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Ab initio calculation of melting and thermodynamic properties of crystal and liquid aluminum
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A 6rst-principles technique for calculating accurate equations of state of metals is illustrated with an

application to Al. Results for the thermodynamic properties of Al at densities near normal, and at tem-

peratures into the liquid phase, are presented. In contrast to previous calculations by other workers, the

present technique makes no use of experimental data. The ab initio procedure begins with electronic-

band-structure calculation of the ground-state energy, the elastic constants, and selected short-

wavelength phonons. A physically reahstic interatomic potential is calibrated by Stting it to the calcu-

lated elastic constants and phonons. Ion-motional contributions are computed from quasiharmonic lat-

tice dynamics at low temperatures, and from molecular-dynamics simulations at classical temperatures.

Melting is computed from the free energy constructed from these combined results. Very accurate re-

sults are obtained for zero-temperature properties and phonon frequencies. The calculated melting tem-

perature of 955 K is within 2.5% of the observed value, a diSerence comparable to the estimated pre-

cision of the calculation. Good results are obtained for two highly sensitive quantities, the entropy

change upon melting and the Clapeyron slope. The calculated entropy as a function of temperature is in

excellent agreement with experiment for solid and liquid phases. The present procedure can potentially

provide reliable values of thermodynamic properties of any metal under extreme conditions where no

data are avilable.

I. INTRODUCTION

At Los Alamos, we have undertaken research in tech-
niques to calculate accurate equations of state for metals,
from first principles, without recourse to any experimen-
tal data whatsoever. Our region of interest includes den-
sities from normal to two or three times normal, and tem-
peratures up to several times melting. Under these condi-
tions, the Born-Oppenheimer approximation is a proper
starting point, with the electronic ground state serving as
a potential for the ion motion, and with thermal excita-
tion of the valence electrons treated as a free-energy per-
turbation. The following three steps comprise the most
reliable procedure available for ab initio calculations.

(a) Calculate the ground-state energy, the elastic con-
stants, and a few zone-boundary phonons, as functions of
compression using band-structure theory.

(b} Construct a physically realistic interatomic poten-
tial, and calibrate it with the calculated elastic constants
and zone-boundary phonons.

(c) Evaluate the ion-motional contribution to thermo-
dynamic functions by means of quasiharmonic lattice dy-
namics at low temperatures, and by means of the
molecular-dynamics (MD} technique at temperatures
where the ion motion is classical.

Melting is computed from the free energy constructed
from the results of these three steps.

The present paper presents our results for Al at densi-
ties near normal, and at temperatures well into the liquid
regime.

Several previous calculations of melting in aluminum
have been reported. Moriarty, Young and Ross used

generalized pseudopotential theory, and evaluated the
crystal free energy from quasiharmonic lattice dynamics,
and the liquid free energy from fiuid variational theory,
to calculate the melting curve of fcc Al to the vicinity of
2 Mbar. Their results are in good agreement with experi-
ment. Pelissier used local pseudopotential theory fitted
to experimental data, and free-energy approximations
similar to those of Moriarty, Young, and Ross, 3 to calcu-
late the melting curve of fcc Al to 2 Mbar. The melting
curve of Pelissier agrees well with that of Moriarty,
Young, and Ross. Mei and Davenport used embedded-
atom potentials, with a large number of parameters fitted
to experimental data, and with crystal and liquid free en-
ergies evaluated by molecular dynamics, to calculate the
melting temperature of fcc Al at zero pressure. Our pro-
cedure bears some similarities to and some differences
from these calculations. The most significant differences
are that our interionic potential is fitted to information
obtained entirely from band-structure calculations, mak-
ing no use of experimental data, and our free energies at
classical temperatures are evaluated entirely from MD
simulations without recourse to approximations.

