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We study a two-dimensional (2D) lattice model of forward-directed waves in which the inte-
grated intensity for classical waves (or probability for quantum mechanical particles) is conserved.
The model describes the time evolution of a 1D quantum particle in a time-varying potential and
also applies to propagation of electromagnetic waves in two dimensions within the parabolic ap-
proximation. We present a closed-form solution for propagation in a uniform system. Motivated by
recent studies of nonunitary directed models for localized 2D electrons tunneling in a magnetic field,
we then address related theoretical questions of how the interference pattern between constrained
forward paths in this unitary model is affected by the addition of phases corresponding to such a
magnetic field. The behavior is found to depend sensitively on the value of ®/®,, where ® is flux
per plaquette and ®, is the unit of flux quantum. For ®/®¢ = p/q we find the amplitude to be more
collimated the larger the value of q is. We next consider propagation in random forward-scattering
media. In particular, the scaling properties associated with the transverse width = of the wave,
as a function of its distance ¢ from the point source, are addressed. We find the moments of z to
scale with ¢t in a very different way from what is known for either off-lattice unitary or on-lattice
nonunitary systems. The scaling of the moments of the probability [P™(z,t)] (or intensity) at a
point (z = 0,t) is found to be consistent with a simple behavior [P"(0,t)] ~ t~™/2. Implications
for the behavior of one-dimensional lattice quantum particles in a dynamically fluctuating random

potential are discussed.

I. INTRODUCTION

Directed propagation of waves in uniform and non-
homogeneous media has many applications in different
branches of physics. Classically they arise in the context
of electromagnetic wave propagation (e.g., light propa-
gation in the atmosphere). Quantum mechanically they
arise in investigations of hopping transport in insulators.
If the preferred direction is identified as time, it also de-
scribes the motion of a quantum particle that obeys the
time-dependent Schrédinger equation.

In the classical-waves context, directed propagation
is obtained within the so-called “parabolic approxima-
tion” which is applied in circumstances at which most
of the scattering is in the forward direction.!=® The
equation is parabolic because the second derivative in
the direction of propagation (say z) is replaced by a
first derivative, and the Maxwell equation for a field
E(z,y,z,t) = Rel€(z,y, 2, t)e?(**~“?)] is replaced by

.0 1 _, _
(z£+ﬁv —ku(a:,y,z,t)) E(z,y,2,t) =0, (1.1)

where p(z,y, z,t) is a nonuniform index of refraction and

vi=2+ &
Bz 8y

In the applications for classical waves, however, in

many instances the absorption of the medium in which

the “directed propagation” takes place is negligible.

Therefore, the total integrated energy at every latitude z
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is constant as energy is conserved during the propagation.
We denote by unitarity (for obvious reasons) the models
in which |E|? (or |¥|?> where ¥ is the wave function of
a quantum particle) are conserved. One of the most im-
portant issues we address in this work is the drastic dif-
ference in the properties of directed propagation between
unitary and nonunitary models.>~7

To approach systematically the problems associated
with directed waves in ordered and random media it was
found very beneficial to study lattice models. They are
often simpler and more amenable to analytic and numeric
calculations than their continuum counterparts. But for
these studies to universally apply to systems without
an underlying lattice structure as well, the question of
whether the continuum behavior is recovered from the
lattice on length scales much longer than the lattice spac-
ing should be carefully explored.”

In this paper, we introduce a two-dimensional (2D)
lattice model for unitary directed propagation and in-
vestigate its behavior in uniform, nonhomogeneous and
random media. Important differences between the lattice
and the continuum description will be emphasized. De-
spite these differences, the study of lattice models helps
in the basic understanding of directed propagation in var-
ious environments. Moreover, it provides a rich collection
of phenomena with potential applications in lattice sys-
tems.

Quantum mechanically the model we study is describ-
ing the real time evolution of a one-dimensional quantum
particle (we shall use electron to denote all of them) in a
time-dependent potential V(z,t)
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2"£=—ﬁ—2?—2£+V(a: t) .

ot 2m Ox? (1.2)

We shall study here the case of a random potential
V(z,t). While early studies concentrated on the contin-
uum version,®? a lattice model was recently extensively
investigated by Bouchaud et al.}® To conserve probability
on a lattice they employed a different method than ours.
From their numerical investigation they reached the con-
clusion that the wave function has multifractal proper-
ties. The difference between the discretization methods
and the possibility that they may lead to a different be-
havior will be discussed in the last section.

Another interesting extension we study here is the dis-
crete equation

Yz, t+1) =T Pz —1,t) + e *F Pz + 1,8). (1.3)

The main motivation to study this equation is its close
formal connection to another interesting system: that
of a tunneling electron on a lattice in the presence of
a magnetic field. The directed path approximation is
invoked for this case of strongly localized electrons pre-
cisely because the wave function decays exponentially.
Therefore, the “directed paths” approximation cannot be
applied in the unitary case to study the spatial behav-
ior of the wave function ¥ (z,y) in 2D. However, because
of the interesting behavior''? found in the nonunitary
case with a magnetic field, there is a strong motivation
to widen our theoretical understanding and to investi-
gate what would be the effect of a “magnetic field” on
the unitary model with constrained forward paths. The
magnetic field is added to the model by adding the “time-
dependent” phases [as described in Eq. (1.3)] as for the
tunneling electrons in the nonunitary model (in which ¢
denotes the direction of propagation). It should be em-
phasized again that the behavior found does not describe
the behavior of nonlocalized electrons in a real magnetic
field.

