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A one-dimensional tight-binding model with correlated disorder is studied. The energy depen-
dence of the localization length and the density of states at difFerent correlation lengths and strengths
of the disorder are determined. The results show that the localization length increases with increas-
ing correlation lengths, but in addition, a nonmonotonic energy dependence is found. The energy
level statistics is also studied.

I. INTRODUCTION

Most of the theoretical work on Anderson localization
has been based on simple tight-binding models, where
the diagonal matrix elements e„of the Hamiltonian are
independent random variables. The question of statisti-
cally correlated matrix elements has not been extensively
studied, except in the case of binary-alloy disorder2 in
one dimension. Here, it was clearly shown ' that spe-
cial types of correlated disorder can produce extended
states. The results of Ref. 4 have shown that increasing
the correlation length may decrease or increase the local-
ization, depending on the type of correlation, the energy,
the disorder, the concentration, and the size of the corre-
lation length. The motivation of the studies of correlated
disorder is twofold. First, we seek to determine how sen-
sitive, if at all, the results of the localization theory on
the correlation are, which are based on the independent
random variables. Second, long correlation lengths allow
us to map the problem to that of wave propagation in
the continuum. The latter is directly related to the in-

teresting question of light localization. ' We would like
to determine under which circumstances and to what ex-
tent the potential correlation length L can simply replace
the lattice spacing a in our uncorrelated results.

In this paper, we will generalize the Anderson model of
localization to include correlations. The lattice size en-
ergies are no longer independent random variables, but
they become correlated random variables with a Bnite-
range correlation. The exact model is described in Sec. II.
%'e consider the localization length of this correlated dis-
order model, the density of states (DOS), and the energy
level statistics. For our model, the localization. length A

increases with increasing correlation length. In addition,
the energy dependence of A is not monotonic, and max-
ima appear at nonzero energy values. This behavior can
be explained qualitatively by second-order perturbation

theory and by the transmission coefBcient studies of an
isolated scatterer of size equal to the correlation length
L.

In Sec. II we present our model, a single-orbital-per-
site, tight-binding, one-dimensional (1D) model with a
correlated diagonal randomness of correlation length L
and with no ofF-diagonal disorder. In Sec. III we present
results of the localization length, the DOS, and the en-

ergy level statistics. Finally, in Sec. IV we present a brief
summary of our results and our main conclusions.

II. THE MODEL AND METHOD OF
CALCULATIONS

Our tight-binding, one-electron Hamiltonian is given

).e-ln)(nl+ ).V-,-ln)(ml

where ln), lm) are atomiclike orbitals centered at the n
and m sites, respectively, of an in6nite one-dimensional
lattice of spacing a. The off-diagonal matrix elements
V„vanish unless n and m are nearest neighbors and
are constant (taken as our unit of energy) otherwise.
Thus, the second sum in Eq. (1) is over the nearest
neighbors only. The quantities (e j are correlated ran-
dom variables with zero mean and nonzero correlation
(e„e ). We consider the following model for the corre-
lation: (e e ) =au forn=m, or ln —ml (L, and

(e e ) = 0, otherwise. Therefore, we have the same
value for t' for L consecutive sites. The difFerent clus-
ters of e values are given by a rectangular probability
of width YV. A typical configuration of the correlated
random site energies e with L = 5 is given in Fig. 1.
Notice that for L consecutive sites, e is the same and.

0163-1829/94/50(8)/5110(9)/$06. 00 50 5110 Q~1994 The American Physical Society



50 ONE-DIMENSIONAL LOCALIZATION WITH CORRELATED DISORDER 5111

0.4

0.2
U)

~ 0.0
I
M

-0.2

by iterating Eq. (2). To evaluate A, we have gener-
ated numerically M sets of random variables (e„),(n =
1,2, ..., N) according to the probability distribution for
e„. For each set, we calculated numerically the transmis-
sion amplitude t~ (the transmission coeKcient is (t~l ).
The localization length is given by
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FIG. 1. The behavior of the correlated random site energies
e„versus the site n. The correlation length is I = 5, and
disorder W=1.

given by a rectangular probability of width W. If the
correlation length is equal to one, then one recovers the
uncorrelated case. Our main concern in this study is to
investigate how the localization length, the DOS, and the
energy level statistics behave as functions of the correla-
tion length L.