In the following section, the band-structure calcula-
tions are described, and the resulting zero-temperature
equation of state and four zone-boundary phonons are
compared with experiment. Section III describes the
calibration of the volume-dependent, two-body intera-
tomic potential, and compares three calculated moments
of the phonon spectrum with experiment. Evaluation of
the ion-motional contribution to thermodynamic func-
tions, for crystal and liquid phases, is carried out in Sec.
IV. The complete Hamiltonian and complete free energy
are given in Sec. V, and theory and experiment are corn-
pared for the melting properties, crystal anharmonicity,
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and entropy at temperatures to twice melting. Finally, in
Sec. VI, it is argued that our procedure shows promise
for reliable calculations of thermodynamic properties of
metals under extreme conditions.

II. BAND-STRUCTURE CALCULATIONS

TABLE I. Comparison of theory and experiment at zero
temperature and pressure.

Quantity Neglecting E„
Including EH

4 o EH Total Experiment

V (a,')
Uo {mRy)
8O (GPa)

dBp /dP

106.3
—288

84.6

4.58

—288 3

81.1 1.3

4.65 0.01

107.3
—285

82.4

4.66

110.6
—249'

794
82.0'
4.72
4.42'

'C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley,
New York, 1976), p. 74.
G. N. Kamm and G. A. Alers, J. Appl. Phys. 35, 327 (1964).

'J. Vallin, M. Mongy, K. Salama, and O. Beckman, J. Appl.
Phys. 35, 1825 (1964).
"P. S. Ho and A. L. Ruoff, J. Appl. Phys. 40, 3151 (1969), at
77.4 K.
'J. F. Thomas, Jr., Phys. Rev. 175, 955 (1968), at room tempera-
ture.

The electronic structure calculations were performed
with a full-potential, augmented linear muffin-tin orbital
band-structure method. This method has previously
been successfully used to calculate elastic constants of
transition metals. The calculations were all-electron,
scalar relativistic, and used the Hedin-Lundqvist
exchange-correlation functional. The basis functions
were Bloch linear combinations of augmented, linear
muffin-tin orbitals through l =2. Inside the muffin-tin
spheres, basis function were expanded in spherical waves
through l =8; harmonic expansions of the electron densi-
ty and potential were carried out through l =8. In the
interstitial region, Fourier expansions were cut off at
g,„—5. 5V'~ /2m. for the electron density and potential,
and at g,„-3.2V' /2n. for the basis functions; V is the
unit-cell volume. Integrations over the Brillouin zone
(BZ) were performed using special points with Gaussian
broadening; the width of the Gaussian was 65 mRy.

The energy of the fcc structure was calculated at 19
volumes ranging from 1.43Vo to 0.33VO, where Vo is the
room-temperature, experimental unit-cell volume. The
equilibrium volume, the bulk modulus, and its pressure
derivative are compared with experiment in Table I. The
BZ mesh contained 60 points in an irreducible wedge,
corresponding to 2048 points in the full zone; conver-
gence was checked at several volumes to 16 384 points in
the full zone.

Longitudinal and transverse phonons at the L and X
points were calculated at five volumes ranging from Vo to
0.33VO. Total energies were calculated as a function of
atomic displacement from equilibrium in doubled unit
cells. At each volume, these calculations were performed

—2/3
—1

b

(2)

Values of the parameters Vb and c„are given in the Ap-
pendix.

At zero temperature, T =0, the crystal energy in
quasiharmonic lattice dynamics is

Uo( V) =Co( V)+EH( V), (3)

where FH is the quasiharmonic zero-point vibrational en-

ergy,

(4)

co„are the quasiharmonic phonon frequencies, ( )az indi-
cates a Brillouin-zone average, and the second equality in
(4) defines the characteristic temperature e, (V). Our
evaluation of ei( V) is described in Sec. III. The pres'sure

at T =0 is Pc( V),

Pc(V)= —dUD/dV,

and the bulk modulus is Bo( V),

8c( V) = —V(dPO/d V ) .

(5)

Results from the band-structure calculations at zero tem-
perature and pressure are compared with experiment in
Table I. The zero-point vibrational energy expands the
crystal about 1%, raises the energy 1%, and causes the
bulk modulus to decrease by around 2.5%. The agree-
ment of theory and experiment is overall quite good.