The organization of this paper is as follows. In Sec.
II the model is introduced and its behavior on a pure
(uniform) lattice is explored in Sec. III. Next, we address
the question of what will happen to the interference in
our model if phases, as if induced by a magnetic field,
are added to the bonds. That will be discussed in Sec.
IV. Section V is devoted to the effects of disorder on the
propagation of directed waves. The last section (VI) is
devoted to concluding remarks.

After this project was in progress we learned that the
same model has been studied independently by Saul et.
al. in Ref. 7. To some extent our study overlaps with
theirs. In these cases our results also agree with theirs
and we therefore limit their discussions to the necessary
minimum in order to make our paper self-contained. We
mostly expand on new directions and extensions beyond
their study.

II. THE MODEL

We shall study the propagation of directed waves on
a two-dimensional lattice where the direction of propa-
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gation is identified as the “time” axis. Such a lattice is
illustrated in Fig. 1. An incoming wave may propagate
only along lattice bonds. Each site represents a scat-
terer described by some scattering S matrix. All scatter-
ing matrices are elements of the U(2) group (there are
two scattering channels). The wave function ¥(t) of a
propagating wave is defined by a set of 2N amplitudes
Pa(t), (n = 1,2,...,2N; N > t) taking values on the
lattice links. Time t corresponds to the number of steps
in the t direction.

At each site the S matrix transforms two incoming
amplitudes into two outgoing amplitudes. For example,
amplitudes ¥, (t + 1) and ¥,4+1(t + 1), (see Fig. 1), are
related to v, (t) and ¥,1(t) by a matrix multiplication

(%t 0) = (Snmd 2o (Yn))

(2.1)

where z is the transversal position of a scatterer, between
the nth and the (n + 1)th row.

The S-matrix elements are closely related to the po-
tential V(z,t) in Eq. (1.2). One way to discretize Eq.
(1.2) is to formulate the problem in terms of scattering
matrices assigned only to the discrete set of space-time
coordinates. The main advantage of this discretization
procedure is that unitarity is manifestly preserved which
implies that the norm of the wave function is also pre-
served (there is no dissipation). A shortcoming of the
discretization is the existence of a “light cone” which
precludes any spread faster than (z2?) ~ t2. For example,
(x?) ~ t3 found in the continuum,®® cannot be achieved
in this model unless it is generalized to allow “long range”
scatterings (not restricted to nearest neighbors).

(0,0),

FIG. 1. The lattice description used throughout this work.
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III. DIRECTED WAVES ON A PURE LATTICE

In this section, we briefly discuss the wave propagation
in the absence of both disorder and an external field. The
main goal of this study is to describe analytical methods
that will be used in the subsequent sections.

All sites on the lattice will have the same S matrix. As
mentioned earlier, it must be a unitary matrix which we
choose to have all real elements

= 5(11)

The transfer matrix T relates wave functions at t and
t—1

(3.1)

U(t)=T¥(t-1), (3.2)
where T is 2N x 2N matrix given by
-1 -1 -1 1
1 1 1 -1 1
T=3 11 11 (3.3)
1 1-11

The T matrix in Eq. (3.3) takes into account scatterings
on two consecutive columns of sites (see Fig. 1). Transfer
matrices for each individual column are actually differ-
ent. Combining them gives the matrix (3.3) which then
describes the transfer over two columns. Diagonalizing
T by a unitary transformation T = U~ DU, we have

U(t)=UD'U ' ¥(t=0). (3.4)

Once the wave function ¥(¢ = 0) at ¢ = 0 is known
one can obtain the wave function at arbitrary ¢ from Eq.
(3.4). For example, one can choose as an initial condi-
tion a wave function whose components on the first links
following the origin have values 1/1/2. This corresponds
to an incident wave which at ¢ = 0 comes to the scatterer
at position z = 0 from below (see Fig. 1) and scatters
into an upper or lower link with equal probability 1/2,
see (3.1). Therefore, we have

Yn(t =0) =bn N,

where 9, (t = 0) is the nth component of ¥(t = 0), as is
shown in Fig. 1.

Note that the scattering matrix given by Eq. (3.1) is
not symmetric. This asymmetry of S will produce the
asymmetry among the components of the wave function
at some later . One could obtain a symmetric expression
for the wave function by an appropriate superposition of
another possible initial condition, i.e., the incident wave
comes to the first scatterer from above. In the presence of
disorder the symmetry will be restored. We also checked
numerically that the choice of the initial condition does
not have any effect on the scaling exponents.

In order to diagonalize T' we impose periodic boundary

(3.5)

5121

conditions and choose for definiteness N to be even. The
eigenvalues of T are

Ay = —Zsinzg + i2,/1—s1n4§ ,

and components of the eigenvectors F are given by

(3.6)

Ezpny = ’U(k) eikn,
Ezn = u(k) e*™,

Eony1 = v(k) e+

Eonia = u(k) e*+1) (3.7)

Here n = 1,3,...,N -1, k = Zm, m = —(§ -

1),...,-1,0,1,..., —1}, and amplitudes u(k) and v(k) are
related by

uy =ie't (—sing + 1+sin25 ) v+(k) . (3.8)

The normalization condition gives

= 1 a2 : . 2
] U4 I— f_"2 ( + sin —-2 + sin —2 1 +sin —2 )

1
2

(3.9)

and

|vg |= 1 1+simZE sinﬁ,/1+sinzﬁ
vi—,/zN 2 T 2 2

N

(3.10)

Using Egs. (3.6)—(3.10) it is possible to find the wave
function for any t. After a lengthy but straightforward
calculation, the even n components are found to be

N2

b®= 53 D Walkm) [us(hm) P

m=—(¥-1)

n—N

A ) | () [P Jeim ™3

= f: [cos(cpt)cos (kmﬂ)

m=—(§-1) 2

(3.11)

sin kp, . ( n—N)]
——————— sin km——2—— ,
/1 + sin? %';1

while the odd n components are given by

+ sin(ypt)
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Dnlt) = —21; 3 [,\g(km) (sin%"—‘ +4/1 + sin? 52'2) s (ko) P

In the above expressions ¢ = arg(A4).

