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We report an improved version of a recently developed method that allows the calculation of effective

elastic constants of polycrystalline materials. The method is predicated on the idea that the system can
be described by a homogeneous substitute material which obeys Hooke's law with elastic constants that
define the macroscopic elastic properties of the original system. In order to determine these constants,
one cuts out of a parallelepiped section and replaces it with a cluster of 100-500 grains of the original
material. For simplicity we have provisionally assumed these grains to have a shape of rectangular
columns. The cluster is connected to the embedding system by invoking the usual boundary conditions.
The entire system is subject then to a set of linear independent homogeneous deformations whose num-

ber has to be chosen large enough to determine the sought-for independent elastic constants of the sub-

stitute system. The method yields apart from these constants also the entire displacement field within

the cluster, and hence provides interesting additional information.

I. M rRODUCTION

In many situations where elastic properties of polycrys-
talline materials play a role they are assessed by the
response to stresses that probe a macroscopic section of
the material containing a large number of grains. To reli-
ably calculate the effective elastic constants which give an
appropriate description of those materials appear to be
very desirable from a practical point of view. In the case
of isotropic polycrystalline materials whose elastic prop-
erties are described by two elastic constants one can ar-
gue that the latter result from averaging the individual
compliances of the grains over all grain orientations as it
occurs when the system is exposed to a constant stress
throughout the sample. The moduli thus defined have
been introduced by Reuss. ' Voigt had earlier advanced
an alternative definition that consisted in forming the
average of the individual grain stiffnesses over the orien-
tation space which amounts to having a constant strain
everywhere in the sample. As has been shown by Hill, s

the values obtained by Reuss and Voigt constitute, re-
spectively, the lower and upper bounds of the pertinent
elective moduli of the material. To extend the original
idea of Reuss and Voigt to textured materials, one can
form a weighted average over the orientation space by in-
corporating an experimentally determined orientation
distribution function (ODF}.

The definitions of the Reuss-Voigt values imply that
the effect of the grain interaction is negligible. To go
beyond that level of approximation Hershey forwarded a
method that allowed one to deal with this interaction in a
simplified form. The model underlying his method con-
sists of embedding a representative spherical grain in an
elastically isotropic matrix that simulates the macroscop-
ic properties of the polycrystalline material. This ap-
proach was further pursued by Eshelby and developed
into an exact method by Kroner for perfectly uncorrelat-

ed polycrystals. The original Hershey-Kroner idea of ex-
actly treating a spherical grain embedded in a macro-
scopic substitute system has been worked out in detail
and been applied to a large variety of polycrystals by
Kneer. ' His results stand out by an impressive accura-
cy in describing the experimental moduli. He could in
addition demonstrate that one can successfully treat tex-
tured materials within this framework as well.

The initial limitation to completely uncorrelated poly-
crystals was later removed by Kroner and Green's-
function approach to the problem in question. The new
method is based on transforming the basic differential
equation for the elastic displacement into an integral
equation that bears a strong resemblance to the
l.ippmann-Schwinger equation familiar from the scatter-
ing problem in quantum mechanics. One can benefit to
some extent from this correspondence which has been ex-
ploited to the fullest by Kroner and forcefully been ad-
vanced by Zeller and Dederichs. ' Primarily, the dis-
placement field appears now expressed as an integral
which contains the Green's function of a homogeneous
medium and, as a central information on the grain struc-
ture and their elastic properties the real-space-dependent
deviation of the elastic constants from some suitably
chosen constant values which the Green's function refers
to. In recasting this interconnection and introducing n-

point correlation functions for the distribution of the
(now space-dependent) elastic constants Kroner arrives at
an exact relation between the sought-for effective moduli
and those correlation functions. Within this framework
it is possible to define lower and upper bounds for these
moduli with reference to certain classes af correlation.
The bounds derived by Hashin and Shtrikman"' prove
to fall into this classification. As they are primarily ob-
tained by these authors from a variational principle for
the elastic deformation energy of the polycrystalline ma-
terial, the bounds lie closer together than those by Reuss
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and Voigt. The "Lippmann-Schwinger" version of a pos-
sible access to the problem in question is mathematically
rather involved, and its feasibility depends on the conver-
gence of Born-type series in terms of which the solution
of the Lippmann-Schwinger equation can be expressed.
Porous materials pose a serious problem in that context.
But there is a number of other practical obstacles that
have so far impeded a development of the method into a
viable tool.

