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Energy loss by charged particles in complex media
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The introduction of geometrical complexity into a dielectric structure radically alters the pattern of
losses from a passing charged particle. Here we introduce an approach to the problem which is ideally
suited to numerical work and to the treatment of complex geometry. We apply the method to losses in

colloidal metallic systems where the local juxtaposition of surfaces produces a host of modes and conse-

quent changes in the loss spectrum. We also calculate the "Smith-Purcell effect, " in which a particle
passing over a grating may radiate energy into the vacuum. This method is powerful and flexible and

will, we trust, open a class of materials to quantitative study.

I. INTRODUCTION

Perhaps the most significant feature of interaction be-
tween fast charged particles and condensed matter is the
energy loss they suffer. There are many regimes depend-
ing on the nature and speed of the particle, but we have
in mind particles such as electrons traveling with veloci-
ties of the order 0.2c. In this regime the losses are dom-
inated by the dielectric properties of the medium and
there is extensive literature on the subject: see Ref. 1 for
further references. More recently there has been an in-

terest in the more complex case of inhomogeneous media
where structure is on the scale of nanometers. This
geometric complexity radically changes the loss spectrum
of the medium and there have been many attempts to re-
late the dielectric properties, the geometric structure, and
the loss spectrum. Mainly these attempts have been
analytic studies based on some effective-medium theory
of the generic Maxwell Garnett type. These studies re-
vealed that the shape of a material does indeed gffect the
electromagnetic modes involved in the loss process, par-
ticularly if the material is metallic.

Some success has attended these approaches, but it is
generally accepted that there are difficulties in relating
properties of the homogeneous effective medium to those
of the actual inhomogeneous material on which the ex-
periments are done. The problem is a dificult one be-
cause the electromagnetic fields inside an inhomogeneous
medium often show violent spatial variations, For exam-

ple, rough silver surfaces show giant Raman signals„ indi-

cating that local fields take values perhaps a thousand
times the original incident field. Theorists have to be

very careful about replacing such a highly inhomogene-
ous system with an equivalent homogeneous one and it is
not surprising that diSculties have been encountered.

Despite the large amount of analytic work there seems

to be a dearth of numerical studies, possibly due to ab-

sence of a suitable formulation of the problem. It is un-

fortunate that models are restricted to those which can be
treated analytically. Numerical methods give the capaci-
ty to treat more complex systems and to provide a
prescription for calculation of parameters used in
eft'ective-medium theories where these are appropriate.

In this paper we give a formulation to the problem that is
well suited to numerical work. Some examples are
worked out in the later sections.

Our approach is one which builds up the effect of the
medium in stages. %e start with the charged particle in
free space. If the particle is stationary, the fields around
it are of a longitudinal nature, but as soon as it begins to
move, the surrounding fields viewed in the laboratory
frame become time dependent and can be described en-
tirely in terms of the two time-dependent solutions of
Maxwell's equations: the transverse modes. No energy is
radiated by these transverse modes because the com-
ponent of the wave vectors pointing away from the tra-
jectory are always complex: the components of the wave
field decay exponentially away from the particle's trajec-
tory and so convey no energy to infinity.

So much for the vacuum, but the presence of a medium
changes the nature of the surrounding field. We view this
interaction as a scattering of the waves by the medium:
essentially a diffraction and refraction phenomenon.
Consider the simplest example of a particle traveling
parallel to a surface. The evanescent waves emitted by
the particle impinge upon the surface where they are
re6ected and refracted with or without diffraction ac-
cording to the structure of the surface.

Refraction into the medium conserves momentum
parallel to the surface, but changes the normal com-
ponent. This leaves the possibility open that the com-
ponent of momentum normal to the surface may no
longer be complex: the evanescent waves may tunnel into
the medium to find an energy carrying wave on the far
side. For example, this can happen if the medium is glass
and the particle is traveling faster than the velocity of
light in glass. Then we couple by refraction to Cerenkov
radiation in the glass, but with a probability that decays
exponentially with the distance of the particle from the
surface. At lower velocities the waves may still refract
into an energy carrying mode. If the material is a metal,
the surface plasmons wi11 be excited and dissipate energy.

Di+raction introduces another ingenious way of cou-
pling to energy carrying modes. It will be recalled that a
particle in vacuo does not radiate because the balance be-
tween the frequency of the surrounding waves and their
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Let us choose the z axis normal to the surface so the
momentum normal to the surface is given by

k, =+igk„+k» co—c (2)

and is normally complex in vacuo ensuring no radiation
of energy. Diff'raction at the surface can reduce k„and
k„sufficiently for k, to become real. Then the diffracted
wave can carry energy to infinity, either radiating into
the vacuum or into the material. A necessary condition
is that the surface is not smooth, but has some lateral
structure without which it cannot diffract waves. Smith
and Purcell noted this effect some time ago.