Knowing the closed form for ¥(t) we can now analyt-
ically calculate moments (z) and (x?) as function of t.
We have found that for large ¢

n —_— 1 n

(z")=(Q ¢§t’
Therefore, we have explicitly reproduced the well known
result that in the absence of disorder the wave packet
spreads in time in a ballistic way (quantum diffusion),
ie., y/(z?) ~ t. In the next section we shall use the
same method to study the propagation in an external
magnetic field.

n=12. (3.13)

IV. INTERFERENCE EFFECTS DUE TO
PHASES INDUCED BY A MAGNETIC FIELD

Previous studies!!~!% have addressed the tunneling
of strongly localized electrons for which the “directed
paths” are justified as an approximation. In these stud-
ies a very intriguing behavior was found due to the com-
bined effects of the lattice and the magnetic field on the
interfering paths. Therefore, we were compelled to inves-
tigate how these combined effects will change in a unitary
model, although no direct relation to a realistic system
exists for this model. We believe that this study will add
to the general understanding of the behavior of lattice
electrons in a magnetic field.

The magnetic field adds a phase to the bonds. The

J

Ai(k,t) = —2sin (g - <p1(t)) sin (g - <p2(t)) + i2\/1 — sin? <-§ - <p1(t)> sin? (g - Mt)) .

The presence of a magnetic field clearly breaks
the standard procedure for transfer matrix calculation.
Namely, transfer matrices at different ¢ do not commute
and, therefore, cannot be diagonalized simultaneously.
However, the product of T matrices which has to be di-
agonalized can be written in a block-diagonal form with
2x2 matrices on diagonal. Each 2x2 matrix depends on a
specific value of transverse momentum vector k,, = ?N’E m.
It is defined by a product of 2 x 2 matrices at different
t but with the same value of k. Of course, in the ab-
sence of magnetic field, the off-diagonal elements vanish
and the diagonal elements are simply A% (k) and A (k).

\/I_i_ sin2 %m) ' ’U,*_(km) P}eikm(n—N)/Z

(3.12)

phase ¢ is determined by the applied magnetic field and it
is given by the discretized curvilinear integral of the vec-
tor potential along the bond between the two sites. There
are many possible choices for this phase which yield the
same magnetic field and which differ by a gauge trans-
formation. Any gauge such that the sum of all phases
around a plaquette gives the correct flux through the
plaquette (in units of the lux quantum ®¢ = g) can be
used. Here we use the so-called diagonal staggered gauge
used in Refs. 11 and 15, ¢(t) = +af with a = 273/,
and @ is the flux per elementary plaquette. The main
characteristic of this gauge is that the phase depends lin-
early on the t coordinate but there is no dependence on
the transverse coordinate.

Now we shortly describe the transfer matrix calcula-
tions in the presence of a magnetic field. Each step of
propagation, say from a site at ¢ to a site at £ + 1 in our
notation, includes two bonds, and, therefore, two phases.
Let us call them ¢, (¢) and ¢2(t), and denote their combi-
nations by ¢4 (t) = ¢1(t) £ ¢2(t). We follow the proce-
dure described in the previous section. In the presence of
a magnetic field the basic motif of transfer matrix (3.3)

depends on t and it is given by
__e—i«p_

—e Y- P+

_e‘L(P,

elP+

o (4.1)

e~ 1P+ e+
In order to diagonalize T'(t), we again impose periodic
boundary conditions and use the same eigenvectors as
before. Simple calculation gives corresponding eigenval-

ues

(4.2)

[

This suggests the possibility of using the straightforward
transfer matrix procedure together with a perturbative
treatment for small magnetic field. Perturbative results
obtained in this way are too long to be presented here. In
the next subsection we will approach the same problem
in a different way.

A. Mapping to the Ising model

We now discuss a different approach to the system in
the presence of a magnetic field. The basic idea is to map
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our model to a one-dimensional Ising model and then to
use the transfer matrix techniques to find the partition
function which is related to the components of the wave
function.

For future use it is now more convenient to consider the
transfer over each column of scatterers separately. Thus,
we assign a single unitary matrix modified by the effect
of a magnetic field to all sites with the same ¢ (the sites
along the same column)

QapeiPntt

Bnetonn ) : (4.3)

§= | .
R*,—tPnt1 * ,—tPnt1
,Bne n+ aje n+

a and (B are any complex numbers and index n =
1,2,...,t denotes the position of the scatterer along the
t axis. @pn+1 is the change of phase of the wave function
during the time interval from n to n + 1. It is positive
(negative) for the wave propagating in the up (down) di-
rection, and for our gauge choice it is a linear function of
index n.