The philosophy of tackling a mathematical problem in
various disciplines of theoretical physics has in the past
decade been strongly in6uenced by the vastly improved
capacity of modern electronic computers. This is vividly
reQected in the spread of Monte Carlo methods that have
been used, for example, to directly solve the many-
particle Schrodinger equation, or the modern approach
to molecular dynamics where one simulates the proper-
ties of thermodynamical systems by directly integrating
Newton's equations. The theoretical concept of the
present paper is much in the line of this development in
that we are aiming at a straightforward integration of the
fundamental differential equation for the displacement
field of a realistic polycrystal. An outline of our ap-
proach has already been given in an earlier paper. ' The
work of Kurnar' is similar in its point of view but pur-
sues a mathematically quite different line of thought by
employing the method of finite elements.

Our approach consists in solving the fundamental
equation for the elastic displacernent in a suSciently
large cluster of grains subject to a homogeneous deforma-
tion everywhere at the surface of the cluster. One is then
in the position to determine the strains and stresses
everywhere in the cluster and to form the volume aver-
ages of them. The fourth-rank tensor interconnecting
these averages constitutes the sought-for efFective
stiffnesses of the macroscopic sample. In practice, we
reduce the solution of the pertinent difFerential equation
with the inclusion of the familiar boundary conditions at
the grain surfaces partly to an algebraic problem. We ex-
pand the displacement inside the grains in terms of basis
functions which satisfy the difFerential equation individu-
ally. Since these —in principle, infinite —expansions
have to be truncated, a finite error in the boundary condi-
tions occurs which can be used to determine the expan-
sion coefficients by requiring that the mean-square error
attains a minimum. The latter condition leads to a set of
linear inhornogeneous equations.

The plan of the paper is as follows. In Sec. II, we give
a detailed description of our approach. We apply our
scheme to a large variety of macroscopically isotropic
materials ranging from polycrystalline cubic metals to
graphite and superconducting ceramics. Where reliable
experimental values are available for a comparison, our
result show very satisfactory agreement. A particular
virtue of our method can be seen in its flexibility to han-
dle near spherical grains as well as plate and needle-
shaped crystallites. The latter occur in strongly textured
materials. We give an example of the functioning of our
method for a copper Sber texture displaying the familiar
ideal orientations for fcc metals. To demonstrate the ca-
pability of our method to provide additional information,

e.g., on the details of the displacement field, we show
some plots on the deformation in heterogeneous systems.
The material of these results is compiled in Sec. III.

II. THKQRY

V o(r)=0

and by Hooke's law

(2.1)

Xcijklekl(r)
k, l

(2.2)

provided that the strains described by the tensor e are
small compared to unity. The stress tensor is denoted by
e, and the quantities c;k& stand for the stiffnesses. On
substituting Eq. (2.2) into Eq. (2.1) one obtains the funda-
mental equation for the components uk of the elastic dis-

placement u(r}:

8 QI

pc;Jkl =0 for i =1,2, 3 .
BxjBx(

(2.3)

To gain access to the most general situation we first
consider the case of isotropic crystal symmetry. Equa-
tion (2.3) then takes the form

—c»V(V u)+c~VX(VXu)=0, (2.4)

where we have used Voigt's notation for the elastic con-
stants. We now partition u into a curl-free component
and a remainder with zero divergence

u= —V/+VX A . (2.5)

To make this decomposition unique we gauge A by set-
ting

V' A=O . (2.6)

Inserting Eq. (2.5) into Eq. (2.4) and employing Eq. (2.6)
one obtains

—V/+VX A=O, (2.7)

where P and A may be interpreted as inhomogeneities of
Poisson-type equations for P and A:

c„AP=—P,
c446A= —A .