Energies of quasiharmonic phonons at points X and L
in the fcc BZ were calculated at three volumes and the
corresponding frequencies are listed in Tab1e II.
Neutron-scattering measurements of the phonon frequen-
cies at 80 K, where V=110.7ao, are also listed in Table
II. While the theoretical frequencies are uniformly lower
than experiment by a few percent, the agreement is, nev-

ertheless, impressively good.
To calculate the complete free energy of Al, in crystal

or liquid phases, we will need the contribution due to
thermal excitation of the valence electrons from their
ground state. Since this contribution is small, an approx-
imation will sufBce. In Fig. 1, our calculated electronic
density of states is compared with the value for free elec-
trons; from this comparison we conclude that the free-

at four displacement magnitudes to obtain each phonon
frequency. Maximum energy differences for the different
modes fell approximately in the range 0.05—0.32 mRy
near equilibrium and 0.33—2. 8 mRy at 0.33VO. Grid-
ding of reciprocal space identical to the fcc calculations
was used. This corresponded to 1024 points in the full
BZ. Convergence was checked up to 8192 points in the
full zone at one volume near equilibrium.

The ground-state energy @c(V) was fitted to a Birch-
Murnaghan equation of state'

5

4c(V)=co+ Vb g
2

nt

where
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TABLE II. Longitudinal (1) and transverse (t) phonon fre-

quencies, in THz, at X and L points for fcc Al. Theoretical
values are given for three atomic volumes, and interpolated
theoretical values are compared with neutron scattering mea-

surements at V =110.7ao.
Quantity 111.970

V (ao'
106.649 93.318

TABLE III. Pseudopotential parameters, characteristic tem-
peratures for crystal (8„) and liquid (go), and the crystal
Griineisen parameter (yo), for Al at three atomic volumes.

X(t) L(t)

111.970
106.649
93.318
110.7(theory)
110.7(experiment)'

57.9
63.1
78.3
59.1

60.9

33.9
38.2
50.7
34.9
36.4

57.3
63.1

80.2
58.6
60.9

23.9
26.9
35.4
24.6
26.3

'Reference 23 and data of R. Stedman and 6. Nilsson, Phys.
Rev. 145, 492 (1966).

r, (ao)

80 (K)
Hi (K)
82 (K)
go (K)
YO

1.129
1.224

278.1

386.6
387.2
201.0

1.92

1.128
1.160

304.6
423.8
424.9
217.7

1.82

1.123
1.004

381.4
532.0
534.5
268.7

1.58

electron model gives an acceptable approximation to the
electronic free energy at all volumes and temperatures
considered in this study.

III. THE INTERATOMIC POTENTIAL

Aluminum at normal density is a nearly-free-electron
metal. Pseudopotential perturbation theory, using an
Ashcroft pseudopotential with core radius as the only ad-
justable parameter, gives an excellent description of the
phonon dispersion curves at 80 K." The weakest part of
this model is that the calculated bulk modulus is around
30% smaller than the experimental value. ' The removal
of this discrepancy might well be found in higher-order
perturbation theory, since it is known that, in a given or-
der of pseudopotential perturbation, the methods of long
waves and homogeneous deformation yield different re-
sults for the bulk modulus. ' ' However, in the present
work, in order to construct a simple but physically realis-
tic interatomic potential for Al, we will retain the
second-order pseudopotential theory, but will vary the
Hubbard screening parameter g so as to obtain approxi-
mate agreement between the long-wavelength phonons
and the bulk modulus. This procedure has physical
justification since g appears in an approximate screening
correction due to valence electron exchange and correla-
tion effects, and in the long-wavelength limit g controls
the valence electron compressibility. ' '

The pseudopotential formulation of the real space in-
teratomic potential P(r) has been given previously. '