Yet another way in which energy loss can occur is
through multiple scattering of the emitted waves In .a
complex structure electromagnetic waves can rattle
around between elements of the structure to form modes
and resonances which the unstructured medium did not
possess. A common example is colloidal silver in a pho-
tographic plate. Solid metallic silver does not have any
substantial absorption bands in the visible and is highly
reffecting to light. Colloidal silver traps light in very-
low-frequency resonances between the colloidal parti-
cles, which couple to and absorb incident light. These
same resonances can couple to evanescent waves sur-
rounding a moving charged particle and provide a
multiple-scattering mechanism for the loss of energy.

This picture of light emitted by a moving charge to be
scattered and diffracted by the medium is ideally suited to
numerical calculation. A method of calculating the elec-
tromagnetic response of complex structures has been
developed by Pendry and MacKinnon, ' "which can be
harnessed to this approach to give realistic calculations
of loss spectra for complex nanostructures.

In the next section we give mathematical expression to

components of momentum is wrong. Note that we are
discussing diffraction of electromagnetic waves, not of
the particle itself. From Maxwell's equations,

co=c(k +k +k )

our formalism. In Sec. III we solve two old problems
with the new method to show that it can perform the old
tricks as well as some new ones. Finally we present cal-
culations for complex metallic structures in which the
stopping power is radically altered by the geometry of the
material. We show how the loss spectrum of a meta11ic
colloid changes dramatically with the dispersion and
present strong evidence that, despite the complexity of
the internal electromagnetic fields, an effective-medium
theory does appear to be valid for these colloidal systems,
though calculating the correct parameters is a tough job,
one for which it is necessary to use our methods.

II. ENERGY LOSS BY CHARGED PARTICLES

A changed point particle is surrounded by an elec-
tromagnetic field which, through the Poynting vector,
provides all information about electromagnetic losses of
the particle. We begin with a stationary particle in vacuo
and elaborate in stages until we have a prescription for
the full electromagnetic field in a complex medium. The
scalar and vector potentials in the rest frame of the parti-
cle are easily calculated:

p(r)=, A=O .
4m.eolrl

'

Next we decompose into plane waves,

q q (2n) exp(ik r)
4m'solrl 4mso 2~ l.

Z' y' Z

k„=n„, (4)

etc. In the problems we treat here a particle travels
parallel to the surface of a material, so we choose the z
coordinate normal to that surface and the x coordinate
along the direction of motion of the particle, assumed
parallel to the surface. In fact it will be convenient to
transform back into real space for the z coordinate,

q (2m. ) + I+ exp(ik r)
~s& 4trl. k, k " (k, +iQk +k )(k iQk +k )—

4+so L,

q 2m exp(ikii rii
—V k„+k» lzl)

Qk +kZ J7 Z

(5)

This choice of geometry is not as restrictive as it appears
at first sight: we may treat a bulk problem by introduc-
ing t~o surfaces infinitesimally close together. A particle
moving down a cylindrical hole could be treated either in
a representation of cylindrical coordinates or in this sur-
face representation with the surface chosen to cut the
cylinder in half. A little ingenuity adapts our formula-
tion to many geometries.

The Lorentz transformation

y o o iPy—
0 1 0 0
0 0 1 0

iPy 0 0 y

P=v/c, y=l/+I —v /c (6)
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gives us the fields in the laboratory frame in which the
particle moves with velocity U, by acting on the following
four-vectors giving the particle four-coordinates, the par-
ticle momentum/energy, and the electromagnetic fields.
In the rest frame of the particle ic(yt+uc yx )

let

k

iQk, +k„
iso/c =0

cA„=O

cA„=D

cA, =O

yk,
k

iQk„+k
i co'/c = +i Py k„

cA', =+pytp

In the laboratory frame so that in the laboratory frame the fields look like

r
q 2~

4~a, L2 ~
k, k

lf

exp(ik„'x'+ik'y' Qy k—„' +k' ~z' ice't')—

Q -'k'+k'
x y

(9)

In other words, we have a set of electromagnetic waves radiating from the moving particle each with frequency propor-
tional to the x component of momentum,

to'=Pck„'=uk„' .

We define dimensions for the Lorentz-contracted "box" containing the system

L„' =L /y, L'=L

(10)

with momentum defined in the new frame by

2~ = 2~
k„' =n„, , k' =n

L,' L' (12)

Eventually in any calculation, we shall make an integration over k„',k', or calculate a density of states and, the dimen-
sions of the imaginary box will disappear. With these definitions the fields can be expressed entirely in terms of labora-
tory frame parameters

exp(ik„'x'+ik'y' —Qy k„' +k' iz'~ iso't)—

l
X

(13)

from which the scalar and vector potentials can be extracted,

2'
x' y

exp(ik„'x'+ik'y' Qy k' +ky' iz—'i iso't )—
Q -'k'+k'

x y

(14)

c 'p=u /c
q 2~ exp(ik„'x'+ik'y' Qy k,' +—k' iz'i ico't')—

47TE,0 I 'L' Qy -'k.'2+ kx' y

or, alternatively, the standard expressions

E' = —V'y' —8 A'/Bt', B'=V'' X A' (16)
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can be used to express the Selds in the E—B format