(2.8)

As becomes evident from forming, respectively, the
divergence and the curl of Eq. (2.7}, P and A are solu-
tions to the Laplace equation. We may hence expand the
scalar elastic potential P(r)

Since we are only interested in the calculation of
effective elastic moduli we may confine ourselves to pure-

ly static deformations. In addition we neglect any kind of
external forces acting on the unit volume. The funda-
mental equations governing the behavior of elastic media
in a state of static equilibrium are then given by
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max I

y(r)=y y c,'"r'Y, (a,q)
1=0m = —I

fixed k, I, and m is (I +2)(l +1)/2. Since

(l +2)(l + 1)/2 1—(l —1)/2=21+ 1,
max I

+ g g dl "r'+ Y, (8,p)
1=0m = —I

max I
c(2)r (I+ i) Y (y )

1=0m =—I

max I

+ g g dl' 'r " "Yl (8,q)) .
1=0m =—I

(2.9)

Here we have introduced spherical coordinates r, B,IJ)

with respect to an origin that should be preferably chosen
near the center of the grain which the expansion refers to.
For the space outside the grains —if this region is includ-
ed in the expansion —the origin has to be chosen close to
the center of gravity of the grains. The functions
Yl (8,y) in the above expansion denote spherical har-
monics. Obviously each term under the first and third
sums satisfies the Laplace equation. If one expands P(r)
in analogy to these sums and forms the Poisson integral,
one obtains the second and fourth sums in Eq. (2.9). The
vector potential A(r) may be expanded similarly, the
only diff'erence being that one has to observe Eq. (2.6}.
One can easily see that r'Yl (8,p) may be reexpressed
as a linear combination of products x 'y z, where
i +j+k =1 and x,y, z denote Cartesian coordinates. If
one exploits this property and inserts P(r) and A(r) into
Eq. (2.5), the result may be cast as

we can construct 21 +1 di6'erent sets of these coefficients.
Each set can be labeled by the index I which runs, e.g.,
from —l to +l. Substituting these coefficients into Eq.
(2.11) we obtain for each grain altogether 3(l,„+1)
basis functions u(l '(r) whose simple algebraic form allevi-
ates considerably the calculation of expressions that in-
volve these functions.

To render the problem physically defined, we assume
that the cluster be subject to a homogeneous deformation
everywhere at its surface. This amounts to assuming a
homogeneous displacement U' '(r) at the surface.

At the grain boundaries, the displacement and the nor-
mal stress t„must be continuous, that is

U(a')
i

—U(a)
i

t

and (2.13)

t(a')
i

t(a)
in Aa' a I Aa' a

In practice, expansion (2.10) has to be truncated, of
course, at some cutoff value of I which we have already
tacitly introduced as /,„.As a consequence of this, the
respective expansions for U and t„cannot be expected
any more to satisfy exactly the boundary conditions
(2.13), at least not in general. For this reason, we relax
these conditions by the requirement that the associated
mean-square error

U' '(r)=pa, ' 'u', '(r)
l, m

(2.10}
E2 =y f IiU( '(r) —U' )(r)i2

Aa', a a, a

I I —i
u' '(r) = g g b(a) ~ iy Jzl i j-—

k=0 j=0
(2.11)

for a=1,2, . . . , N, and

where a=O refers to basis functions that decrease mono-
tonically. The embedded grains are numbered
a=1,2, . . . , N. The new expansion coefficients al ' are
linear combinations of the previously introduced
coefficients, and the new basis functions are defined:

+}(,it'„'(r)—t' '(r)i Id r (2.14)

attain a minimum. The positive quantity A, denotes a
weight which is adjusted such that the two portions of
the integrand contribute with approximately the same
magnitude to the mismatch. On inserting U' '(r) and Eq.
(2.10) into the above expression for E we obtain terms
that are, respectively, linear and quadratic in the expan-
sion coefficients al' ', and there is an additional constant
term. Minimization of E leads to a set of linear inhomo-
geneous equations which we cast as

1+21+2 —i
(0)( )

—2I —3~ ~ b(0) i j I+2—t —j
ulm r —I' ~ ~ Imijx y z

i =0 j=0
(2.12) Ma=I. (2.15)