Here we use the Ashcroft empty core model, ' with core
radius r, and screening parameter g. These parameters
are adjusted to provide an overall best fit of the phonons
and bulk modulus calculated from the resulting intera-
tomic potential to the four zone-boundary phonons
(Table II) and bulk modulus determined by the band-
structure calculations. The final values of r, and g are
listed in Table III. These may be compared with our ear-
lier results" for Al at V= 110.6a o: $= 1.90, the uniform
electron gas value; r, =1.117ao. While r, is only weakly
dependent upon the fitting procedure and the volume of
Al, the parameter g must be decreased significantly to
give a more accurate value of Bu. This behavior of g
occurs because there is a slight admixture of d electrons
near the Fermi surface, an effect which increases as the
volume decreases. ' ' To extend this study of Al to
higher compressions, we are currently developing an in-
teratomic potential that explicitly accounts for the d-
electron contribution.

The interatomic potentials at three volumes are shown
in Fig. 2. These potentials are quite difFerent from our
earlier potential, yet the overall agreement with mea-
sured phonon dispersion curves is nearly as good. " Since
P(r) will be the basis for calculating thermodynamic
properties due to the motion of the ions, an important
check on it is to see how well it gives moments of the
phonon distribution. The important moments are ex-
pressed by the characteristic temperatures 8„ for n =0, 1,
2; 8, is given by Eq. (4) and relates to zero-point vibra-
tional energy; 8c expresses the quasiharmonic phonon en-
tropy at high temperature, '
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FIG. 1. Calculated electronic density of states for A1 (solid)
compared with the free electron model (dashed).

FIG. 2. Pair interaction contribution to the interatomic po-
tentials for Al used in the MD simulations.
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ln( k 8o) = ( 1n( leo„) ) iiz ',

and 02 expresses leading-order quantum corrections at
high temperature,

k8 P(g2 2) ji/2

Experimental phonon moments for Al at 80 K, based on
Born —von Karman fits to neutron-scattering data, com-
pare well with our calculated values at the appropriate
atomic volume of 110.7a o:

80

a 40

A

» 20

v(~')

111.970

106.649

~ 93.318

I i a l s ~

0
0 900 1800 2700 3600

8o (K)
8, (K}
8z (K}

Experiment

283.5
399
404

Theory

284.2
395
396

% error

0.2
—1.0
—2.0

FIG. 3. Thermal contributions to the internal energy deter-
mined from MD simulations and thermodynamic fits [Eqs. (13)
and (A101] to them (lines).

Theoretical results for 8o, 8„82, and yo at three volumes
are listed in Table III, where the Gruneisen parameter yo
1S

d ln80
yo=

d ln
—

V
(9)

IV. MOLECULAR DYNAMICS

We have previously carried out lattice dynamic and
constant (N, V, E) MD calculations for metallic sodium in
the solid phase, &6, 24, 25 the liquid phase, and along the
solid-liquid boundary, and have provided several stud-
ies of statistical mechanical theory useful for interpreting
the computer simulations. Our conclusion from this
work is that the combination of lattice dynamics and
molecular dynamics yields accurate results for thermo-
dynamic properties of solids and liquids. Here we carry
out this computational program for Al making use of all
the techniques developed earlier. The essential difference
is that our Al potential is calibrated to band-structure
calculations at several volumes, while our Na potential
was calibrated to experimental data. '

The molecular-dynamics Hamiltonian is HMD

2

HMD=X 2M+X&— X&,
where p is the particle momentum, M is the particle mass,
P=P(r; V) is the volume-dependent interatomic pair po-
tential, the kinetic energy is summed over all particles,
the potential is summed over all distinct pairs, and (gP)o
is the total pair potential evaluated for the perfect crystal
configuration. P was tapered to zero with zero slope
beyond the ninth fcc she11 of neighbors. For every
volume, the zero of HMD is the static crystal
configuration, which is the classical ground state. The
MD calculations were started from the fce crystal
configuration, with a random distribution of velocities,
and the system reached equilibrium either in fcc or liquid
states. Periodic boundary conditions were applied, and
the fixed number of particles used in a simulation ranged
from 864 to 4032. Error estimates were obtained from
the procedures outlined by Schiferl and Wallace. Re-
sults for the MD energy and pressure as functions of

volume and temperature are shown in Figs. 3 and 4.
To analyze the MD results for the crystalline state, we

refer to lattice dynamics theory to write the crystal free
energy per atom FMD, in the high-temperature (classical)
limit as

