of the two-dimensional Brillouin zone for the
bcc(110) surface, 136 points for the fcc (100) surface, and

where the last term is defined in (24). This contribution
represents the Q, -projected surface energy of the host
and accounts in the ASA for the transfer of a host atom
froin the surface site Q, to a bulk site which is an integral
part of the segregation process. One should note that the
original total energy of the impurity species E' ~ is in-
cluded in the two impurity solution energies (25) and (26)
and therefore is canceled in the expression for the seg-
regation energy (32). Hence the condition under which
E' ~ is calculated is irrelevant for the segregation energy.

In the &ozen-core approximation a neutral core-ionized
host atom may be created in a self-consistent atomic cal-
culation where the electron in the chosen core level is
transferred into an extra valence state, and the surface
core-level shift may then be obtained &om (32) as the
segregation energy of this Z impurity, i.e.

bs Z'
+c = Esegr '
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252 points for the fcc(ill) and hcp(0001) surfaces. The
moments of the state density are calculated by integrat-
ing the Green's function on a complex energy contour,
using a Gaussian integration technique with 16 points
distributed exponentially on a semicircle enclosing the
occupied states. Finally, exchange and correlation were
included in the parametrization of the local density ap-
proximation given by Vosko et al.72

Based on tests of the convergence of the total energy,
utilizing the generalized phase shift for the one-electron
energies, we use a cluster region consisting of 51 atoms
for the bcc crystal, 55 for the fcc crystal, and 51 for the
hcp crystal. In the fcc and bcc crystals this corresponds
to one impurity site plus four shells of nearest neighbor
host atoms and in the hcp crystal to one impurity site
plus eight shells of host atoms. If the generalized phase
shift is replaced by a local summation of one-electron
energies, we have found that 150 atoms are required
for shell convergency. Finally, in the surface calculations
we use a surface region consisting of four layers of metal
plus two layers of empty spheres simulating the vacuum.

III. RESULTS

In the following we shall present the surface core-level
shifts of the 4d and 5d transition metals as calculated by
the procedure described in the preceding section assum-

ing for each metal the fcc, bcc, and hcp crystal structures.
The core hole to be screened is taken as a 4f level in the
5d series and a 3d level in the 4d series since these are the
levels measured in experiment. All calculations are per-
formed at the experimentally observed equilibrium vol-
umes and at the experimentally observed c/a ratios for
the hcp elements.

0.6-
I

fcc(«&)

0.4

0.2O
Q)

0.0

V
-0.2—

-0.4-

-0.6-

I I I I I I I I

Yb Lu Hf Ta W Re Os Ir Pt
Element

FIG. 2. The calculated surface core-level shift for the
fcc(111) surfaces of the Sd metals (solid circles). These
are compared to experimental data obtained from the most
closely packed surface of the correct structures (open squares)
or from polycrystalline samples (open circles). The vertical
dashed line marks a half-611ed d band (initial state).

the SCLS is related to the properties of the screening elec-
trons. In Fig. 3 we have therefore plotted the d screening

charge, defined as the d occupation on the impurity site
after the core ionization minus the d occupation of the
site before the ionization. It is seen that except for Yb
and Pt the screening charge is close to one electron, both
in the bulk and at the surface. Hence the SCLS is ex-

pected to vary smoothly through the series except at the

A. 5d transition metals

The SCLS of the fcc(ill) surfaces of the 5d elements
from Yb to Pt are presented in Fig 2tog.ether with
available experimental data. It is seen that for the el-

ements Lu —Ir the calculated SCLS decreases almost
linearly with d-band Blling in qualitative agreement with
the previous tight-binding studies. s z It is also seen that
calculated SCLS exhibits a change of sign between W
and Re corresponding to an initial-state d occupancy of

4.5. The linear behavior and the sign change may be
explained within the simple picture of d-electron con-
tribution to the surface energy, suggested by Friedel.
According to this picture the surface energy exhibits a
parabolic variation with the d-band occupation and if we
write the approximate relation (31) in the form

1.4

U)
~~
C

1.0
CD
CO

0.8—

0.6

bulk
----- surface

QbB ~ S
dZ (34)

it follows immediately that the surface core-level shift
should decrease linearly across the series and exhibit a
sign change when the d band is half full.

within the complete screening picture the variation of

I I I I I I I I I

Yb Lu Hf Ta W Re Os Ir Pt
Element

FIG. 3. Calculated d screening charge on the core-ionized
atom for the fcc(111)surfaces of the 5d metals The horizon. tal
dotted line marks the value 1 as a guide to the eye.
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~."= -(Cs —Cg), (35)

to be derived in Sec. IVA. In (35) C„-' is the d-band
centroid for the bulk (B) and surface (S), respectively,
corresponding to a d occupation of n n+ 1/2. Since
by definition

The rapid variation of the SCLS in the bcc phase may
be explained in terms of the screening properties. Within
the complete screening picture, the SCLS of a system
with n d electrons in the initial state in the bulk and
at the surface may be related to the d state density by
means of the relation

D(s) being the local d state density and D its average
over the interval, one obtains, for the qualitative varia-
tion of the SCLS,

M„/Bn (1—/D —1/D ).