Again, the probability of reaching point (z,t) is ob-
tained by summing the individual amplitudes of all di-
rected paths starting at the origin and ending at (z,t).
To count all different paths we introduce a set of numbers
oy such that 0,47 = +1 if the wave scattered at site n
goes through the upper bond and 0,4, = —1 if it goes
through the lower bond.!” The sequence 0y,03,... ,0;
uniquely specifies a path from the origin to some site at

|

t—1

Z(z,t)

Il

o1...0e n=0
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distance t.
given by

The final transversal position of a path is

(4.4)

t
= E Opn -
n=1

The value of og is fixed by the initial condition: oy =
+1(—1) for the incident wave coming through the lower
(upper) bond. Physically, 0, and z can be identified
with spins and the magnetization of the system, respec-
tively. The size of the system is determined by t. Keeping
this analogy in mind we will call components of the wave
function ¥ simply the partition function Z.

Next, to each step between the two sites we also have
to assign a factor depending on the scattering and the
magnetic field. This can be easily done for a path with
a fixed spin configuration. For example, if o, = +1 and
0n+1 = +1 we have scattering from upper to upper chan-
nel and the corresponding factor is ae¥~+1. The com-
bination o, = +1, 0,41 = —1 corresponds to scatter-
ing from upper to lower channel which is described by
—B* e~¥n+1, Similarly, for 6, = —1, opy1 = +1 we
have a factor e+ and for 6, = ~1, opt1 = —1 a
factor a* e~¥n+1,

The wave amplitude (partition function) to reach the
site (z,t) with an initial condition given by the value of
oy is

Z’ H [anei""+1] 1(+0.)(1+0n41) [Ignei‘ﬁn“]}(1—0n)(1+0n+1)

x [—-ﬂ;e_i"’“+‘] %(H‘"n)(l—an“)[a;e—i‘f’nﬂl%(1—0n)(1-0n+1)

t—1

. 1 1
= lei Yn=1 $n0n H exp[ananﬂ (_l M zI) + Elnlaﬂ' +iz

01...0¢ n=0

2 4

vio, (arg(a) —arg(f) z) b ionn (arg(a) +arg(B) 1)

where the prime on the summation sign indicates that
the partition function Z has to be evaluated for constant
magnetization, i.e., under the constraint 3 \,_, 0, = z.
In terms of a and 3 expression (4.5) is still very general
and can be used to study layered disorder, i.e., the prob-
lem when all scatterers along the same t are equivalent
to each other but might be totally independent of scat-
terers at different ¢. For dissipationless wave propagation
the normalization condition requires |a|? + |3|2 = 1. If
the magnitudes of the a and 3 are equal, then a wave
is scattered into an upper or lower channel with equal
probability. Randomness in the ratio |o|/|8] will lead

Z(=,t) = (%)t 3 el T

01...0¢

where J is defined by relation e™2’ =i or J = —iZ.

n _—
2 16 4 4

: (4.5)

2 4

f

to a “random bond” in the one-dimensional Ising model
(this will be clarified below). On the other hand, random-
ness in the arguments of a and 3 could be interpreted as
a random field Ising model. Our goal here is to study
new features which come from the magnetic field alone.
Thus, we can choose a simple form for matrix elements
a and 3, for example

1

i
o= — = —. 4.6
The choice (4.6) yields
(Onont1 —1)+1 Z:'=1 $PnoOn ], (47)

The constrained sums make further progress very difficult. To get rid of this constraint it is convenient to introduce

the momentum representation by
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t
Z(k,t) — %Zz(l_,t) e——ik:: — _]_t]__ (_1_) Z e[-]z::-.;lo(“nan-*-l —1)+i Yt _, haon ]’ (48)

V2

01...0¢

where k is one of the k,,, = %"m and h, = ¢, — k. It is clear from Eq. (4.8) that a Fourier transform of the amplitude
to reach point (z,t) is precisely the partition function for a generalized one-dimensional Ising model. Compared to the
ordinary Ising model we have now a complex coupling constant J and the local magnetic field A, has an imaginary

prefactor. The standard Ising model in an inhomogeneous magnetic field was studied in Ref. 16. In our case the
complex exponent will lead to some divergences. We shall identify these divergences and present a way to handle

them.

The partition function in k space can be written in the form

Z(k,t) = Z,(k,t) + Z_(k,t)

where

t
Za(k,t) = (:}_5) ) ISR (enonts — 1) +i TLY Anon +J(Eoe1—1) Eike]
o

e Ot—1

Z, and Z_ are the k-space amplitudes to reach point
(z,t) from the upper or lower direction, respectively. It
is easy to see that the following recursive relations hold:

Za(n) = %eiih" (Ze(n—1)+ e Ze(n—-1)].
(4.11)
Defining the two ratios 74 (n) and r_(n) by
_ —2J
Zz(n) _ o F2ihn re(n—1)+e (4.12)

Ti(n):m_ e 2ry(n—1)+1’

after some lengthy but straightforward algebra we find

1 /1)
Zi(k,t) - = (__) e.](j:oo—l) eq:ikt

N\v2
t—1

xetiXn=1¥n H’[l—{-iri(n)]. (4.13)
n=1

The prime on the product sign means that care must be
taken when the ratios ry diverge. In what follows we
describe how to treat this problem. We start with
re(n=1)= eF2J0F2i(p1—F) (4.14)
and use Eq. (4.12) to evaluate ratios for larger values of
n. If for some n, r4(n) = e"2/ = i (yielding a divergent
term) then the (n + 1)th term in the product is set to
one and the next two terms in the product are given by

r+(n+2) = e’ [(e““ - 1)6*2"(""”_") — 1] (4.15)

and
re(n+ 3) = €2/ eF2ien+a=h) (4.16)
The contributions of terms given by Egs. (4.15) and
(4.16) to the product in Eq. (4.13) are
1+irs(n+2) = —2eF2enra=h) (4.17)

f

and
1+i7e(n+3) = 2cos(pnis — k)eTi¥n+a=k) = (418)