E'=
i—k„'+i co'vc

—ik„'

"''
(z r~z ()Q1-'k„'+k„'

exp(ik„'x'+ik'y' —gy k„' +k' ~z'~ i—co't')

Q -'k'+k'
x

0
exp(ik„'x'+ik'y' Qy 2k„' +ky )z') ico't—')—('z(z [) 1

'k-„'2+k„'

l

The requirement that a particle in uniform motion in
vctcuo does not radiate is met by the condition that k,

'
is

always complex, implying that waves decay away ex-
ponentially from the plane containing the particle. By
implication they carry no energy flux. The presence of a
medium close to the plane can change this situation ei-
ther by allowing evanescent waves to tunnel through the
vacuum into allowed states of the medium, such as sur-
face plasmon modes, or by difFracting an evanescent wave
into a propagating wave with real k„which may then
carry flux away from the plane of the particle. This last
effect was noted some time ago by Smith and Purcell.

In a recent work' '" Pendry and MacKinnon de-
scribed a powerful formalism that enabled the reflection
coefficient of a surface to be calculated. Consider a
charged particle traveling parallel to the surface of the
material. Figure 1 shows the situation.

Using the Pendry-MacKinnon formalism we can calcu-
late the reflection coefficient of the surface, but first we
need to introduce some notation. Conventionally elec-
tromagnetic waves at surfaces are described in terms of
amplitudes of S- and P-polarized waves. The S-polarized
wave has an E vector lying entirely in the plane of the
surface,

Ez*(k„',k', z', co')

—k„' exp(ik„'x'+ikey'haik, 'z' i co'—t'),

where k denotes waves heading away from or towards
the surface and k, is determined by the usual vacuum
dispersion relation

k'=++co'zc —k' —k' '2c z) k'2+k'z

k'=+iQk' +k' co' c co' c—(k' +k'
2 X y x

(20)

The P-polarized wave has the E vector lying in the plane
containing lc and the surface normal,

Bs (k„',k', z', co')

kk„'k,'

kk'k, ' exp(ik„'x'+ik„'y'haik, 'z' i co't')—,

x y

(19)

region A
X

Et*(k„',k ', z', co')

surface

y

C2

N

kk„'k,'

+k'k, '

—k' —k'
x y

region C Xexp(ik,'x'+ik„'y'haik, 'z' i co't'), — (21)

FIG. 1. A particle, charge q, moves with velocity v parallel to
the surface of a dielectric medium at a distance d. The charge
initially radiates evanescent electromagnetic waves, but these
may be refracted at the surface into propagating modes within
the medium which carry energy away from the particle. Alter-
natively the waves may be diffracted at the surface into a wave
which propagates in vacuo and carries energy away from the
particle, but this time into free space.

Bt,*(k„',k ',z', co')

—k„' exp(ik„'x'+ikey'+ik, 'z' ico't') . —

We project the waves emitted towards the surface by the
particle onto the SP basis as follows:
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F'= g I Az (k„',k')F~ (k„',k', z', co'=vk„')
k„',k'

+ Ap (k,', k»)F~ (k„',k», z', co'=uk')I, (22)

where F is a six-vector comprising both E and B and the
amplitudes are given by

q
k'k'

A~
—=

2e+„'L'(k' +k' )Qy k„' +k»'
(23)

+Uqk„

2c e*'L'(k,' +k»' )

Using our formalism to calculate surface reAectivity we

can find the total wave field in region 8, between surface
and particle,

F~ = g As (k,', k')Fs (k„',k', z', co'=uk,')+ Ap (k„',k')F~ (k„',k', z', co'=uk„')
k„', k

+ g Bs(k„",k")Fs (k,",k»z', co'= uk„')+B»(k,",k»)F ~(k„",k",z', co'=uk„'), (24)

where the rejected amplitudes are given by

Bs(k„",k" ) =exp( —d Qy k,'2+ k ' —d Qk,"—P2k '2+ k "z
)

X IRss(k k k k co uk )Ax (k k )+RsJ(k k k k co uk )Ap (k k»)

B~(k,",k")=exp( dgy —k„' +k' d)» k,"— peak,
' +—k," )

X I Rpq ( k„",k ";k„', k '; co' =uk,
'

) A ~ ( k,', k '
) +R pp ( k,",k ";k,', k '; co' =uk,

'
) A p ( k,', k '

) ) .

(25)

The distance of the particle trajectory from the surface is d. Note the subtlety of these expressions: the surface may
change momenta of incident waves, but not their frequency. On the other hand, the frequency is linked to k,' for the in-
cident wave.

Similarly we may find the total wave field in region A, on the far side of the particle from the surface,

F'„= g ' Az+(k„', k')Fs (k,', k», z', co'=vk„')+ Az+(k,', k')Fz(k„', k', z', co'=uk')

+ Q Bq(k k» )Fs(k k z co uk )+Bp(k k )Fp(k k z co uk )

We have assumed that the particle does not scatter the
rejected waves a second time, which is equivalent to as-

suming that the particle is either very massive or travels
very quickly so that its trajectory is not perturbed by the
presence of the surface.