Hence for the bcc structure with its well-known two-
peaked d state density the low (bulk) density in the mid-
dle of the series gives rise to the steep descent observed
in the full calculations in Fig. 6.

If we simulate the fcc phase by a constant state density,
where the bandwidth at the surface is reduced by 6W,
the SCLS will follow the linear relation2

6F
n —5 = D(s)ds = (s~ —C„-)D,

&a

b„(1/2 —n/10) 6W.

(36)
With 6=0.20, i.e. , a 20% reduction of the bandwidth at

TABLE I. Calculated (Calc. ) and observed (Expt. ) surface core-level shifts of the 5d (left) and
4d (right) transition metals. Polycrystalline experimental data are given in parentheses.

Crystal (surface)

fcc (111)
fcc (100)
bcc (110)
hcp (0001)
fcc (111)
fcc (100)
bcc (110)
hcp (0001)
fcc (ill)
fcc (100)
bcc (110)
bcc (110)
fcc (ill)
hcp (0001)
bcc (110)
fcc (111)
hcp (0001)
hcp (0001)
fcc (111)
bcc (110)
hcp (OOO1)

fcc (111)
bcc (110)
fcc (111)
hcp (0001)
bcc (110)
fcc (111)
hcp (0001)
bcc (110)

Element

Yb

Lu

Os

Pt

5d metals
SC

Calc.
0.311
0.451
0.254
0.530
0.512
0.394
0.333
0.292
0.372
0.450
0.377
0.541
0.242
0.184

—0.309
0.063
0.099
0.030

—0.191
—0.486
—0.430
—0.245
—0.344
—0.612
—0.662
—0.162
—0.423
—0.444
—0.240

LS (eV)
Expt.
(0.44)

(o.7o)'

(o.42)'

0.360'

—0.321

0.00'

—0.41'

—0.50

—0.40

Element

Sr

Zx'

Nb

Mo

TG

Rh

Pd

0.409
0.396

0.7—0.9~

0.226
0.279

0.466
0.097

—0.316
—0.008

—0.330"

—0.027
—0.207

—0.444
—0.312

—0.593

—0.232 —0.2"

4d metals
SCLS (eV)

Cale. Expt.
0.195

Martensson (Ref. 16).
Flodstrom et al (Ref. 17 and ref.erences therein).

'Riffe and Wertheim (Ref. 16).
Riffe et aL (Ref. 15).

'Martensson et aL (Ref. 14).
Baetzold et aL (Ref. 11) and Tillborg (Ref. 7).

sBarrett et aL (Ref. 13).
"Lundgren et aL (Ref. 19).
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FIG. 6. Comparison between calculated surface core-level
shifts of the Sd metals for the most closely packed surface of
the fcc (circles), hcp (triangles), snd bcc (diamonds) crystal
structures. The vertical, dashed line marks a half-filled d band
(initial state).

FIG. 7. The calculated surface core-level shift of the 4d
metals for the most closely packed surface of the experimen-
tally observed crystal structures (solid squares) snd for the
(111) surface of the fcc crystal. Experimental single-crystal
data are denoted by open squares. The vertical dashed line
marks s half-filled d band (initial-state).

the surface, and W 5 eV, the shift varies from'about
+0.5 eV to —0.5 eV through the series. This simple es-
timate is in astonishing agreement with the results ob-
tained in the full fcc(ill) calculations shown in Fig. 2.

B. 4&i transition metals

The SCLS for the 4d transition metals are displayed in
Fig. 7 where we show the calculated shifts of the fcc(ill)
faces and of the most closely packed surfaces of the ob-
served crystal structures, together with the known exper-
imental data for Y(0001),i Mo(110), and Pd(ill). is It is
seen that the trend across the 4d series essentially follows
that of the 5d series. For Mo(110) and Pd(ill) the calcu-
lated SCLS are in very good agreement with experiment,
in analogy to, e.g., W(110) and Pt(111). To our knowl-

edge no experimental data for, e.g., Tc(0001), exist. The
calculations predict that the SCLS will vary smoothly
across the series except for Mo(110) and Tc(0001) where
a rapid variation is expected. This is similar to the Gd

case and due to the dependence on crystal structure. In
Y(0001) we find a discrepancy of 0.3 eV between theory
and experiment which is difficult to understand even on
a qualitative basis. The theoretical and experimental re-
sults for the 4d metals are summarized in Table I parallel
to the corresponding data for the 5d metals.