The iterative procedure described above gives a Fourier
transform of Z. Returning to the real space by an inverse
transform

Zy(z,t) =Y Za(k,t) e, (4.19)
k

and computing the probability that a wave will end at
point (z,t) we find

| Z(2,) P=| Za(2,t) P+ | Z-(z.0) P . (420)

B. Numerical results and discussion

The expression (4.13) together with Eqgs. (4.14)—(4.16)
uniquely determine the probability distribution after ¢
steps for any magnetic flux. As is pointed out in Ref. 11,
its behavior strongly depends on the commensurability
of a = 27®/®y. If a = p/q (p,q are integers), the cal-
culation of the partition function (4.8) can be related to
the case when magnetic flux is not present. To show it,
we write Eq. (4.8) in the form

-3 (3)
X Z T(00,01)T(01,02) -+ T(0¢—1,0%)

01...0¢
xe(othi—coho) (4.21)
where T'(0,,0n+1) is a 2 x 2 transfer matrix
T(On,Ons1) = el (Onont1—1)+5(0nbntontihntr), (4.22)

The extra field kg is defined because of symmetry and it is
set to be zero. The transfer matrices in Eq. (4.21) do not
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commute. This is a consequence of their dependence on
the magnetic flux (index n is related to our gauge choice).
However, for rational a the n dependence can be elim-
inated. Grouping transfer matrices in Eq. (4.21) into
groups with ¢ factors we will get a new set of n/q com-
muting matrices T' = T(0n,0n+1)** T(On+q)Tntq+1)s
which is n independent. The grouping procedure corre-
sponds to the rescaling of our initial lattice with coor-
dinates (z,t) to the new lattice (z’,t’) so that = = gz’
and ¢t = qt’. On a rescaled lattice the effect of an exter-
nal field is apparently eliminated and the problem can be
solved as in Sec. IIL.

Diagonalizing matrix T’ yields two eigenvalues A; 2
and corresponding eigenvectors E; » which are orthog-
onal and normalized

Ei (+)E;(+) + B (-)E;(—) = 6i5, (4.23)
where +/— denotes the upper or lower component of the
eigenvector E;. In terms of the eigenvalues and the eigen-
vectors, the partition function is

20 =5 (3) T1AECEE)

ot

+A2 E3(00)Ez(0¢) } e3(themooho)  (4.24)
Equation (4.24) has the same structure as Egs. (3.11)
and (3.12) but, as we have argued, it also describes the
effect of rational magnetic flux. In Fig. 2(a) the full
line shows the probability distribution for the case when
the applied magnetic flux is @ = 1/3. For this case the
matrix T” is built from three T matrices in sequence. The
eigenvalues in Eq. (4.23) are

A1,2 = —2sin(k) [cos (g) + 2 cos?(k) ]

2
:t2i\/2 — sin?(k) [cos (13_r) + 2cos?(k) ] (4.25)
and corresponding eigenvectors

- ( —¢ *[sin(2k) — i cos(F)] — V2
E,; ( —cos(2k) +1 s?n(%) ) , (4.26)

where p = arg(A4).

From Figs. 2(a) and 2(b) we see that increasing “mag-
netic flux” causes the beam to become more collimated.
The general form of the probability distribution remains
unchanged. This is precisely what one would expect fol-
lowing the above arguments. Namely, by introducing
magnetic flux we effectively rescale our lattice to some
smaller lattice (z’,¢'). Smaller ¢t leads to smaller diffu-
sion. Diffusion of the propagating wave as a function of
t is discussed in Sec. III.

The behavior of the probability distribution is very
sensitive to the value of a. Even small changes from ratio-
nal o to some close irrational number produce dramatic
effects. In Figs. 2(a) and 2(b), the probability distribu-
tions after ¢ = 100 steps are compared for a = 1/3 =

0.333..., 25 = 0.353... and a = 0.6, ¥5-1 — 0.618... . For

(a)
L (X=1/\/§'—_’

0.40

P(x,100)

0201 E

0.00
-50

o
>

wm

o

0.60

0401

P(x,100)

020

-50 0 X 50

FIG. 2. The behavior of P(z,t) for ¢t = 100 and
—50 < z < 50 for rational and irrational values of a: (a)
a = 1/3 (full line) and o = 1/8'/2 (broken line); (b) a = 0.6
(full line) and a = (5*/2 — 1)/2 (the golden mean) (broken
line).

20 40 t 60 80 100

FIG. 3. The behavior of P(z,t) for z =0 and 0 < ¢t < 100
for o = 0.6 and (v/5 — 1)/2.
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irrational a, the distribution is concentrated at the small
region around ¢ = 0. The probability of reaching point
z = 0 as a function of t is shown in Fig. 3 for rational
and irrational a. While for rational a P(z = 0,t) decays
with regular oscillations, irrational a produces an ape-
riodic structure which does not decay with ¢. The high
sensitivity to irrational a could be traced back to Eq.
(4.18) giving the product of cos(wan) factors. Recently,
in Ref. 12, the behavior of the localized electrons on a
lattice with incommensurate magnetic flux was investi-
gated. The general features we find here are similar to
those derived in Ref. 12.