The localization length A is calculated numerically,

where the average was performed over the M members
of the ensemble. The result is independent of N as long
as N is greater than the correlation length L. However, ~

the standard deviation of ln ltNl over its average value
behaves like (A/N)~~2 for N && A and is constant for
N « A. Thus, f'rom the numerical point of view, more
accurate results are obtained if N » A. M was usually
chosen equal to 5000, but higher values were also used.
The size N of the system was taken to be equal to 50000.

The DOS can be obtained either by direct diagonal-
ization of the Hamiltonian H or by calculating the di-
agonal matrix element G of the Green's function, where
G = (ml(E+ is —H) lm) as s ~ 0+. To evaluate G
numerically, one can employ the so-called renormalized
perturbation expansion which is reduced in one dimen-
sion to an iterative procedure. Once | is calculated,
one obtains the DOS n(E) as n(E) = —Im(G)/vr. Both
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FIG. 2. The localization length A versus energy for a random system of size N = 10000, disorder W = 1, and correlation
length L = 1 (a), L = 5 (b), L = 10 (c), and L = 15 (d). The number of random configurations is M = 5000.
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methods give similar results. In each of the methods, one
needs to computer generate M di8erent sets of random
variables (e ), (n = 1,2, ..., N), taken Rom the ensemble
defined by the probability distribution of (e„). M was
usually chosen equal to 200, but higher values were also
used. The average DOS was then calculated by averaging
over the M numbers of the ensemble.

Finally, in order to investigate the energy level spac-
ing distribution P(S), we numerically diagonalized the
Hamiltonian (1) for a given system length N, correla-
tion length I, and disorder R'. After the exact diag-
onalization, the distribution of the energy level spac-
ing P(S) was plotted. In this case, too, we had to
computer generate M difFerent sets of the random vari-
ables (e„),n = 1, 2, ...N. Therefore, M different systems
were diagonalized for each combination of the param-
eters N, I, and W. Then the average P(S) was ob-
tained by averaging over the M members of the ensem-
ble. For the uncorrelated case, in agreement with pre-
vious calculations, we observed for a small disorder
(i.e., when the localization length A is larger than the size
of the system N) the effect of the level repulsion, where

P(S) is extremely close to the Wigner probability dis-
tribution. With increasing disorder (i.e. , when A (( N),
P(S) follows the Poisson probability distribution. The
role of the correlation in our model is to efFectively in-

crease the localization length and therefore, to observe
only a W'igner-like probability distribution for P(S).

III. RESULTS AND DISCUSSION

In Fig. 2 we plotted the localization length A versus
the energy E for diferent values of the correlation length
I, for the size of the system %=10000 and with the
strength of the disorder 6' = 1, where TV is the width
of the rectangular probability distribution of the corre-
lated random variables (e„}.The standard deviation m,
which is equal to (e„e ) for ~n m~ —& I, is related to W
by the following relation: to = W' /12. The number M
of different random configurations (e„j is equal to 5000,
to ensure good statistics. In Fig. 2(a), A versus E for the
uncorrelated case is shown. Notice that A has a maximum
at the center of the band (E = 0) and drops monotoni-
cally to lower values as the energy E approaches the end
of the band (E = 2). This behavior has been extensively
studied and is well known. ~ Notice that with the intro-
duction of the correlation, A dramatically increases for
all values of E. In addition, a new, but very interesting,
structure appears in the energy dependence of A for all
values of L. L = 5 in Fig. 2(b), L = 10 in Fig. 2(c), and
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FEG. 3. The localization length A versus energy for a random system of size N = 10000, disorder TV = 2, and correlation