FMD = —3kT ln(T/8o)+F„'

where 8o( V} is listed in Table III, and the variable func-

tion F~, which expresses anharmonicity, is taken to be

F' = A'(V)T (12}

Then the crystal internal energy per atom U, the entropy
per atom S, and the pressure P are given by

UMD =3kT —2A'T

SMD =3k[in(T/8o)+1] —3A'T

VPMD =3kTyo (dA'/d InV—)T

(13)

(15)

0 I I i ~ ~ i ~ ~ i I2

~ "(t (&,')

0 10' .)49
10 - ~ 93 318

0 900 1800 2700 3600

FIG. 4. Thermal contributions to the pressure determined
from MD simulations and thermodynamic fits [Eqs. (15) and

(A9)] to them (lines).

where yo(V) is defined by Eq. (9) and is listed in Table
III. Equations (13) and (15) accurately fit our MD results
for energy and pressure (see Figs. 3 and 4}, with A' a
smooth function of V, small in magnitude. The anhar-
monic contributions to energy and pressure turn out to
be at most 2%%uo of the quasiharmonic contributions. It
should be stressed that, since F„' is a variable function of
V and T, and since it is fitted to the classical MD calcula-
tions of energy and pressure, the only error in FMD of Eq.
(11) is that it omits the quantum contribution to FA, and
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SMD =3k [ln( T/bio)+1] —3 A 'T (17)

The entropy constant for the liquid state was deter-
mined from a constant-volume integration from the virial
regime, using previously described techniques. 2 2s The
method consists in calculating the entropy at a very high
temperature, T, from the virial expansion, and then
extending this result to lower temperatures by using the
thermodynamic identity

UMD( T)
S(T) S(T,„)=—

UMD(~

Tmax

+I dT'
UMD(7" )

max T'2 (18)

at Sxed V and N. UMD is determined from molecular-
dynamics simulations. Further details of this calculation
will be published separately. The resulting values of
go( V) are listed in Table III. The final forms of the func-
tions in Eqs. (11)—(17), which were determined by fitting
the MD energy and pressure, are given in the Appendix.

V. COMPLETE THERMODYNAMIC FUNCl'IONS

The complete Hamiltonian H is the sum of terms dis-
cussed in the preceding sections, namely, the static lattice
energy 40 from band-structure calculations, the ion-
motional energy HMD, and the energy HE of excitation of
valence electrons from their ground state:

H —C 0+HMD+HE (19)

this contribution is of relative order (Oz/T), and so is

negligible at high temperature.
To analyze the MD results for the liquid state, we write

the liquid free energy per atom FMD in the form

FMD =go( V) —3kT ln[T/bio( V)]+ A '( V)T3 . (16)

The corresponding internal energy and pressure are again
accurately fitted to the MD data, yielding sinooth curves
of the volume-dependent functions yo, go, and A ', where
one undetermined entropy constant remains in the go
curve. Again, the "anharmonic" terms, coming from
A 'T in the free energy, turn out to be at most a few per-
cent of the "quasiharmonic" terms, coming from
1n(T/g 0) in the free energy. The liquid entropy per
atom is

111.970ao corresponds to Al at room temperature and
zero pressure.

The melting temperature was calculated by equating
Gibbs free energies and pressures of crystal and liquid, at
a common temperature, and the results at zero pressure
are listed in Table IV. Our calculated melting tempera-
ture of T =955 K agrees well with the measured value
of 933.45 K. Numerical errors in T, from all sources
excepting possible errors in our potentials 40 and P(r),
are estimated at less than +2%, or +19 K. Calculated
values of hS and dT /dP are lower than experiment by
19% and by 25-30%, respectively. We attribute these
discrepancies to small inaccuracies in 40 and P(r), as dis-

cussed in the following section.
It should be noted that in the present formulation of

the total Hamiltonian, where eo(V) is separated from

HMD, the actual melting temperature is diFerent from the
temperature at which the constant-volume molecular-
dynamics system melts. This is because actual melting at
constant pressure is accompanied by a volume change
and the corresponding change in 40( V) is important in
the free-energy balance between crystal and liquid. The
theoretical contributions to b, U, the change in internal
energy upon melting, are listed in Table IV, and it is seen
that 640 is an important part of the total b U.