V. DIRECTED WAVES IN STRONGLY
DISORDERED MEDIA

In this section, we discuss the wave propagation in a
random medium. We describe the randomness by tak-
ing the scattering matrix at each lattice site to be an
independent random element of the U(2) group. We are
interested in the behavior of the probability distribution
and its higher moments as well as the transverse moments
of z, i.e., [(x™)] and [(z)™] as functions of the longitudinal
distance t. To calculate [(z)™] one needs to know the cor-
relations among n paths propagating on the lattice with
a given realization of randomness. These correlations are
the primary subject of our interest. Using some simple
formulas for group integration we will develop a system-
atic and exact procedure for averaging various quantities
of physical interest over the disorder.

The probability P(z,t) of reaching a given point (z,t)
can be calculated by summing over all possible paths
which begin at the origin and end at (z,t). Denoting by
A;(z,t) the contribution of the ith path, the probability
P(z,t) is given by

Z Ai(z,t)

The amplitude A; is simply the product of ¢t random, mu-
tually independent elements of the S matrices along the
ith path. All amplitudes are defined for the same real-
ization of the disorder. The contributions of two paths i;
and i3 to the sum in (5.1) depend on their mutual rela-
tion. The two paths can be totally disconnected (meet-
ing only at the end points), they can overlap along some
links, or intersect at some lattice sites. On their common
parts they share the same factors. From a statistical
point of view, the most interesting phenomena are re-
lated to intersections and merging or branching points.
At these points, paths do not have assigned the same
factors but factors from the same scattering matrices.
We now turn to the question of the statistical averaging
over the quenched disorder. We assume a uniform dis-
tribution of S matrices over all unitary matrices. Hence,
with an equal probability the scattering matrix may be
any U(2) matrix. In this case there is no difference be-
tween averaging over either the U(2) or the SU(2) group.
Other choices, such as distributions preferring some prop-

2

= Z A:1 (:E’t) Aiz (.’L‘,t) . (5.1)

11,12

P(z,t) =
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agating direction, are also possible, but will not be dis-
cussed here.

The quenched average of the probability distribution
P over all realization of the disorder is straightforward
to compute. After averaging, only the paired or neutral
paths (such that one member is selected from A} and the
other from A;) give a nonzero contribution to the sum in
Eq. (5.1). Using the following integral over the SU(N)

groupls

1
/ds Sijsfk = ]—v(sjkfsila (52)

with NV = 2 and counting the number of different paths
from the origin to the point (z,t) we obtain

o) = g ey

(5.3)
This formula is all that is needed to calculate all trans-
verse moments [(z")]. We are particularly interested in
the second moment characterizing the beam position. In
this case, Eq. (5.3) gives

[(@®()) =D 2*[P(z,0)] =t (5-4)

The result (5.4) was already derived in Refs. 7 and 8
and is also in agreement with our numerical simulations
shown in Fig. 4. It describes the ordinary diffusion of a
classical particle in a stochastic medium. Classical diffu-
sion is naturally expected since in Eq. (5.3) there is no
contribution from intersecting paths. Comparing with
the pure case (3.13), we conclude that averaging over
randomness removes the interference effects in P. The
probability distribution P for propagation over nonran-
dom and random scatterers is shown in Fig. 5. For the
random case averaging was performed on 500 samples.
By increasing the number of samples the curve becomes
smoother showing no effect of interference.

[<x?>]~t'

2F
In(t)

4 . . . \ .

0.5 1.5 2.5 3.5 4.5 5.5 6.5

FIG. 4. Log-log plots of [(z?)] and [(z)?] for t < 500. The
former fits a linear ¢ behavior within 1072 accuracy. The

expected tz asymptotic behavior of the latter is also depicted
(full line).
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FIG. 5. Comparison of P(z,t) for ¢t = 100 and

—50 < = < 50 for the pure case (full line) and the random
case (broken line). The disorder average is done over 500
realizations.

Nontrivial problems arise if one tries to find the scal-
ing properties of the beam center [(z)2]. Results of long
time Monte Carlo simulations are shown in Fig. 4. Our
numerical results are consistent with those given in Ref.
6 but the value of the scaling exponent is still unclear.
Computer simulations with larger ¢ and more samples
could help to resolve this uncertainty. However, Saul,
Kardar, and Read” suggested a way to reduce numerical
difficulties. They proposed to construct recursion rela-
tions among exactly averaged quantities at different ¢.
We will follow their approach.

The basic idea is to calculate the correlation functions
averaged over the disorder. They are defined by

Wa(z1,... ,Tn,t) = [P(z1,t)... P(za,t)]. (5.5)

Forn = 1, Wy(x, ) is given by (5.1). It describes the time
evolution of one neutral path made up of a segment go-
ing from origin to (z,t) and its complex conjugate which
can be viewed as the time evolution in the opposite di-
rection. For n > 2 Eq. (5.5) gives the probability that
n neutral paths starting at the origin will end at posi-
tion (z1,%2,...,z,) at distance t. Some characteristic
configurations for time evolution of Wy, W3, and W, are
shown in Fig. 6. W,, must satisfy the initial conditions

Xa=X

AX
W, W,

Xe=X+2I
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Wn(itl,l‘z, cee ,IL‘n,t = 0) = 5:;1706@2,0 .o .63",0 y (56)

as well as a sum rule which is a consequence of the prob-
ability conservation

Z Z ‘”ZWH(‘TH"E%*'- »-’Enyt) =1.
T T2 Tn

The role of W, in calculation of [(z)"] is seen from the
following relation:

(@)= 3 Y 2izs-- am

X[P(z1,t)P(x2,t) - -+ P(zp,t)].