IV. DISCUSSION

With the present results there exist theoretically de-
termined SCLSs for the 4d and 5d transition metals, ob-

tained completely from first principles within the final-
state screening picture. The agreement with single-
crystal measurements, which is experienced in most
cases, lends strong support to the theoretical approach
used to obtain the SCLS and suggests that the assump-
tion of complete final-state screening is indeed valid for
metallic systems. A main issue in previous theories and
interpretations of the SCLS, however, has been the rel-
ative importance of the so-called initial-state and final-
state contributions to the shift. It is therefore appropri-
ate in the present context to review the basic concepts
involved and, with the aid of new information, shed
extra light on this controversial subject.

It is well known that the shape of an x-ray core-level
spectrum contains several contributions, namely, the so-
called shakeup and shakeofF intensities towards higher
binding energies relative to that of the main peak (MP).
The removal of the photoelectron is much faster (10
s) than the relaxation process (10 is s) of the valence
electrons, and there is essentially no time for redistribu-
tion of the valence levels during the photoemission event.
However, the total wave function 4'~h may be expressed
as the linear combination

of eigenfunctions Q; of the Hamiltonian which represents
the system with a missing core electron. The spectral
features convolute the corresponding eigenvalues e, . The
central assumption on which the present impurity calcu-
lations are based, and which is used by Johansson and
Martensson, ' is that the MP, i.e. , the symmetric part
of the line profile, corresponds to the ground state Qo.
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The difference between the ground-state energy eo and
the spectral weight of the various intensities may be used
as a measure of the electronic relaxation energy. Hence
the difFerence in relaxation energy for a surface atom rel-
ative to a bulk atom is commonly identified with final-
state efFects in the SCLS.

A. The initial- and Bnal-state contributions
to the SCLS

The SCLS 6, is the difFerence between two binding
energies of a core-level X belonging to a bulk or a sur-
face atom, i.e., the difference between two total energy
difFerences

6,= Ex &(X,„,r) —E~ —[E~ r(Xbu|k) —EN]
= EN (rX sur)r——EN 1(Xb ul—k)) (4o)

where N denotes the number of electrons in the system.
The initial-state total energy EN cancels due to the fact
that there is only one initial state of the whole system, s ~s

whereby the shift becomes the difFerence between two fi-
nal states. This raises the paradoxical question whether
it is legitimate to speak of an initial-state contribution
to the binding energy shift, in spite of the intuitive no-
tion that shifts in the core-electron eigenealues e, would
represent such a contribution. Within the framework of
Hartree-Fock (HF) theory, Koopmans's theorem tells us
that the HF orbital eigenvalue e, exactly equals the cor-
responding difference in total energy upon ionization

(EN rEN )~— (41)

where the N —1 electrons should remain &ozen in their
original distribution for the calculation of EgF r. Hence
the effects of electron relaxation, on the one hand, and
electron correlation, on the other, are by no means in-
corporated in Eq. (41). Koopmans's theorem serves nev-
ertheless as a formal, albeit approximate, connection be-
tween an orbital eigenvalue and its binding energy. How-

ever, as was strongly emphasized by Egelhoff, 2 but per-
haps less clearly spelled out elsewhere in the literature,
orbital eigenvalues in a multielectron system are mathe-
matical constructions which satisfy the relation (41) but
do not represent any mal property of the initial or ground
state of the system. The eigenvalue pmbes the initial
state of the charge density and potential and gives an
estimate of a total energy difference, which is the real
representation of the binding energy.

The second approach used to associate an orbital eigen-
value with the inital-state contribution to a binding en-
ergy is to expand a total energy difFerence in a Taylor
series. ' ' A partial derivative of the total energy E with
respect to core occupation n is within density functional
formalism rigorously given by the corresponding eigen-
value e . Directly applied to the middle expression in
(40), i.e., using hn, =—1, this gives *

surf bulk)

+ (8 E/Bn, .,„,f —8 E/8—,. n„, b)+k. . -

or, explicitly separating the initial- and final-state
contributions, '

6, = —A~, + AE„). (43)

This expression represents the commonly used identi-
fication of the initial-state contribution with the core-
eigenvalue shift and the labeling of the relaxation en-
ergy AE„~ to efFects that cannot be accounted for by the
initial-state contribution.

The viewpoint that the origin of the SCLS is almost
exclusively due to initial-state efFects was expressed par-
ticularly strongly by Citrin and %ertheim. The observed
core-level shift for golds was initially discussed in terms
of 8-d rehybridization at the surface and related to the
observed shift of the valence d band. Both the core-level
shift and the surface d valence shift was then understood
to be caused by a surface potential U, induced due to
the narrowing of the surface-state density in conjunc-
tion with the approximate preservation of local charge
neutrality. ' ' In a model where the surface band is
rigidly displaced by U for strict surface charge neutral-
ity, a plausible connection between the initial and total
contribution to the SCLS was provided by Desjonqueres
gg gL22

b.,(Z) ——6e, = —U(Z) = BEs (Z)

= Es(Z+ 1) —Es(Z) (44)