length I = 1 (a), I = 5 (b), I = 10 (c), and L = 15 (1). The number of random configurations is M = 5000.
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L = 15 in Fig. 2(d). As we will explain later, this struc-
ture is related to the finite correlation length L. It is well
known that even for one rectangular barrier of width L,
the transmission coefFicient T, and the localization length
A which is related to T by T=exp( —2L/A), shows strong
dependence on energy, due to the presence of resonances.
As we start increasing the disorder W, one notices that
the structure in the energy dependence of the localiza-
tion length A is getting smaller. In Fig. 3 we present the
results of A for W' = 2 and in Fig. 4 we present the re-
sults of A for W = 3, where only one maximum in A has
survived for values of L, L = 5, 10. Finally, for a stronger
disorder, W = 5. In Fig. 5 the behavior of A versus E is
the same for the uncorrelated case [Fig. 5(a)] as well as
for the correlated case. A has a maximum at E = 0 and
decreases monotonically as E approaches the end of the
band (E = 2).

In this section, we attempt to interpret the basic fea-
tures shown in Figs. 2—5, i.e. , the positions of the peaks
of A for different correlation lengths L and their grad-
ual disappearance as the strength of the disorder W in-
creases. We calculate the transmission coefficient for the
1D tight-binding model, with nonzero lattice energies,
e„= cp, only in a section of the lattice of length equal
to the correlation length I. This is analogous to the
transmission studies through a potential barrier in the

c„+c„+x + c„r——Ec„. (3)

The amplitudes cL,+2 and cL,y3 of the eigenfunctions with
eigenenergy E can be taken to be cL,+s ——1 and cL,+3 ——

e*", where E = 2cos ka and a is the lattice constant.
Then one can calculate, through the recursion relations
of Eq. (3), the amplitudes cp and ci and thus obtain the
transmission coefficient T by the relation

(4)

continuous case. 4 In the continuous case, the transmis-
sion is well de6ned and not exponentially small when the
energy is larger than the height of the potential barrier.
In our discrete case of the tight-binding model, we have
transmission when the incident energy lies both within
the unperturbed band width, which ranges &om -2 to
+2, as well as within the perturbed band width, which
ranges &om eo —2 to eo + 2. Therefore, for eo & 0, the
allowed energies that show nonexponential transmission
lie within the energy range [E'p —2, 2] and for ep ( 0 the
energy range is [—2, ep + 2]. The transmission coefFicient
for a discrete lattice of finite length L, with site energies,
e„=eo, embedded in an underlined lattice with e„=0,
can be easily calculated by iterating the equation
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FIG. 4. The localization length A versus energy for a random system of size N = 10000, disorder W = 3, and correlation
length L = 1 (a), L = 5 (b), L = 10 (c), aud L = 15 (d). The uumber of random cou6guratious is M = 5000.
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We have numerically calculated T for a finite lattice of
length L. Results for I = 1,2, 3 agree with analytical
results. ' ' For all cases of finite I, the transmission co-
efficient as a function of energy rises from zero, Quctuates
between maxima (T = 1) and minima, and approaches
T = 0 at E & 2. The number of maxima depends on
I, while the energy positions of the maxima depend on
the strength of the site energy eo. To explain the results
presented in Figs. 2—5, we also calculated T for a finite
lattice of length equal to the correlation length I, for M
configurations of different "potential barriers" of height
~0, which is chosen &om a random rectangular probabil-
ity distribution of width W. To obtain good statistics for
T, we have chosen M=5000. The results are presented
in Fig. 6 for the case of I = 10, for different disorders
TV = 1, 2, 3, and 5. Note that indeed the average of the
transmission coefficient through different heights of rect-
angular barriers of width I gives results which agree with
that of T through a lattice of length N )) L with corre-
lated disorder. As the disorder W increases, the peaks in
the transmission coefficient T become smaller and even-
tually they disappear when R' = 5.