This completes our formal derivation of the elec-
tromagnetic 6elds. We can use our expressions to calcu-
late the Poynting vector in region A, which gives energy
Aux out in the vacuum, or in region 8, which gives ener-

gy Aux into the surface.

III. TWO SIMPLE EXAMPLES

In an earlier paper Echenique and Pendry showed
how to calculate the rate of energy loss by a particle trav-
eling parallel to a smooth Hat metal surface. They
showed that the rate of loss of energy to the surface
plasmons is given by

f N, dx dy

I

f f "
exp( —2dgk„' +k» )

Sn soak„' +k'

X Irn
1 —Ez(co' =vk„' )

dk„'dk' .
I +c2(co' =Uk

'
)

(27)

We rederive this result using our formalism as follows.
The re6ection coefficients of a dielectric surface are given

by

Qc, ,cos(0; )
—Qszcos(0„)

QE,cos(0; )+Qe2cos(0„)

Qe, cos(0, ) Qe2cos(0; )—
Rpp

QE,cos(0„)+Qe2cos(0; )
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where, in our case,
s)=1,

and the angles are given in terms of the momentum

ill (1—u c )k +k
cos(8,. )=

vc k~

i il (1—u eric }k„+k»
cos(e„)=

vc ' sik„

We shall model the dielectric constant of the metal with a single plasmon pole

e2=1 coplN

The reflection coeScients are then

Q(1—v c )k„+k —g(1—u e2c )k, +k

Q(1—v c )k„+k +Q(1—v e2c 2)k2+k2

Q(1—v e2c )k„+k —e~'il (1—u c )k„+k2

g(1—u e2c )k„+k +e2+(1—v c )k„+k2
I

(29)

(30)

(31)

(32)

At this point our calculations are fully relativistic and in-
clude retardation, which can be important in some cir-
cumstances; see Refs. 12-14. The original calculations
were made in the electrostatic limit, which corresponds
to neglecting terms of order u c . In this limit,

1+si=O or co=kco l&2 .

Thus the P component of the wave in region 8 is

Fsp= g Ap (k„',k')

(34)

1 Ep cop
Rgg 1, Rpp 1+2 2N N&

(33) X I Fp (k„',k ', co' =vk„' )

We observe that both the incident waves and the reflected
waves are evanescent and in consequence no energy can
flow towards the surface unless the reflection coeScient
has an imaginary component. Thus the S wave makes no
contribution, but the P wave does at the surface plasmon
pole,

+Rpp(ro'= vk„' )exp( —2d Qk„' +k'2)

XFp (k„',k'„co'= vk„' ) ] . (35)

Evaluating the Poynting vector for this field gives a fiow
of energy into the surface (see Appendix A):

(36)

f N;"dx dy =f (EXH), dx dy = f (E„II„—E ~„}dxdy

N, x y= EXH, x y

E„H —E H„x dy

uq k„' 1 c2(co'= vk„')
exp —2 „'+ ' Im

8~'e Qk'+k' 1+&2(~ —Vk„)

in agreement with Echenique and Pendry. Retaining the relativistic terms leads to a slightly more complex calculation
the result of which is

k'
Im

"q kx exp( —2dp)

8&so p

2 C2

e,2+a 1+a (37)

where

p=+k„' y +k'

Qk„' +k' —eg k„'

Qk' +k' —P k'
x y x

E2
=—e2(co' =vk„' ) .

(38)

I

Our method of calculating the energy loss appears to
be based entirely in the vacuum and therefore is con-
cerned with the transverse modes of the vacuum. At first
sight this appears to preclude treating losses to longitudi-
nal modes of the bulk. But this is not the case. Energy
loss by charged particles traversing the bulk of a material
can be calculated by considering the limit of two surfaces
pressed infinitesimally close together; see Fig. 2. In this
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surface F~p g Ap (k ky)Fp(k k co uk )

region A

region B d

surface

FIG. 2. A particle, charge q, moves with velocity U between
two parallel surfaces of a dielectric medium at a distance d from
each. The evanescent electromagnetic waves radiated by the
charge multiply scatter between the two surfaces altering the
resonant surface plasma frequency. In the limit d~0 absorp-
tion of energy occurs entirely at the bulk plasma frequency, as
we expect when no surface is actually present.

case the waves emitted by the charged particle scatter al-
ternately from one surface then the other so that the total
wave field is more complicated,

1+R&~exp( —2d Q k„' +k~ )

+ A~ (k„',k')Fp (k', k', cu'=uk„')

R~pexp( —2d Qk„' +k' )
X (39)

1+Rp~exp( —2d+k„' +k' )

2E'2
0=1+RE~=

1+c.2

2(1 —
cuz/co )