Here, again, the final expression approximates the segre-
gation energy in the sense that the impurity aspect has
been neglected. From the aforementioned d-band charge
neutrality model it immediately followed, i.e., completely
within the initial-state concept, that for transition met-
als the SCLS (as connected to b,e, and U) should be
of opposite sign for elements at the beginning and end
of the series. 2r'2 Moreover, the SCLS estimated by the
model were found to be similar in magnitude to the rnea-
sured shifts. Hence the trend in the SCLS across a tran-
sition series should most appropriately follow the eigen-
value shift 6e, implying that the final-state contribution
b„,~ is rather small. s

In Table II we compare a number of core-eigenvalue
shifts calculated previously with available experimental
results. It may be seen that the value of this comparison
is reduced by the fact that in the cases where several the-
oretical results refer to the same surface, there is a scatter
of 0.2 eV. In Fig. 8 we therefore also make a compari-
son between the fcc(111) 1s-level shifts for the 4d metals
obtained in the present full (ls core-hole) impurity cal-
culations and the core-eigenvalue shifts extracted from
a very recent study by Methfessel et aL In this com-
parison we observe that the initial-state shifts are, on
average, higher in energy than the screened total-energy
results. A similar observation seems to hold for the net
result of the comparison in Table II. The early results
for Ta(100) and W(100) (Table II) led Johansson and
Martensson to suggest that the surface energy difFer-
ence Es(Z+ 1) —Es(Z) in Eq. (44) most naturally could
be expanded around the hypothetical (Z + 2) element.
As a result, in the variation across a transition series in
the initial-state shifts should be shifted systematically to
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Metal

Ta
VV

pt

Mo
Ru
Rh

Pd

Surface

bcc (100)
bcc (110)
bcc (100)
fcc (111)
fcc (100)
fcc (110)
bcc (110)

hcp (0001)
fcc (111)
fcc (100)
fcc (100)

SCLS (eV)
Calc.

0.96

00

-0.87$

-0.14"
-0.5~

-0.46",-0.6~

-0.59",-0.75",-0.75-0.81'
-0.30—0.41',-0.47", -0.55

Expt.
0.74
-0.32'
-0.35'
-0.40

-0.55
-0.33'

-0.44"

Krakauer (Ref. 34).
Guillot et al. (Ref. 12).

'Riffe et al. (Ref. 15).
Posternak et aL (Ref. 29).

'van der Veen et al. (Ref. 10).
Baetzold et al. (Ref. 11).

sWang et aL (Ref. 35).
"Methfessel et al. (Ref. 37).
'Lundgren et al. (Ref. 19).
'Feibelman (Ref. 32).
"Feibelman and Hamann (Ref. 33).
'Arlinghaus et al. (Ref. 30).

Kudrnovsky et aL (Ref. 55).
"Nyholm et aL (Ref. 20).

TABLE II. Comparison between independent first-

principles calculatons (Calc. ) of surface core-level eigenvalue
shifts with experimenatal data (Expt. ) for surface core-level

binding energy shifts.

«. = f&~IN;l'&" (45)

under the constraint, as in the frozen-core approxima-
tion, that the core orbitals Q, are kept frozen. The core
contribution to the total energy may be identi6ed with
the kinetic energy part

the right of the original values by approximately half an
element, which is strikingly close to what is seen in Fig.
8 for the sequence Nb-Pd. This picture has recently been
supported by a tight-binding study for closely packed
bcc surfaces of Ta and W.

The remaining problem that needs to be understood
is the fact that two completely different physical inter-
pretations serve to give similar shifts. The initial-state
core-eigenvalue shifts are indeed close in magnitude to
the shifts obtained by the present type of impurity cal-
culations, where the shift may unambiguously be traced
to the screening properties of the valence d electrons. If
there was a contribution due to the core-eigenvalue shift,
one could for a moment argue that the screening contri-
bution would itself enhance the shift by a factor of 2.

It should be stressed that the screened SCLS presented
above and in Sec. III were obtained by means of the
frozen-core approximation. Hence the shift is identified
solely with the difference in the total energy4o'4s associ-
ated with the valence charge. To the extent that such
a scheme is a good approximation to a full treatment,
it indicates that differences in the core eigenvalues for a
bulk and surface atom, respectively, have indeed only a
minor real effect on the observed SCLS. For a perturbed
system, e.g. , a surface, a change hv in the one-electron
potential shifts the core-electron eigenvalues e; by

0.6

I

I

I

(46)

0.4

0.2
O

g) 0.0

0
-0.2—

-0.4

-0.6 L-

Y Zr
I

Nb Mo Tc Ru
Element

Rh Pd

FIG. 8. Comparison of calculated 18-level surface core-level
shifts of the fcc(111) facet for the 4d metals, between those
obtained within the present complete screening picture (solid
diamonds, Total)and the corresponding core-eigenvalue shifts
(open triangles, Eigenvalue) as reported by Methfessel et al.
(Ref. 37). The vertical dashed line marks a half-filled d band
(initial state).

where the sum runs over the core states and n, „is the
core charge density. The change in this contribution upon
the shift bv, using n, „=P,)g;)z, is.

bT,",";, =) be; —f bvn„„d v =0,
2

(47)

whereby the eKect of a core-eigenvalue shift will be com-
pletely cancelled in the total energy differences, e.g. ,

those used for the segregation energy calculation. This
result is of course modi6ed if the core orbitals are allowed
to relax, and the validity of the frozen-core approxima-
tion has been examined by von Barth and Gelatt. The
essential result is that the error in the total energy due to
this approximation vanishes to Grst order in the charge
density differences, becoming typically 2/z of the total
energy of transformation between tmo diRerent chemical
environments.