(5.7)

(5.8)

Evaluation of W,, is based on the recursion relations
connecting W,, at distance ¢ and ¢t + 1. The recursion
relations can be derived by using symmetry arguments
and recalling that only neutral paths can survive disor-
der averaging. The neutral paths, however, may cross
each other and exchange partners as in Fig. 6. The ex-
change effect means that we are dealing with interacting
paths. It is convenient at this point to introduce relative
coordinates (z,ry,72,... Tn—;) instead of the previous set
(z1,Z2,... T5). The coordinate r is the distance between
paths at some specified ¢t (see Fig. 6). The calculation
of Wa(z,r) is relatively simple. First, we look for all dif-
ferent ways to construct Wa(z,r,t + 1) from Wy (z,r,t).
Neglecting the crossings at t there are four possibilities as
is shown in Fig. 7. Wa(z,r,t + 1) is, therefore, a combi-
nation of Wa(z +1,r,t) and Wa(z+1,r+1,t). The next
step is to include the effects of path exchange. They are
present only if » = 0, +1 at ¢. This leads to the following
terms in the recursion relation:

%(1 + €obr0)Walz £ 1,1,8), (5.9)

2(1 +erdne)Wale £ 1,7 £ 1,1), (5.10)

where we have parametrized the effect of disorder by ¢q
and €;. Due to the symmetry r — —r, the coefficients of
Wa(z + 1,7 +1,t) and Wa(z — 1,7 — 1,t) must be equal.
This observation, although trivial for W5, is very useful
for calculation of W, for higher n. The sum rule (5.7)
implies that the sum of all the coefficients must be equal
to one yielding €9 = —¢;. Thus, the recursion relation
for W, can be written in the form:

Xi=X

Xa=X+2I

FIG. 6. Some typical configurations con-
tributing to W,, W3, and Wy. Arrow direc-

t
Xs=X+2I

Xe=X+2I'

t tions indicate paths which belong to A; or
to A]. Also shown are the relations between
S =X+2I2 the coordinate set (z1,... ,z.) and the set

(z,71,... 7).

Xa=X+2r3
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Wa(z,r,t +1) = %(1 + € 0){ Wa(z + 1,7, t) + Wa(z — 1,7,t)}

+3(1—€bp))Wa(z — 1,r — 1,8) + (1 — €6, _1)Wa(z + 1,7 + 1,t) .

The left-hand side of Eq. (5.11) may be directly calcu-
lated by averaging the quantity [P(zq,t + 1)P(z2,t + 1)]
over the SU(2) group. This is easily done for small ¢
since the number of possible configurations which must
be taken into account is relatively small. In addition to
the result (5.2), we also need a formula for an integral
over four SU(2) elements'®

. . 1
/ 45 85555 SmnStp = 37— (Bt9madikdng

+0:q0m10;p0nk)
((silé‘mq(sjp(snk
(5.12)

1
NI

+6iq6m15jk6np) .

It turns out that € = % The same procedure can be used
for a systematic evaluation of other correlation functions.
In the Appendix we give the results for W3 and Wj.

Now we investigate the t scaling of W, (z =7, =--- =
ZTpo1=0,t)and Y Wy(z,ri=ry3=-- =rp_1 =0,8).
In the language of random walk the former quantity is
the probability that n paired paths will reach the same
point z = 0 after time ¢ and the latter is the probability
of their reunion somewhere [see Eq. (5.5)]. The defining
equation of W,, (5.5), gives

ZW(x,ﬁ:rz:

=Tn-1 = Ovt)

= Z [P(z,t)" "' P(z,t)] (5.13)

which are exactly the moments of the probability dis-
tribution itself. Recently it was argued by Bouchaud et
al.® that the evolution of the wave must be described by
an infinite set of exponents defined by

> [Pz, b)) = 4.

T

(5.14)

The nontrivial form of the function u(n) is a sign of the
“multifractal” structure of the propagating wave. For
n = 2,3,4 the behavior of the p can be found simply
by iterating the recursion relations (5.5), (A1), and (A2)

R

:m;

t

FIG. 7. All possible step configurations of noninteracting
pairs of paths advancing from ¢t — 1 to t + 1.

(5.11)

r
numerically. The numerical results shown in Fig. 8 and
Fig. 9 suggest that for large ¢

Waiz=r1=---
ZWn(x,rl =-.-

These relations indicate that for large t the interaction
among paths is irrelevant.!®

The recursion relation (5.11) for Wa(r = 0,t) can be
diagonalized for small e. The nonperturbed eigenvec-
tors are sin or cos functions and matrix elements of e-
dependent terms in Eq. (5.11) are

Vnm = 67;,0{ ’zl‘e‘sm,o -

=rp_1=0,t) ~t"3 (5.15)

=rn_1=0,t)~t" 31, (5.16)

if&lml’l } (517)

The eigenvalues of the transfer matrix relating We(r =
0,t+ 1) and Wy(r = 0,t) are

As(km) = cos® (%) {1 e 2N4+ g o’ (%ﬁ) }
+0() (5.18)

where k,,, = 5%1—{7"'? m =0,+1,... £ N. For large t, the
eigenvalues (5.18) and corresponding eigenvectors yield

Wz(r=0,t)=§%(2tt>+0(%).