The above considerations concerning Eq. (2.10) may be
generalized to find basis functions in terms of which the
displacement inside the grains may be expanded in the
more general case of elastic anisotropy. This can be ac-
complished by inserting Eq. (2.11) into Eq. (2.3). One ob-
tains a sum of products x'y z with certain prefactors
that are c;Jkl -dependent linear combinations of the
coefficients bl,-'.k. In equating these linear combinations
to zero one arrives at a set of I (1+1)/2 equations which
can be solved for bl,.'-k. The number of the latter for

e,-.=—f ej(r)d V,
V

(2.16)

o;.=—f o,.j(r)dV .1
(2.17)

The inhomogeneity results from the given displacement
U' '(r) at the surface. If one solves Eq. (2.15) for the
coefficients a, the displacement field U' '(r) and hence
e(r} is known within each grain. We can then form the
averages of E(r) and cr(r) over the volume of the cluster:
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The effective elastic moduli are defined as interconnecting
0 and e through Eq. (2.10):

eff
+&j ~~ij kl~kl

k, 1

(2.18)

The fourth-rank tensor of these elastic constants consists
of 21 independent components which can be determined
with the aid of Eq. (2.18) if one calculates e and o for six
linearly independent homogeneous deformations at the
cluster surface.

Because of practical limitations one is forced to keep
the size of the cluster considerably smaller than the size
of a typical macroscopic sample, and it is actually this
system whose elastic properties are the subject of the cal-
culation. If the sample would have the shape of a circu-
lar cylinder with planar top and bottom faces and if one
would subject the entire surface to a homogeneous defor-
mation, the resulting surface normal stress would be a
function that varies steeply as one goes from grain to
grain and its amplitude would be sizably larger than
along some similarly shaped virtual face farther into the
material. Hence, there is a near-surface region where the
stresses behave differently from their typical spatial varia-
tion in the bulk. However, in a macroscopic sample this
region is so small compared to the remaining volume that
its presence does not affect the average elastic stresses.
For the small samples (clusters) which our calculation
refers to, this is no longer the case. In order to minimize
this surface effect we use the trick of embedding the clus-
ter in a homogeneous medium whose elastic properties
agree approximately with the average properties of the
cluster. As before, we subject the surface (now actually
the embedding-medium —cluster-surface) to a homogene-
ous deformation, but because the embedding material
simulates average elastic behavior, the surface effect prac-
tically disappears.

III. RESULTS AND DISCUSSION

A delicate practical problem of our approach consists
in the proper choice of the cutoff value 1,

„

in expansion
(2.10) for the displacement. If one were forced to include
a very large number of expansion terms (e.g. , & 50 per
grain) to ensure a judicious accuracy for the envisaged
effective moduli, one would quickly run into computa-
tional difficulties. For this reason it is indispensable to
test the scheme with simple systems which have been in-
vestigated by other authors using different methods. A
spherical grain embedded in a homogeneous medium
constitutes a well-studied example of this kind. In
this case one assumes that the system is subject to an
asymptotically homogeneous strain so that the calcula-
tion of the displacement field in the embedding medium is
part of the problem. This means that one needs an ex-
pansion for this region as well with different (decreasing)
basis functions as defined by Eq. (2.12). The strain inside
the spherical grain was shown by Eshelby to be constant.
Outside the sphere the strain field proves to be
quadrupole-type. Hence, for the displacement one has in
this case a natural expansion cutoff at 1,„=1and
1,„=3,respectively. Figure 1 shows the result of our

FIG. 1. Relative changes (coded in half-tone steps) of the
specific volume 5v(r)/vo in a system consisting of a spherical
grain in an isotropic embedding matrix subject to a uniaxial
strain. The cut is taken through the center of the sphere along
the plane z =0 containing the strain axis.