(2 —cu /cu )
(40)

and the rate of energy loss calculated from the Poynting
vector in region B, Fig. 2, is (see Appendix 8}

Losses occur when the integrand has a pole due to zero in
the denominator of the fraction. The frequency of these
losses now varies strongly with parallel momentum. In
the limit d ~0 the losses converge on the bulk plasma
frequency

Uq k„' 1 —R&~( c'0= ku„')exp( 2d i/—k„' +k' )
Im

2c suuo+k„' +k' 1+Rzz(co'=uk, '}exp( —2d+k„' +k' )

or, in the limit of zero separation between the surfaces,

2 N, x y=2 EH„—EH x y

uq k„'

2 i'2+ ~2

XIm, dk„'dk ', (42)
s2(co'= uk„' )

in agreement with the result given by Landau and
Lifshitz. '

Thus we have established that we have a complete for-
malism that reproduces results of earlier analytic work
and which is ideally suited for application to more com-
plex systems where analytic approaches break down.

IV. LOSSES IN COLLOIDAL METALS

It has been recognized that nanoscale structure in a
medium profoundly affects its loss spectroscopy, particu-
larly when the material is a metal. The reasons are well
understood in principle: long-range electrostatic interac-
tion of the plasma modes leads to a complex spectrum of
new modes. However, the details have been more
diScult to establish. Experiments on colloidal disper-
sions' show, in addition to the bulk plasma 1oss, strongly
broadened features centered around the plasma dipole
mode of a sphere and there have been many analytic at-
tempts to mode1 the observed spectra. The modes of a
sphere have been invoked as have the modes of cou-
pled spheres' and more complex geometries. ' Another
approach has been to try to establish an effective-medium
theory along the lines of Maxwell Garnett. These ap-

(41)

l

proaches have met with some success, but there is a gen-
eral failure to describe the complexity of the spectra with
any precision.

In this paper we offer our computational approach as a
tool for the study of these systems. Our objective is to
show that the method can indeed calculate loss spectra
for complex systems and to make some general observa-
tions about the nature of these spectra. We make some
limited comparisons to the data of Howie and Walsh, '

though it is not our purpose in this paper to give a
comprehensive account of experimental loss spectra, but
rather to establish how we might go forward to do this in
the future.

We calculate for two systems. The first system
comprises electrons traveling at 0.4c, 1 nm above, and
perpendicular to, a set of aluminum cylinders where the
cylinders have a diameter of 2.5 nm and are arranged in a
square array lattice constant 5.0 nm giving a volume
filling fraction of 19.6%. Figure 3 shows a sketch of the

q

FIG. 3. A particle, charge q, moves with velocity v parallel to
a surface comprising a regular array of metal cylinders, with a
diameter of 2.5 nm, at a distance of 1 nm from the surface. The
lattice spacing of the cylinders is 5.0 nm and the particle travels
perpendicular to the cylinders at 0.4c. The volume filling frac-
tion is 19.6 jo
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system. Zabala and Echenique have also made calcula-
tions for cylindrical geometries. ' The dielectric proper-
ties of aluminum are modeled as follows:

q-

COc=l— P
Ace =15 eV, Ay=1 eV .

c0(co+i y )
' (43)

%e calculate the re8ection coeScient of this surface to
the relevant waves, this time numerically because the sys-
tem is not tractable to analytic study, and calculate the
stopping power as a function of the energy of the modes
causing the loss of energy. The results are shown in Fig.
4.

Note the dramatic effect that the nanoscale cylindrical
structure has had on the loss spectrum. Equation (37)
predicts that a smooth fiat surface of aluminum would
show losses close to the surface plasmon frequency of
10.6 eV, but here we see a whole spectrum of losses ex-
tending from zero up to the bulk plasmon frequency.
The character of the spectrum is established in broad out-
line with only one layer of cylinders indicating that the
modes excited are rather strongly localized between two
cylinders. The insensitivity to the number of layers indi-
cates that the loss spectrum is dictated by spacing be-
tween pairs of cylinders rather than the exact nature of
the period lattice we have chosen.

In a second calculation the array of cylinders was re-
placed by an array of spheres with a diameter of 2.5 nm
arranged in a simple cubic lattice of side of 5 nm giving a
volume filling fraction of 6.5%. An electron travels at
0.4c parallel to the (100)axis, 1 nm above a (001) surface
of this material. The situation is shown in Fig. 5. The
corresponding loss spectrum is shown in Fig. 6. Once
again we observe a wide spectrum that is established with
the first layer of the material. The loss modes of a sphere
are given by

' 1/2
I

si "«e 21 +1

where 1 is a positive integer, with the dipole mode being
found at 8.7 eV in the case of aluminum. The simple cu-
bic lattice shows a broad double-peak structure with the
stronger of the two peaks at 6.2 eV.