It is completely evident that, for transition metals at
least, the calculated core-eigenvalue shifts are indeed sim-
ilar to the experimentally observed SCLS. On the other
hand, it may be argued on the basis of the above discus-
sion that the former quantity has no direct relevance for
the latter and that the observed qualitative agreement
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therefore appears to be fortuitous.
To elucidate the origin of the agreement between the

core-eigenvalue shifts and the measured SCLS, we shall
consider the screening properties of the d electrons. The
one-electron contribution &om the d states to the bond-
ing energy for a system with n d electrons may be written

eF
E "' '(n) = (s —C„)D(s)dc, (48)

where e~ is the Fermi level (defined to be fixed for the
present purposes), C is the d-band centroid, and D is the
d state density. For a model with a rigid state density,
neglecting the impurity aspect and charge transfer, the
corresponding energy of the screened core hole is there-
fore given by

Cp

E ' '(n+ bn) = (c —C„+g„)D(s+ bt)ds, (49)

+nC„, (50)

where we have used n=I' D(s)de Expand. ing C„and
C„+b„around n + bn/2, e.g. , C„=C„+b„/2 + bt/2, and
the integrand around e~ + bt/2, we obtain

/Eone-el
Bn

bn
= ep —Cn+ (51)

where bn is the screening d charge and bt is the amount
by which the d states are pulled down relative to e~.
Hence the screening energy may be written

ggone-el gone-el(& + b&) gone-ei(&)

ey +bt
eD(s) ds —(n+ bn) (bt + C„+g„)

the core-eigenvalue shift, which probes the initial state,
but is otherwise irrelevant for the SCLS.

B. The impurity contribution

The thermodynamical formulation (30) in Sec. II E ex-
pressed the SCLS as the difFerence between two surface
energies plus a term which is commonly referred to as the
impurity contribution. In the computational procedures
this clear-cut separation into surface energy and impurity
contribution to the shift is not carried out explicitly. It
has nevertheless become customary, and physically con-
venient, to discuss the origin of the shift in terms of these
contributions. If one uses the equivalent-core approxima-
tion and neglects the impurity terms in (30) the SCLS
may eaaentially be interpreted as the difference between
the surface energy of the (Z+1) and Z elements, which is
usually thought of as the most important contribution.
It was therefore proposedi4 that the anomalously high
SCLS of Re(0001) was due to the differences in the Z
dependence of the surface energy induced by the crystal
structure. This picture is confirmed by the surface energy
results of Skriver and Rosengaard and by the fact that
in the present calculations we find that for the bcc(110)
face the surface energy maximum occurs at W while for
the hcp(0001) face the maximum is found at Os.

To obtain a qualitative measure of the importance of
the impurity aspect relative to the surface energy, we may
use our calculated surface energies to estimate the SCLS
from E&+ —Eg as a function of atomic volume and
crystal structure. A comparison between the calculated
SCLS of the fcc(111) face of the 5d metals from Table I

S., = -(Cg —C~), (53)

The analysis applies equally well to bulk and surface
atoms. Since bn = 1 for both bulk and surface screen-
ing, the SCLS becomes the difference between the bulk
(B) and surface (S) d-band centers for a hypothetical d
valence of n+ bn/2, i.e.,

S B
(Cn+bn/2 Cn+bn/2)'

This result should be compared with the estimate of the
core-eigenvalue shift

0.6

0.4-

0 0.2-
Q)

0.0

0
-0.2—

fcc(111)

which suggests that an "initial-state" shift for the Z ele-

ment should be interpreted as the "total" shift for the hy-

pothetical (Z—1/2) element. This is essentially Slater's
transition state. The result (53) and (52) may of course
also be regarded as an alternative formulation of Eq. (44).

It follows &om the analysis that both the core-
eigenvalue shift and the "total energy" shift may be de-
scribed in terms of the shift in the band centroid, al-

though translated by half an element. The band shift
is electrostatically induced, governed by surface band
narrowing in conjunction with conservation of d charge
when proceeding &om the bulk to the surface. We have
thus clari6ed the efFect of this physical condition, nalnely,
that it is simultaneously responsible for (a) the screening
properties, which is directly related to the SCLS, and (b)

-0.4

-0.6—

Yb Lu Hf Ta W Re Os Ir Pt
Element

FIG. 9. Comparison for fcc(111) between calculated sur-
face core-level shifts (solid diamonds) and estimates using
@2+' —@2 (g is the atomic number). Circles, surface ener-
gies Es were obtained for the natural (experimental) volume
of each element Z; squares (strained), Es+' and &s b«h
calculated for the atomic volume of the Z metal.