For the uncorrelated case, Thouless s has calculated
the localization length A within the second-order pertur-
bation theory. The second-order perturbation result for

A pm

For our correlated disorder, the double summation can
be easily calculated and we obtain

( L 1—
(~Ts~ ) = L(e ) 1+) 2cos(kn)—

2 sin (kL)
Lsin k

L 1—
) n cos(kn)

Then we can relate the reffection coefficient R to ITsI

(i.e. , R = ~r~2 = ~G]2]Ts]2, where G is the unper-
turbed Green's function, G = —i/[(4 —E2)1!'2]. The
localization length A is then obtained &om the relation
1/A = (~r~2)/2L. Finally, we obtain

the localization length in the absence of correlation is
Ao ——[24(4 —E )]/W . We apply the same second-order
perturbation treatment in our case, where the disorder is
correlated. Following the discussion of Sec. IV of Ref. 4,
we have that the average value of the square of the back-
ward matrix element of the t matrix, (~Tb~ ), is given by
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FIG. 5. The localization length A versus energy for a random system of size N = 10000, disorder TV = 5, and correlation
length L = 1 (a), L = 5 (b), L = 10 (c), and L = 15 (d). The number of random configurations is M = 5000.
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L sin (Ic)

Ao sin (kL)
(7)

where Ao is the second-order perturbation result for the
localization length in the absence of correlations. There-
fore, we see that the introduction of correlations in-
creases, in general, A and also gives peaks in the energy
dependence of A. However, within the lowest order in
perturbation, A diverges at particular energies, while our
numerical results give maxima in A. In addition, the
second-order perturbation result [Eq. (7)] is indepen-
dent of W, all the disorder dependence of A is through
AII. So the perturbation theory result of Eq. (7) works
only qualitatively in explaining our numerical results in
Figs. 2—5. It gives maxima in the energy dependence of A,
but the positions do not exactly match those of Figs. 2—5.

In Fig. 7, we present results for the average DOS versus
energy for the uncorrelated (I = 1) and for the correlated
disorder case (L = 10 and L = 20) for W = 1. Note that
as the correlation length L increases, the sharp structure
in the DOS in the band edges becomes smaller and the
band size increases. This is the major effect of the corre-

lation on the DOS. As L increases, the structure in the
DOS can be analyzed as follows. One obtains a superpo-
sition of different band widths, which span continuously
from [

—
z

—2] to [+ 2 + 2]. This superposition of dif-
ferent bands is responsible for the widening of the total
band, as well as the DOS around the E = k2.

The energy level spacing distribution P(S) has
been used 3 as a criterion in distinguishing localized
states, which follow the Poisson distribution [P(S)
&~ exp( —S/D), where D is the mean energy spacing]
from extended states, which follow the Wigner distribu-
tion [P(S) =

z ~& exp( —z'S2/4D~)]. In the uncorrelated
case, numerical studies of P(S) show that indeed P(S)
crosses over from Wigner-like distribution to a Poisson-
like distribution, as the size of the system increases &om
below the localization length to well above it. This is
clearly shown in Fig. 8 where P(S) is plotted for the
uncorrelated case with W = 2 and N = 20 [Fig. 8(a)],
N = 30 [Fig. 8(b)], and N = 200 [Fig. 8(c)]. When
N = 20 and/or N = 30, one clearly sees that P(S) fol-
lows the Wigner probability distribution, since for this
case N && A. We still have localization in our 1D sys-
tem but A is larger than the size of the system N. If
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IV. CONCLUSIONS

We have studied a tight-binding model with correlated
random site energies of a smooth and simple probability
distribution. Our purpose was to check the sensitivity
of the results of the localization theory of 1D disordered
systems to the eHects of this correlation.

We found that the localization length increases as the
correlation length L increases. A new structure in the en-

ergy dependence of A was found, which is related to the
transmission resonances of isolated potential barriers of
width equal to L. Second-order perturbation theory for
the correlated disorder accounts qualitatively for most of
the structure in the localization length. By increasing the
correlation, the structure of the DOS around the band
edges smoothes out and the band widens. In the pres-
ence of correlation, the energy level spacing distribution

p(S) follows the Wigner distribution for "extendedlike"
wave functions where N ( A and the Poisson distribution
for localizedlike states when N ) p. Our P(S) results
suggest that the role of the correlation length L is simply
to replace the lattice spacing of our uncorrelated results.
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