Our calculations indicate, both in the cylinder and the
sphere cases, that the loss spectrum depends only on the
most simplistic parameters of the lattice such as the prox-

imity of the spheres or cylinders. This leads to two
speculations. The first is that a wide range of nanostruc-
tures may well give rise to similar spectra provided that
the local geometry of the objects is the same. Thus a col-
loidal dispersion of metallic spheres might be modeled by
an ordered lattice of spheres of the same diameter at the
same volume filling fraction. The other speculation is
that the nanostructure can be replaced by an homogene-
ous effective medium. This is the objective of the
Maxwell Garnet t class of theories.

Let us deal with the latter speculation first. We have a
very effective way of testing the postulate: if the nano-
structured medium can truly be replaced by an effective
homogeneous medium, then the response of that medium
is determined by the two electromagnetic modes support-
ed by such a hoinogeneous system. To test this hy-
pothesis we calculated the band structure of the simple
cubic lattice of metal spheres and asked if the losses were
dominated by a single pair of Bloch waves. It is indeed
the case that over the entire range of energies a single
pair is dominant and we used the dispersion relation of
these Bloch waves along the (001) direction to define an
efFective dielectric constant

cos,s(co) =ck, (c0) . (45)

In Fig. 7 we show the full loss spectrum calculation for
six layers of spheres compared to Im(1/e, ~).

The agreement between the two curves is excellent,
especially so as we took very little care about which
Bloch waves we chose for our estimate of e,s; Clearly the
effective-medium concept works extremely well in this in-

FIG. 5. A particle, charge q, moves with velocity v parallel to
a surface comprising a simple cubic array of metal spheres, with
a diameter of 2.5 nm, at a distance of 1 nm from the surface.
The lattice spacing of the spheres is 5.0 nm and the particle
travels parallel to the (100) axis of the lattice at 0.4c. The
volume filling fraction is 6.5%%uo.
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FIG. 4. The stopping power of the surface described in Fig. 3
as a function of the energy of the quanta lost. Note the very
broad loss peak, which indicates a wide spectrum of modes ex-
tending to zero energy. The character of the loss spectrum is es-
tablished almost with the first layer of cylinders in place indicat-
ing that the loss modes are very localized.

FIG. 6. The stopping power of the surface described in Fig. 5
as a function of the energy of the quanta lost. Again note the
very broad loss peak, which indicates a wide spectrum of modes
extending to zero energy. As for the cylinders, the character of
the loss spectrum is established almost with the first layer, indi-
cating that the 1oss modes are very localized.
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FIG. 7. The stopping power of the surface described in Fig. 5

as a function of the energy of the quanta lost calculated for six
layers of spheres compared to Im(1/c, ,z) as defined by the Bloch
waves of the system. The detailed agreement shows that
e6'ective-medium theory works very well for this system.

15.0S.O 10.0
energy (eV)

FIG. 8. The stopping power of the surface described in Fig. 5

as a function of the energy of the quanta lost estimated by
Im(1/c. ,~) as defined by the Bloch waves of the system. Various
filling fractions are sho~n obtained by varying the radius of the
metallic spheres.

stance. We also have found a relatively simple procedure
for calculating e,&, something which has proved an
elusive quantity within the entirely analytic approaches.
Figure 8 shows some more calculations of Im(1/e, s)
made for various filling fractions. We see that the trend
with increasing filling fraction is for the loss peak to
move to higher energies with the bulk plasma frequency
as a limit point. This is consistent with the expectations
that in the limit of 100% filling fraction all losses would
be due to the bulk plasmon.

Now let us return to the first speculation: that only the
local geometry of the nanostructure affects the loss spec-
trum. We have strong circumstantial evidence for this
from our calculations. As we have seen, details of the
spectrum are established by as little as one layer thick-
ness of the material. Furthermore, although the losses
excite many Bloch plasma waves traveling in all direc-
tions inside the material, a crude sampling of only one
direction gives most of the details in the loss spectrum.
As a further test of our ideas we refer to some data taken
by Bowie and Walsh. ' They measured losses in an elec-
tron microscope with an AlF3 sample on the stage.
Decomposition in the electron beam gave an aluminum
colloid. Comparison of their data with Fig. 8 shows that
a filling fraction of approximately 12% best fits their
data. A detailed comparison is shown in Fig. 9.

The experimental data show a broad peak centered on
8 eV, which is due to the surface modes of the spheres,
and a well-defined peak at around 15 eV, which has a
trivial origin in the bulk plasmon loss. Here we are not
concerned with the latter, which we could easily repro-

Howie & Walsh

I m(1/beg)

g)S
~ i+I

o
C4

~ &
C4 ~
C4 ~
K c5

duce by averaging over trajectories intersecting the col-
loidal spheres. Our theory shows good agreement with
the 8-eV peak both in location (which admittedly we have
chosen the dispersion to fit) and more significantly in the
width which shows the dispersion of modes over many
frequencies. This result is very encouraging confirmation
that real nanostructured materials can be modeled by our
calculations.