It has long been known that explicit anharmonicity in

crystalline aluminum is extremely small. An exten-
sive analysis of currently available experimental data
yields the following ratios of anharmonic to quasihar-
monic contributions, for temperatures to melting:
=0.2% for the entropy; =0.5%%uo for the thermal energy;
~2% for the pressure. Within errors of the analysis,
these values are zero. At comparable densities, our MD
calculations give 51% for all these ratios. Hence, in
agreement with experiment, our theory predicts extreme-
ly small anharmonicity in fcc Al at densities near normal
and temperatures to melting.

Our classical calculation of the entropy is compared in
Fig. 5 with experimental data for crystal and liquid from
300 to 1800 K. The theoretical results are evaluated at
the experimental zero-pressure volume, and are lower
than experiment by about 1% in the crystal and 2% in

TABLE IV. Comparison of theoretical and experimental
melting properties of aluminum.

The corresponding Helmholtz free energy F is

F=4 0+FMD +FE (20)

FE= 6~ k n(e~),—— (21)

For Al near normal densities, FE gives a very sma11 con-
tribution and, as demonstrated by Fig. 1, it is adequately
approximated by the low-temperature limit of free elec-
tron theory:

Quantity

T (K)
hS /k
dT /dI' (K/GPa)

ae, (mRy)
hUMD (mRy)
hUE (mRy)
hU (mRy)

Theory

955
1.12

45
45

1.82
5.01
0.01
6.84

Experiment

933.45
1.38'

61
65'

8.16'

where n(EF) is the density of electronic states at the Fer-
mi energy. From the total free energy, thermodynamic
functions were calculated in the region of the volumes
listed in Tables II and III; note that the largest volume of

'M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip,
R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data
Suppl. 14, 1 (1985).
Calculated from the Clapeyron equation with h. V/V=0. 066.

'J. F. Cannon, J.Phys. Chem. Ref. Data 3, 781 (1974).
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FIG. 5. Measured Al entropy values (lines) compared with
classical calculation (dots).

the liquid. If instead we evaluate the entropy at the cal-
culated zero-pressure volume, the theoretical results are
lower than experiment by 5% in the crystal and 7% in
the liquid. As temperature decreases below 400 K, the
theoretical entropy begins to depart from the experimen-
tal curve because of quantum effects. We omit considera-
tion of the quantum regime here, since it is well estab-
lished that quasiharmonic lattice dynamics gives excel-
lent results in the quantum regime. ' '

VI. DISCUSSION

In order to evaluate our theoretical procedure, let us
first discuss the application presented here to metallic
aluminum. Our input data consist of band-structure cal-
culations of the static lattice potential 4p and of the ener-

gies of several short-wavelength phonons. A two-body
potential P is introduced and is calibrated to the short-
wavelength phonons, and to a combination of long-
wavelength phonons, namely, the bulk modulus. Hence

P should give an accurate description of all small distor-
tions from the fcc lattice for real aluminum; that it does
so is evidenced by the accurate Al phonon spectrum ob-
tained from P. Furthermore, in principle, P should ap-
proximately account for large distortions from the fcc lat-
tice, including the far-from-crystalline structures found in

the liquid phase. This principle is clearly satisfied, as evi-
denced by the agreement between theory and experiment
for Al at temperatures to twice melting (see Fig. 5). Nev-
ertheless, the potential P might very well be less accurate
for larger distortions from the fcc lattice than for smaller
ones. We believe that this is the case, and that this small
error, together with a small error in 4p, is responsible for
the errors of around 20—30% in our calculated values of
the very sensitive melting quantities ES and dT /dP
(Table IV).