5144 M. ALDEN et al. 50

0.8—

0.6 i

The SCLS peaks observed in bcc W and hcp Re will

in fact also appear if the surface energy Eg is related
to the cohesive energy E, p by the familiar approximate
relation Es = 0.2E, i, .s Equation (29) then becomes

04
6, = 0.2(E q' —E, i, )

—0.2E, "'"(z+,), (54)

O
0.2—

0.0

where we have used that E,'"'~&'+&) = 0.8E. ""(&+&).
However, as pointed out in Ref. 14, the irregularities are
then of atomic origin and will not appear if one uses co-
hesive energies related to the same type of d"s multiplet
average atomic state for all the 5d elements.

8- - -6 E,(Z+1)-E,(Z)
= Full calc.

V. SUMMARY

I I I J

Yb Lu Hf Ta W Re Os Ir Pt

Element
FIG. 10. Comparison between calculated surface core-level

shifts for the most closely packed surface of the observed
crystal structures (solid diamonds) and estimates using
Es+ —Es (open circles) He.re Es+ and Es were both
calculated in the observed crystal structure of the Z metal,
but for the difFerent (nonstrained) volumes of the (2+1) and
Z elements, respectively.

and two different E&+ —E& estimates is presented in

Fig. 9. If E&+ is calculated at the atomic volume of the
(Z+1) metal, i.e. , simulating a "nonstrained" final state,
the SCLS is typically underestimated for the earlier el-
ements (where the volume difFerences are large) relative
to the more realistically "strained" situation. The dif-
ference between these two situations may thus serve as a
qualitative measure of the strain energy in the final state.

Turning to the dependence on crystal structure, we
show in Fig. 10 estimates of Es+ —E& obtained by
"nonstrained" surface energies where both Es+ and E&
are calculated in the observed structure of the Z metal.
Now the anomaly close to W and Re appear qualitatively
correct, indicating that this behavior is indeed connected
with the crystal dependence of the surface energy. It is
also clear that the difference in SCLS between a metal in
the fcc and the hcp structure Inay be substantial, i.e. , al-
ready from the calculated surface energies, in spite of the

fact that the two structures have the same coordination
number.

Et appears that the present calculations con6rm the
picture that for transition metals the so-called surface-
energy contribution provide the dominant features over
the series, although the impurity contribution, here of the
order of 0.2 eV, is still important and cannot be neglected
in quantitative studies. One should, however, remember
the ambiguity caused by the slightly diferent definitions
of the impurity terms as discussed in Sec. II E.

We have implemented an efficient matrix Green's-
function technique for calculating the electronic structure
of an impurity located in the bulk or at the surface. The
technique is based on the generalized linear-muflin-tin-
orbitals method and a Green's-function formalism. For
the charge density we apply the frozen-core and atomic-
sphere approximations, but, in addition, we include the
contribution from the charge density dipoles in the inter-
sphere potentials. We have taken great care to maintain
identical approximations and computational parameters
in the bulk and at the surface thus keeping the numerical
errors in the calculated segregation energies at a mini-

mum.
We have used the Green's-function technique in a

comprehensive theoretical study of the surface core-level
shifts of the 4d and 5d transition metals. We have
included the so-called 6nal-state effects by identifying
the shift with the surface segregation energy of a core-
ionized impurity. ln those cases where the measured
data are obtained from single crystals, our results are
in good agreement with experiment. This gives quanti-
tative support to the complete screening picture of the
core-electron photoionization process. We also conclude
that the frozen-core and atomic-sphere approximations
are well justified for closely packed surfaces, which in-

deed helps to isolate and clarify the main contribution
to the SCLS. Finally, the calculations of the SCLS for
several crystal structures provide a better understanding
of the observed changes across a d transition series.

ACKNOW I EDC MENTS

M.A. , I.A.A. , and B.J. are grateful to The Goran
Gustafsson Foundation and The Swedish Natural Sci-
ence Research Council for 6nancial support. The Center
for Atomic-Scale Materials Physics is sponsored by the
Danish National Research Foundation. Part of the work
was supported by grants from the Novo Nordisk Founda-
tion and the Danish research councils through the Danish
Center for Surface Reactivity.