A word of caution is in order: since the loss modes in a
colloid are determined by local arrangement of spheres,
we may expect to describe these losses if our model con-
tains spheres with separations similar to those in the ex-

periments. The system appears to be very tolerant of the
range of separations: a given dispersion of the particle
produces a broadband of modes which is well described
by some average spacing. The exception to this state-
ment comes at the limits of the spectrum. Here the ran-
dom system will have many more modes than the ordered
one because the random system has occasional sphere-
sphere separations which are very small and which will

produce low-frequency modes not present in the ordered
system. For systems we describe here we expect that our
ordered model will reproduce losses in the infrared region
and beyond. The model appears to provide a good
description of losses in the visible region which is in the
central region of the spectrum where statistics are good.

V. THE SMITH-PURCELL EFFECT

So far we have concentrated our efforts on energy loss
from the particle to the medium, but it is also possible for
energy to escape into the vacuum. As we have pointed
out, the charged particle radiates electromagnetic waves
of all frequencies, but with a complex z component of the
wave vector, which precludes radiation of energy. The
reason that the wave vector is complex is that the fre-
quency is related to the x component of the momentum

6) =Uk

in just such a way as to ensure that
(46)

2 —2 k2 k2 (47)

is always complex. If some means could be found to
reduce k by a sufficient amount, k, would once more be

I I . ~ L .
5.0 10.0 15.0
energy (eV)

FIG. 9. The stopping power of a 12% colloidal dispersion of
metallic spheres estimated by Im(1/e, z) and compared to elec-
tron energy loss data taken by Bowie and %alsh. The scales are
in arbitrary units for both theory and experiment. The experi-
mental data show a broad peak at 8 eV, in agreement with the
calculation. The peak at the origin in the experimental data is
due to the finite resolution of the apparatus. There is also a
bulk plasmon loss evident in the experimental data at around 15
eV which is due to the electron trajectories intersecting some of
the colloidal spheres.
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to the cylinders, at a height of 1 nm and a speed of 0.4c.
There is a range of momenta over which radiation can be
expected given by the following condition:

(k„2—nn./a} &k„u c
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FIG. 10. The first-harmonic Smith-Purcell contribution to
the stopping power of a 10 array of aluminum cylinders, with a
diameter of 2.5 nm and spacing of 5.0 nm. An electron passes
over the grating at right angles to the cylinders, at a height of 1

nm and a speed of 0.2c or 0.4c. Emission takes place over a
finite range of frequencies (as determined by k„) in the self-x-ray
region from 259 to 390 eV in the former case and from 436 to
1060 eV in the latter case.

k, =Qcu2c 2 —(k„g)2 ky~— — (48}

is real, the condition for radiation is met.
This is our way of looking at the problem, but it has

been pointed out to us that Smith and Purcell have an
alternative interpretation. They considered the image of
the charge in the dielectric. If the surface of the dielec-
tric is not ffat, the image will move up and down as the
particle passes over the surface: this classic oscillating di-
pole will radiate energy into the vacuum. The two pic-
tures are complementary: Smith and Purcell give an in-
tuitive picture of where the energy comes from; our pic-
ture leads directly to an elegant and straightforward cal-
culation of how much energy is radiated.

To illustrate the situation we considered a grating con-
sisting of a one-dimensional array of aluminum cylinders,
with a diameter of 2.5 nm and spacing of 5.0 nm, as be-
fore. An electron passes over the grating at right angles

real enabling the radiated wave to carry energy. One way
of doing this is to difFract the emitted wave from a
periodic grating which supplies discrete units of momen-
tum. If

where we have recognized that g is related to the lattice
spacing through an integer n and that the frequency is
proportional to k„. In Fig. 10 we see the contribution to
the stopping power from the Smith-Purcell effect, in-
tegrated over k .

VI. CONCLUSIONS

We have introduced a way of looking at energy loss
from fast charged particles that opens the way to numeri-
cal studies with complex structure on a nanoineter scale.
Such structure radically alters the loss spectrum of the
material. We have applied the formalism to some simple
analytic calculations to show that it reproduces well-
known results and to some numerical studies of losses in
periodic arrays of nanometer sized metallic spheres.
These systems displayed properties that were strongly
dependent on the concentration of metal in the system
and we used the periodic system successfully to model
losses measured in colloidal aluminum where the ar-
rangement of spheres is random, characterized only by
the concentration of metal. We justified this approach by
the insensitivity of the calculations to details of the order
and to the validity of efFective-medium theory, which we
were able to demonstrate for this system, albeit with pa-
rameters which are difficult to determine. Finally we
demonstrated the Smith-Purcell effect in which a charged
particle moving over a grating radiates energy into the
vacuum.