calculation in terms of the relative changes of the specific
volume

5U(r) =Tr[e(r) —~e]
Uo

for a uniaxial strain whose asymptotic portion is denoted
by ~e. We have used this model in a previous study' to
calculate the elastic moduli of isotropic crystalline ma-
terials. If one replaces the spherical grain by a cube, one
obtains a system that constitutes a considerably more
demanding test case in that the truncation of our expan-
sion (2.10) may now give rise to errors. We have used a
cutoff value l,„=5 for the expansion inside and outside
the cube. As one can see from Fig. 2 the characteristic
features of 5U(r)/Uo outside remain the same, whereas in-

side 5U(r)/vo is now far from being constant. Though
this particular system seems to be of no great relevance to
the treatment of realistic polycrystals, it provides some
insight into a welcome limitation of our method which is
reflected in the relatively smooth spatial dependence of
the stresses close to the corners of the cube where the
true variation is actually strongly peaked. However, the
percentage of the volume in which our expansion fails to
give a sufficiently accurate description of the stresses is so
small that the associated error will affect the volume
average of the stresses only minutely. On the other hand,
from a calculational point of view there is much reason
for retaining the principal shape of such a grain with rec-
tangular corners. The form of our basis functions,
defined by Eq. (2.11), suggests a natural preference for
grain shapes of this kind. Hence, if we construct ap-
parent1y unrealistic clusters out of grains with rectangu-
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FIG. 2. The function 5v(r)/vo for a cubical grain embedded
in an isotropic matrix. As in Fig. l (with identical geometry)
the system is subject to a uniaxial strain.

lar corners, we may, nevertheless, expect our calculation
to yield very reasonable results because our expansions
do not resolve the existence of the actually unrealistic
grain corners. An example of such a cluster that consists
of cubical grains is given in Fig. 3 where we show again
the variation of 5v(r)/vo. The external primary strain is

identical to the situation in Fig. 1, the only difference be-
ing that we have replaced the spherical grain with the
cubical cluster. The function 5U(r)/Uo does obviously
not provide a suitable description of the elastic deforma-
tion in such a structure if one wants to assess the quality
of the convergence of our expansions, as 5U(r)/vo must
be for physical reasons discontinuous at the grain boun-
daries. On the other hand, it is just this property which
brings out very clearly that the crystal axes of the grains
shown in Fig. 3 are all differently oriented, actually at
random in the present case. The latter becomes particu-
larly apparent from Fig. 4 where we have plotted the dis-
placement Seld EU(r)=U(r) —Uo(r) for the same situa-
tion Fig. 3 refers to. (Here Uo denotes the homogeneous
displacement Seld to which ~e is connected. ) We have in-

dicated the direction and absolute value of EU(r) by ar-
rows with varying lengths. Obviously, EU(r) is every-
where continuous and smooth within the accuracy of this
plotting technique. This means that the grain boundaries
have become invisible, and the randomness of the orien-
tations of the crystal axes is mirrored in the chaotic Sow
of EU(r).

We have first applied our method to macroscopically
isotropic materials by treating a cubical section out of the
respective polycrystal which we subdivide into 7 cubes
of single crystals whose crystallographic axes were ran-
domly distributed using a random generator. The results
are compiled in Tables I and II where we have also listed
the lower and upper bounds according to Reuss and
Voigt, respectively, and the values of the narrower
bounds due to Hashin and Shtrikman. In comparing the
scattering of data in the literature concerning elastic con-
stants of single crystals and their polycrystalline counter-
parts, one notices a striking difference in that the results

g gJJ/ NX &~~i& "&~ ~ (y

FIG. 3. The function 5v(r)/vo describing the elastic defor-
mation in a cubical cluster of cubical grains. The situation is
identical to what Fig. 1 refers to except that the sphere has been
replaced with a cubical cluster.

FIG. 4. The displacement EU(r) =U(r) —Uo(r) associated
with the elastically deformed cluster shown in Fig. 3. Length
and direction of the arrows refer to the absolute value and the
direction of EU(r), respectively.



10 H. KIRIL AND L. FRITSCHE 50

Cubic
Ag'
Al'
Au'
Cub

Fe'
K'
Mo'
Na'
Ni'
Pb'

102.3
77.3

170.7
137.6
166.7

3.35
263.7

6.75
184.3
43.9

102.3
77.3

170.7
137.6
166.7

3.35
263.7

6.75
184.3
43.9

102.3
77.3

170.7
137.6
166.7

3.35
263.7

6.75
184.3
43.9

102.3
77.3

170.7
137.6
166.7

3.35
263.7

6.75
184.3
43.9

102.3 96
77.3 70

170.7 164
137.6 144
166.7 167

3.35 4.1

263.7 301
6.75 7.4

184.3 205
43.9 34

Hexagonal
Be'
Cd'
Co'
Mg'
Tib

Znb

Zr
Graphite'