Equation (5.19) shows that the effect of € is too local to
produce any relevant effect for large N. This supports
the predicted scaling behavior in Egs. (5.15) and (5.186).

(5.19)

VI. CONCLUSIONS

In this work we studied different aspects of a lattice
model for unitary propagation. We first presented a
closed-form solution for such a propagation in a uniform

x

Ln(Y W)

-6

0.5 1.5 2.5 3.5 4.5 5.5 Ln(t)

FIG. 8. Log-log plot for moments of the probability dis-
tribution versus t, compared with their conjunctured large t
behaviors (full lines).
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-8.5 + +

0.5 1.5 2.5 35 Ln(t) 45

FIG. 9. Log-log plot for the probability that n paths will
end at the same point ¢ = 0 after a distance t. The full lines
indicate the conjunctured large t behaviors.

medium. Then we took a theoretical “detour” to study
the case when the phases were modulated as if they were
due to an external magnetic field. As emphasized before,
this situation does not describe lattice electrons with a
field in 1D or 2D. It is rather an interesting theoreti-
cal extension of the “directed paths” model of localized
lattice electrons in 2D, which can widen our general un-
derstanding of this important class of systems. For the
nonunitary model, the complete solution was found.!:1%
Interesting inflation rules were found for &/®, = p/q.
For incommensurate ®/®, an aperiodic behavior with
striking scaling properties was revealed.!? In the unitary
case studied here, we have shown that the model can-
not be solved completely by straightforward application
of transfer matrix techniques but we managed to find
a closed form for the probability distribution of propa-
gating waves by mapping our problem to a generalized
Ising model with an imaginary coupling constant J and
an imaginary inhomogeneous external field. The problem
was also investigated numerically. Inflation rules for ra-
tional p/q hold in this case too but they are certainly not
as trivial. The wave function amplitude becomes more
and more “collimated” around z = 0 as q is increased.

We next studied the disordered case. Because of the
“light cone” constraint on the lattice we have found
() ~ t, while the behavior off lattice is known to be
(z®) ~ t3.° So in the presence of disorder the present
lattice model does not recover the continuum limit. The
continuum analysis was performed on the Schrodinger
equation for a particle moving in a random potential
which changes rapidly both in space and in time. Our
results for [(z)?] agree with that of Saul et al.”

We have also investigated the higher moments of
P(x,t). Our numerical investigations were based on the
recursion relations between various moments. It should
be emphasized that the averaging over disorder leads to
exact (but cumbersome) relations that are then iterated
numerically (the iteration process does not involve ran-
domness anymore). Our numerical results suggest a sim-
ple “gap scaling” [P™(z,t)] ~ t~%. A simple analytic

argument explains this behavior for n = 2, (see also Ref.
7). Although we cannot prove it rigorously, it looks very
likely that these analytic arguments hold for n > 2 as
well. How can we reconcile this gap scaling with the
multifractal behavior found by Bouchaud et al.? In their
model the wave function is defined on the sites and uni-
tarity was ensured by replacing the evolution operator
e~ %t by the Cayley operator (1 — %’flt)/(l + i7it). So
the most likely possibility that comes to mind is that the
behavior is very sensitive to the type of latticization used.
The fact that neither lattice formulation yields the cor-
rect continuum limit leaves open the unusual situation
in which different lattice models may belong to different
universality classes. It should be also pointed out that
the deviations from gap scaling found in Ref. 10 are very
small for these positive moments but are substantial for
negative moments which are not studied here. More in-
vestigations of this and related issues will be most worthy.
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APPENDIX: RECURSION RELATIONS FOR W,
AND W,

Here we present the recursion relations for the correla-
tion functions W3(z,r1,72,t) and Wy(z,r1,72,73,t). The
derivation is completely analogous to the one described
in Sec. V for Wy(z,r,t). However, for given coordinates
of the ending point at distance ¢ there are now many
more path configurations contributing to W which make
the calculation somewhat tedious. For W3 one finds

1
W3($,7‘1,‘I’2,t+ ].) = g ZW3(E +agp,m1 +a1,72 + az,t)
a

X{l + %[(_1)(11 6"1+61 ,0
+(—1)026"‘2+°2,0

+(_1)a1+a261‘1 +a; ,7'2+02] } (Al)
where the sum is over a = (ag,a1,a2) =
(%£1,0,0), (£1,+£1,0), (£1,0,+1), (£1,+1,+1).  Simi-

larly the recursion relation for Wy reads
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1
Wy(z,r1,72,73,t + 1) = 16 Z Wy(z + ag,71 + a1,72 + a2, 73 + as,t) {1+ %[(_1)a161~1+a1,0

+(—1)a261‘2+02,0 + (_1)‘1367‘34‘03,0 + (—1)a1+a261‘1+a1,1‘2+02
+(_1)01+03571+01y"3+a3 + (_1)a2+aaarz+a2,’ra+a3]

1 +az+
+§(_1)a1 aaTas [57'1+a1,067‘2+az,7‘8+¢13 +61‘2+az,067‘1+01,73+a3

+57‘a +aa,067'1 +a1,7m2 +a2] -

where a = (ao,a1,az,as) =
(£1,£1,0, 1), (£1,0, +1, £1), (£1, +1, £1, +1).

%(_1)a1+az+a36

(A2)

ritay ,067'2 +a2 ,057‘3 +a3,0 }’

(£1,0,0,0), (£1,%1,0,0), (1,0, +1,0), (+1,0,0, £1),(x1,£1, +1,0),
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