Considering our procedure in general, as it might be
applied to any metal, both the band-structure calcula-
tions and the molecular-dynamic calculations are expect-
ed to be accurate. The difficult step is to obtain an accu-
rate interatomic potential to use in the HMD. While we
may do our best to introduce physically realistic potential
functions, including many-body terms, calibrating it to
band-structure calcu1ations is a powerfu1 procedure for
overcoming defects in the form of the potential function.
In principle, if the form of the interatomic potential is

correct, ca1ibration to small distortions from a perfect
crystal is sufficient. In practice, to be able to treat far-
from-crystalline configurations, calibration to a band-
structure calculation of an amorphous cluster might
prove helpful.

The motivation for this work comes from the need to
calculate equations of state and thermodynamic proper-
ties for metals under extreme conditions where experi-
mental information is not available. We have therefore
developed an ab initio procedure, requiring no experi-
mental data whatsoever, and applicable at any density,
and at temperatures up to several times melting. Our
theoretical results for Al achieved good accuracy and this
is possible for other metals as well. Our procedure there-
fore shows promise to provide reliable information on
thermodynamic properties of metals under extreme con-
ditions.

APPENDIX: THERMODYNAMIC FUNCTIONS

Here we give the particular functions used to represent
the Helmholtz free energy and the corresponding, ther-
modynamically consistent functions for pressure and en-
tropy. The latter were used. to construct the Gibbs ener-

gy of the fcc crystal and liquid phases of aluminum and
also the internal energy.

Corresponding to Eq. (20) for the Helmholtz energy, its
derivatives are given by

PV=— F
=(Po+PMD+PE) V,8lnV

(Al)

F
(~MD+~E)T ~

8lnT (A2)

The Gibbs energy is then obtained from G =F +PV and
the internal energy from U =F+ TS.

The coefficients of the Birch-Murnaghan fit to the
band-structure energy contributions to Eq. (20) are [see
Eq. (1)]

Vb =106.302ap cp = —287.7832 mRy,

c2 =761.2029 GPa, c3 =1319.036 GPa,

c4 = —13 661.06 GPa, c5
=50 315.53 GPa .

(A3)

For aluminum, the contribution of valence electron exci-
tations to Eq. (20) is

FE = —0.025 353 8X10 V kT (A4)

A'=4. 14X10 ' —8.7X10 ' V+4X10 ' V (A5)

= —8.7X 1{} V+8X $0 V
d 1nV

pp =0.0803 +0.0142V+ 2 X 10 V

1n 0=7.7217—0.0803 1nV —0.0142V—1X10 V

{A6)

The volume-dependent terms in the thermodynamic
functions for the crystal, Eqs. (11)—(15), which were ob-
tained by fitting Eqs. (13) and (15) to the MD results, are
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The pressure and internal energy in the liquid, consistent
with Eq. (16), are given by

A =1.48X10 "+2.135X10 ' V

+4.9X10 ' V +2X10 ' V (A13)

VPMD = —
&1

+ 3kT&o
&

T
~X0 aA'

8lnV BlnV

UMD JO+ 3k

(A9}

(A10)

1 A' =2. 135X10 ' +9.8X10 ' V+6X10 ' V
V BlnV

(A14)
respectively. Fitting these expressions to the MD results
provides the volume-dependent terms in Eqs. (16), (17),
(A9), and (A10):

go=8. 886—0.2914V+2.57X10 V +5.9X10 sV

(A 1 1)

o 1 5775+5 79X10 3V+6.5X10 V

lng0=41. 713 74—7.83146 ln V

+0.06093V—3.25 X 10 V

(A15)

(A16)

1 ~XG
P 2914+5 14X 1P

—3V+ 1 77 X 1P
—4V2

V BlnV

(A12)

The units of the uantities in Eqs. (A4) —(A16) are as
follows: A' and A are in mRy/K; Boltzmann's con-
stant k is in mRy/K; T, 8, and bio are in K; Vand Vare
in a o /atom, with V= V—102.644; yo is in mRy.
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