11.3 111.5 111.4 111.5
48.9 53.3 55.4 56.1

187.4 187.4 187.4 187.4
35.2 35.2 35.2 35.2

104.4 104.5 104.S 104.5
62.0 66.9 69.7 70.2
96.5 96.6 96.6 96.6
35.8 42.0 S8.7 204.2

111.7 114
59.0 46

187.4 184
35.2 49

104.6 111
73.0 69.4"
96.7 91

286.3

Tetragonal
Sn' 57.0
BaTi03 136.8
Bi~Sr2CaCu2o8' 69.9
La2Cu04' 112.8

YBa&Cu307' 113.7

57.0 57.0 57.0 57.0 56
138.0 138.6 138.6 139.1 106'
73.9 76.0 76.1 78.7 30.8'

112.8 112.8 112.8 112.8 122.0"
87'

114.8 115.4 115.3 115.9 120
68.5"

Trigonal
Bi
Quartz

32.5 33.5
37.4 37.6

33.9
37.6

34.0 34.7 34.1

37.7 37.9 39.2

'Single-crystal data from Ref. 16.
Single-crystal data from Ref. 17.

'Single-crystal data from Ref. 18.
Single-crystal data from Ref. 19.

'Single-crystal data from Refs. 20 and 21.
Single-crystal data from Ref. 22.

Single-crystal data from Ref. 23.
"From Ref. 17.
'From Ref. 24.
'From Ref. 25.
"From Ref. 26.
'From Ref. 27.

From Ref. 28.
"From Ref. 29.

TABLE I. Theoretical and experimental results for the bulk
modulus (B) of polycrystalline metals in GPa. If not stated

differently, the experimental data originate, in principle, from
Ref. 15 but had to be converted to the bulk modulus listed here.
The data concerning the trigonal materials bismuth metal and
quartz are also referred to by Kumar (Ref. 14).

Bulk modulus B
Theory

Reuss HS1 Cluster HS2 Voigt Expt.

for single crystals seem to be relatively uniform (i.e., rath-
er accurate) whereas there is a large scatter in the poly-
crystalline data. It is obviously very dificult to manufac-
ture ideally structured polycrystalline materials and to
ensure the same degree of purity as with single crystals.
We are hence led to conclude that a comparison of the
calculated elastic constants with experimental data can
hardly serve as a clue for the quantitative capabilities of
our method. As already mentioned, one has to keep the
number of grains in a cluster as small as possible for
reasons of computational feasibility. It is therefore in-
dispensable to find a criterion for the minimal number of
grains required to simulate the polycrystalline material
with sufilcient accuracy. The so-called anisotropy has
proven to be a very sensitive criterion of this kind. It is
defined by

Gmax

Gmin

~max
AE

~min

where AG is a generalization of the Zener anisotropy
which refers to cubic materials. For a truly isotropic
polycrystal AG and AE must be equal to one. It is obvi-
ous from this property that a departure from unity im-
mediately indicates deficiencies of the calculation. The
usefulness of this criterion is demonstrated in Fig. 5

where we marked by respective symbols the calculated
anisotropy AG of Cu, Zn, and Ti clusters as a function of
the number of grains. One clearly recognizes that the an-
isotropy drops off towards unity as the number of grains
increases. Evidently, the anisotropy has already leveled
o6' at a nearly constant value beyond -200 grains so that
one would not gain much improvement on pushing up
the calculation up to even 1000 grains. Only if one would
enlarge the number of grains by a factor of 10 one might
be able to achieve a result that is still better converged.
Since any practical calculation for Az and AE wi11 al-

ways yield a departure from unity, it is instructive to
study the dependence of this departure as a function of
the anisotropy of the pertinent single crystal. Of course,
one expects that cluster and single-crystal anisotropies in-
crease in a correlated way. To show that, we have per-
formed calculations on the same materials as in Tables I
and II. The results are listed in Table III. For the sake
of a better assessment of trends referred to above, we
have displayed the results in Figs. 6 and 7 as a depen-
dence of the polycrystal anisotropy vs single-crystal an-
isotropy. Graphite plays a rather exceptional role: its
anisotropy exceeds by far the range over which typical
values of the remaining materials of our list extend. For
this reason graphite is not included in Figs. 6 and 7. To
obtain a judicious anisotropy value for the cluster it
proved to be necessary to enlarge the number of grains in
this case up to 8 .