We hope that our method will prove applicable to
quantitative studies of loss processes in complex materi-
als, many of which are currently under experimental
study.
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APPENDIX A

Here are the components of the fields for a charged particle traveling parallel to a Bat metal surface:
2

E„(z=—0)= g Ai, (k„',k'},k'k, 'exp(ik„'x+ik„'y ico't)[1 Rtt, (c—o'=uk„'}exp—( 2d(/k„' +k„' )],—
k' k'

Z J
2

E (z= —0)= g At, (k„',k~), k„'k,'exp(ik„'x+ik~y ico't)[1 Rtt (cu'—=uk„')exp( ——2d+k„' +k„' )],
k' k'Z' y (Al)
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B,(z = —0)= g At (k„',k')(k')exp(ik„'x+ik'y —ico't )[1+Rtp(co'=uk, ')exp( —2d+k„' +k' )],
k„,kx' y

B»(z = —0)= g Ap (k„',k»)( —k„')exp(ik„'I+ik'y i—co't)[1+Rpp(co'=uk„')exp( 2—d(» k„' +k' )] .
k„,k'

Next we recognize that integration over xy leads to kz = —kE and that the overall fields must be real

N, dx y= ExHy EyHx dx y

2c L'Ly'
Ap (k,', k») k„'iQk„' +k'pu '(+k,')

k', k'x' y

X[1—Rtt (co'=+uk„')exp( —2d+k,' +k' }][1+Rpp(co'=—uk„')exp( —2d+k„' +k' )]
2 2

At, (k„',k'), k»i }»» k„' +k' po '( —k')[1 Rtt—,(co'=+uk')exp( —2d+k„' +k' )]
UkX

x' y

X [1+Rpt, (co'= —uk,')exp( —2d+k,'
+k» )] .

Collecting together the various pieces,

N, xdy= EH —EH„x y

(A2)

k„',k'
At, (k„',k„')

2c L,'L'
[k' +k' ]'Qk' +k' p

V x

X [1 Rtt, (co—'=+uk„')exp( —2dgk, ' +k' )][1+Rpp(co'= —vk„')exp( —2d+k'+k' )] . (A3)

Fina11y recognizing various complex conjugates and seeing that the real arguments are antisymmetric in k„, we see that
there is no energy flux unless R is complex,

f N, dx dy = f (E„H EH„)dx—dy

zcLL
At, (k„',k'), [k' +k' ]i+k' +k'

k', k' V x
x

Xexp( —2d+k,' +k' )[ Rt,t, (co'=vk—,')+Rt*,p(co'=uk„')] .

Substituting for A,

N, x y= EH —EH„xdy
Vq k'

t Qk'+k'2c'eg'L'(k'+k') 2&~0
x' y

Xexp( 2d+k,' +k» —)[ Rtt, (co'=uk„')+—Rpp(co'=vk„')] .

Substituting for the reflection coeScient,

f N, dx dy= f (EXH),dx dy= f (E„H EH, )dx dy—
Vq k,' 1 —c2(co'= vk,

'
}= J J exp( —2d+k„' +k' )Im, dk'dk' .

8m Eo+k '+k' 1+ez(co = uk }

APPENDIX 8

(A4)

(A5)

(A6)

Here are the components of the fields for the case of a charged particle between two surfaces:

1 —Rzt exp( 2d+k' +k» )—
E„(z=0—)= g At, (k', k'},k„'k,' exp(ik„'I+ik„'y ico't}, —

1+Rpp exp( 2d Qk„' +k ' }—
1 —Rpt exp( 2d t»» k„' +k» )—

E (z=O —)= g At, (k„',k'), k'k,' exp(ik'x+ik'y ico't), —
1+Rpt, exp( 2d+k' +k—' )x' y

(B1)
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g„(z=0—}=g A~ (k„',k')k'exp(ik„'x+ik'y —iso't),

P (z =0—)= g Ap (k„',k')( —k„')exp(ik„'x+ik»y i—o»'t) . (B2)

As in Appendix A we calculate the Poynting vector in region B, which represents half the total loss,

f N, dx dy =f (E„H» E»—H„)dx dy

At, (k,', k„') L„'L', k„'iQk„' +k„' iso '(+k„')—,k'iPk„' +k' po '( —k')
x' y

1 Rt p(—o»' =uk„' )exp( —2d Qk„'z+ k„'2)

1+Rt», (co'=uk„')exp( —2d+k„' +k' )

(B3)

Recognizing that we are summing over kk„' and that changing the sign of k„' has the efFect of taking the complex conju-
gate of c,

x y E Hy Ey H x

uq k„' 1 Rpt (tu' —=vk„' )exp( —2d Qk„'z+ k'2}
Im dk„'dk' .

8n c eoisoQk„' +k» 1+R»»(to'=vk„')exp( —2d+k„'z+k'2)

Substituting the dielectric constant gives for the total loss to both surfaces,

2 f N, dx dy =26f (E„H E„H„)dx—dy

vq k,' (1+z2)+ (1—ez)exp( —2d +k„' +k' )
dk„'dk'

8m2c euttoQk„' +k' (1+e2)—(1—e2)exp( —2d+k„' +k» )

or, in the limit of zero separation between the surfaces,

2, x y=2 E„H —E„H„x y= Im
vq k„' 1

4tr e Qk' +k' s2(& =vkx )

(B4)

(B5)

(B6)
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