D. Spanjaard, C. Guillot, M.C. Desjonqueres, G. Treglia,
and J. Lecante, Surf. Sci. Rep. 5, 1 (1985).
W.F. Egelhoff, Surf. Sci. Rep. 6, 253 (1987).
N. Martensson, A. Stenborg, D. Bjorneholln, A. Nilsson,

and J.N. Andersen, Phys. Rev. Lett. 60, 1731 (1988).
B. Johansson and N. Martensson, Phys. Rev. B 21, 4427
(1980).
P.H. Citrin and G.K. Wertheirn, Phys. Rev. 8 2'F, 3176



50 SELF-CONSISTENT GREEN'S-FUNCTION TECHNIQUE FOR. . . 5145

(1983).
B.Johansson and N. Martensson, Helv. Phys. Acta 58, 405

(1983).
H. Tillborg, Ph.D. thesis, Uppsala University, 1993.
P.H. Citrin, G.K. Wertheim, and Y. Baer, Phys. Rev. Lett.
41, 1425 (1978).
J.F. van der Veen, P. Heimann, F.J. Himpsel, and D.E.
Eastman, Solid State Commun. 37, 555 (1981).
J.F. van der Veen, P. Heimann, F.J. Himpsel, and D.E.
Eastman, Solid State Commun. 38, 595 (]981).
R.C. Baetzold, G. Apai, and E. Shustorovich, Phys. Rev.
8 26, 4022 (1982).
C. Guillot, D. Chauveau, P. Roubin, J. Lecante, M.C.
Desjonqueres, G. Treglia, and D. Spanjaard, Surf. Sci. 182,
46 (1985).
S.D. Barrett, A.M. Begley, P.J. Durham, and R.G. Jordan,
Solid State Commun. 71, 111 (1989).
N. Martensson, H.B.Saalfeld, H. Kuhlenbeck, and M. Neu-

mann, Phys. Rev. 8 39, 8181 (1989).
D.M. Riffe, G.K. Wertheim, and P.H. Citrin, Phys. Rev.
Lett. B3, 1976 (1989).
D.M. Riffe and G.K. Wertheim, Phys. Rev. B 47, 6672
(1993).
A. Flodstrom, R. Nyholm, and B. Johansson, in Ad-

uances in Surface and Interface Science, Volume

Techniques, edited by R.Z. Bachrach (Plenum Press, New

York, 1992).
~s N. Martensson (private communication); A. Stenborg,

Ph.D. thesis, Uppsala University, 1989.
E. Lundgren, U. Johansson, M. Qvarford, J.N. Andersen,
and R. Nyholm, in MAX-I AB Activity Report 1991,edited
by U.O. Karlsson and S.L. Sorensen (KF-Sigma, Lund,
1991); E. Lundgren, U. Johansson, R. Nyholm, and J.N.
Andersen, Phys. Rev. 8 48, 5525 (1993).
R. Nyholm, M. Qvarford, J.N. Andersen, S.L. Sorensen,
and C. Wigren, J. Phys. Condens. Matter. 4, 277 (1992).
P.J. Feibelman and D.R. Hamann, Solid State Commun.
31, 413 (1979).
M.C. Desjonqueres, D. Spanjaard, Y. Lassailly, and C.
Guillot, Solid State Commun. 34, 807 (1980).
A.R. Williams and N.D. Lang, Phys. Rev. Lett. 40, 954
(1978).
A. Rosengren and B. Johansson, Phys. Rev. B 23, 3852
(1981).
W.F. Egelhoff, Phys. Rev. Lett. 50, 587 (1983).
A. Rosengren and B. Johansson, Phys. Rev. B 22, 3706
(1980).
A. Rosengren, Phys. Rev. 8 24, 7393 (1981).
M. Said, M.C. Desjonqueres, and D. Spanjaard, Phys. Rev.
8 47, 4722 (1993).
W(100): M. Posternak, H. Krakauer, A.J. Freeman, and
D.D. Koelling, Phys. Rev. 8 21, 5601 (1980); E. Wimmer,
A.J. Freeman, J.R. Hiskes, and A.M. Karo, ibid. 30, 6834
(1983).
Rh(100) and Pd(100): F.J. Arlinghaus, J.G. Gay, and J.R.
Smith, Phys. Rev. 8 23, 5152 (1981).
J.R. Smith, F.J. Arlinghaus, and J.G. Gay, Phys. Rev. B
2B, 1071 (1982).
Ru(0001): P.J. Feibelman& Phys. Rev. 8 26, 5347 (1982).
Rh(111) and Rh(100): P.J. Feibelman and D.R. Hamann,
Phys. Rev. 8 28, 3092 (1983).
Ta(100): H. Krakauer, Phys. Rev. 8 30, 6834 (1984).
Pt(100): D.-S. Wang, A.J. Freeman, and H. Krakauer,