We consider it a decisive strength of our method that it
can handle strongly textured materials displaying an ex-
treme variety of grain shapes in terms of ratios c/a,
where c and a are measures of typical lengths and widths
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of the grain. Though the scheme requires in its present
form a columnar or disclike shape of the grains and rec-
tangular corners, this restriction does not constitute a
principal limitation and will be removed in future studies.
But even with this limitation still being present, we are
able to study experimentally well-known fiber textures of
copper wires which Figs. 8-10 refer to. Typical drawing
textures of fcc metals may approximately be analyzed in
terms of a superposition of two ideal orientations, viz.
[100]and [111].The abscissa in all figures is c/a, where c
is the length of the grains parallel to the axis of the wire
which is taken along the z direction, and a denotes the
width perpendicular to this direction. The cross section is
assumed to be quadratic. We have plotted the depen-

dence of the complete set of elastic moduli that refer to
axial symmetry and Young's modulus E which relates to
the direction of the wire. The three plots in each panel of
Fig. 8 are marked by diFerent symbols (squares, dia-
monds, and asterisks). They refer to the typical [100]and
[111]orientations and to the [110] orientation which is
more of academic interest. Obviously, there is no c/a
dependence of Young's modulus for the [100] and [111]
orientations. This is a consequence of the fact that in
these high-symmetry directions of a single crystal this
modulus attains its maximum and minimum values, re-
spectively. This applies more generally to the stifFness c33
and c» which have the z axis (i.e., the axis of the wire) as
one of the reference directions in common. The shear

TABLE II. Theoretical and experimental results for the shear modulus (6}of polycrystalline metals
in GPa. The experimental data are taken from Ref. 15. It should be noted that we have listed the arith-
metic means of the values given there.

Reuss HS1 HS2

Shear modulus 6
Theory

Cluster Voigt Expt.

Cubic
Ag
Al
Au
Cu
Fe
K
Mo
Na
Ni
Pb

25.6
25.9
23.9
40.1

73.8
0.531

122.7
1.29

74.5
6.73

28.9
26.1

27.1

46.1

80.4
0.730

124.4
1.74

82.0
8.13

29.5
26.1

28.2
47.2
80.4

1.008
124.7

2.10
82.0
8.97

30.6
26.1

28.8
49.5
83.2

1.020
124.8

2.34
85.3
9.19

33.4
26.2
31.2
54.7
89.2

1.242
125.8

2.83
92.0
10.36

30.1
26.9
26.5
48.3'
83.4

1.32
125

2.99
80.0
5.67

Hexagonal
Be
Cd
Co
Mg
T1
Zn
Zl
Graphite

150.3
21.6
75.3
17.2
42.8
36.4
36.1
9.21

151.0
23.0
76.6
17.3
43.7
39.8
36.4
14.9

150.8
23.5
76.3
17.3
43.7
41.6
36.4
27.7

151.2
24.2
77.1

17.3
44.1

42.6
36.5

148.9

151.8
25.8
78.3
17.4
44.8
45.6
36.8

219.4

141
25.0
78.9
17.5
44.2'
41.8'
25.3

Tetragonal
Sn
BaTi03
Bi2Sr3CaCu208
La&CuO&

YBa2Cu30&

15.6
52.0
20.8
61.3

54.5

17.7
55.9
22.2
63.3

59.0

18.9
58.0
23.0
64.0

61.7

19.0
59.4
23.4
64.1

62.2

20.1

64.4
25.4
66.1

66.7

20.5
44b

29 5'
62.9
63'
58.5'
57.4~

Trigonal
Bi
Quartz

'From Ref. 17.
From Ref. 24.

'From Ref. 25.
~From Ref. 26.

10.8
41.0

12.1
43.5

12.4
43.4

'From Ref. 27.
fFrom Ref. 28.
IFrom Ref. 29.