Phys. Rev. 8 29, 1665 (1984).
A.M. Begley, R.G. Jordan, W.M. Temmerman, and P.J.
Durham, Phys. Rev. 8 41, 11780 (1990).
M. Methfessel, D. Hennig, and M. SchefBer, Surf. Sci.
287/288, 785 (1993).
P.J. Feibelman, Phys. Rev. 8 39, 4866 (1989).
O. K. Andersen, Phys. Rev. 8 12, 3060 (1975)
O. Gunnarsson, O. Jepsen, and O.K. Andersen, Phys. Rev.
8 27, 7144 (1983).
H.L. Skriver, The LMTO Method (Springer, Berlin, 1984).
O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571
(1984)
O.K. Andersen, O. Jepsen, and D. Glotzel, in Highlights of
Condensed-Matter Theory, edited by F. Bassani, F. Fumi,
and M. P. Tosi (North-Holland, New York, 1985).
O.K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev.
8 34, 5253 (1986).
W.R.L. Lambrecht and O. K. Andersen, Surf. Sci. 178, 256

(1986), and private communication.
H.L. Skriver and N.M. Rosengaard, Phys. Rev. B 43, 9538
(1991).
H.L. Skriver and N.M. Rosengaard, Phys. Rev. B 45, 9410
(1992).
H.L. Skriver and N.M. Rosengaard, Phys. Rev. B 48, 7157
(1992).
M. Alden, H.L. Skriver, S. Mirbt, and B. Johansson, Phys.
Rev. Lett. 69, 2296 (1992).
M. Alden, S. Mirbt, H.L. Skriver, N.M. Rosengaard, and
B. Johansson, Phys. Rev. 8 46, 6303 (1992).
S. Mirbt, H.L. Skriver, M. Alden, and B. Johansson, Solid
State Commun. 88, 331 (1993).
N.M. Rosengaard and H.L. Skriver, Phys. Rev. B 47, 12 865
(1993).
I.A. Abrikosov and H.L. Skriver, Phys. Rev. B 47, 16532
(1993).
A.V. Ruban, I.A. Abrikosov, D.Ya. Kats, D. Gorelikov,
K.W. Jacobsen, and H.L. Skriver, Phys. Rev. B 49, 11383
(1994).
J. Kudrnovsky, I. Turek, V. Drchal, P. Weinberger, N.E.
Christensen, and S. K. Bose, Phys. Rev. 8 46, 4222 (1992).
J. Kudrnovsky, I. Turek, V. Drchal, P. Weinberger, S.K.
Bose, and A. Pasturel, Phys. Rev. 8 47, 16525 (1993).
M. Methfessel, D. Hennig, and M. ScheRer, Phys. Rev. B
4B, 4816 (1992).
R. Poudloucky, R. Zeller, and P.H. Dederichs, Phys. Rev.
8 22, 1577 (1980).
P. J. Braspenning, R. Zeller, A. Lodder, and P. H. Ded-

erichs, Phys. Rev. 8 29, 703 (1984).
B. Drittler, M. Weinert, R. Zeller, and P. H. Dederichs,
Phys. Rev. 8 39, 930 (1989).
U. Klemradt, B. Drittler, R. Zeller, and P. H. Dederichs,
Phys. Rev. Lett. 64, 2803 (1990).
C. Koenig, N. Stefanou, and J. M. Koch, Phys. Rev. B 33,
5307 (1986).
P.J. Feibelman, Phys. Rev. 8 35, 2626 (1987).
M. SchefBer, C. Droste, A. Fleszar, F. Maca, G. Wachutka,
and G. Barzel, Physica 8 172, 143 (1991).
G. Wachutka, A. Fleszar, F. Maca, and M. SchefBer, J.
Phys. Condens. Matter 4, 2831 (1992).
A. Gonis, G. M. Stocks, W. H. Butler, and H. Winter,
Phys. Rev. 8 29, 555 (1984).
J. C. Slater, Quantum Theory of Molecules and Solids
(McGraw-Hill, New York, 1963), Vol. 1.



5146 M. AI,DEN et al. 50

C.J. Bradley and A.P. Cracknell, The Mathematical Theory
of Symmetry in Solids (Clarendon Press, Oxford, 1972).
G. Ries and H. Winter, J. Phys. F 9, 1589 (1979).
B. Wenzien, J. Kudrnovsky, V. Drachal, and M. Sob, J.
Phys. Condens. Matter 1, 9893 (1989).

' For the present application of a "(Z+ 1) impurity" in a Z
metal host, the phase shift resides between 0 and x.
S.H. Vosko, L. Milk, and M. Nusair, Can. J. Phys. 58, 1200
(1980).
J. Friedel, Ann. Phys. (Paris) 1, 257 (1976).

E. Navas, K. Starke, C. Laubschat, E. Weschke, and G.
Kaindl, Phys. Rev. B 48, 14753 (1993); A.V. Fedorov, E.
Arenholz, K. Starke, E. Navas, L. Baumgarten, C. Laub-
schat, and G. Kaindl (unpublished).
R. Manne and T. Aberg, Chem. Phys. Lett. 7, 282 (1970).
G. Crecelius, G.K. Wertheim, and D.N.E. Buchanan, Phys.
Rev. B 18, 6519 (1978).
U. von Barth and C.D. Gelatt, Phys. Rev. B 21, 2222
(1980).