13.0
44.7

14.5
47.8

13.10
43.62
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30%Z
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2.0—

1.5 PTi
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10 100

Number of Grains
1000

1.15— +K—

FIG. 5. Dependence of the cluster anisotropy AG on the
number of grains used in the calculation. The symbols refer to
the metals Cu, Zn, Ti as indicated on the left-hand side of the
diagram.

I
lh
~ 1.10—

C3
C5

+Pb

~U&"9„„
+Fe +812Sr2CaCu208+Ni ~

+BaTiO~

modulus 6 attains its maximum in the [100] direction of
the single crystal. Thus, c44 should not display any c/a
dependence for the [100]orientation.

To get an impression of the changes that take place
when the two fibers occur simultaneously with a certain
ratio we have in Fig. 9 plotted the resulting moduli in

1.05—

+Co
Zr+ +Pi

MQB

La2Cup~+ + +Bi
YBa2Cu~07

+Zn
+Quartz

TABLE III. Comparison of the cluster anisotropy to the per-
tinent single-crystal anisotropy.

1.00
1

I I I I I I I

Aa Single Crystal
10

Single crystal
AG AE

Cluster
AE

FIG. 6. Anisotropy AG of clusters vs anisotropy of the asso-
ciated single crystal. Note the logarithmic scale for the abscissa
axis.

Cubic
Ag
Al
Au
Cu
Fe
K
Mo
Na
Ni
Pb

2.923
1.230
2.917
3.205
2.463
7.451
1.385
6.825
2.596
4.000

2.675
1.205
2.771
2.864
2.186
6.425
1.324
5.805
2.307
3.697

1.0873
1.0156
1.0844
1.0684
1.0732
1.1504
1.0248
1.1639
1.0781
1.1087

1.0871
1.0165
1.0884
1.0741
1.0692
1.1484
1.0251
1.1558
1.0745
1.1112

1.20

1.15—

I I I I I I

+Cd +Na
+K

+Bi2Sr2CaCu208

Hexagonal
Be
Cd
Co
Mg
Tl
Zn
Zr

graphite

1.216
2.349
1.428
1.180
1.483
2.898
1.294

110.00

1.203
2.768
1.504
1.184
1.433
3.125
1.370

72.07

1.0091
1.0433
1.0298
1.0136
1.0206
1.0357
1.0215
1.3282

1.0259
1.1578
1.0363
1.0141
1.0301
1.1135
1.0278
1.9235

I
N

1.10—

1.05—

Z n+ +pb
yBa,Cu,P +BaTip

+Bi

Aq+sn
Ag

+Ni+Cu
+Fe

Tetragonal
Sn
BaTi03
Bi2SrzCaCu208
La2Cu04
YBa2Cu307

3.552
3.805
3.190
2.386
2.760

2.863
2.504
2.533
1.725
2.437

1.0826
1.0661
1.0758
1.0491
1.0475

1.0900
1.1068
1.1433
1.0342
1.1051 1.00

+Quartz
Co +La Cup2

Be++ Zr
Mo

~+A l

I I I I I I I

10

Trigonal
Bi
Quartz

3.347
2.405

2.840
1.881

1.0484
1.0283

1.0977
1.0440

A~ Single Crystal

FIG. 7. Anisotropy AE of clusters vs anisotropy of the asso-
ciated single crystal.
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complete analogy to Fig. 8 with the percentage of the
[100] orientation as a parameter. All the data obtained
lie evidently within the limits deSned by the ideal orienta-
tions. In reality one is not dealing with ideal orientations
which brings up the question to what extent the above re-
sults are affected by a realistic angular spread of the crys-
tallographic axes of the individual grains. We have stud-

ied this effect by assuming a Gaussian ODF, which we
write down as a probability distribution f (cos8) in the
original coordinate system of the individual crystallite
which the notation [111],for example, refers to. The z
axis of this coordinate system makes an angle 80 with the
axis of the wire. Hence, the pertinent Gaussian has the
form
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FIG. g. Fiber textures in copper metal: elastic moduli for the ideal orientations [100], [110],and [111]as a function of the grain
shape deSned by the ratio c/a.
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b/2
(3.2)

where b denotes the width of the distribution and
g=cos8 guarantees that the size of the orientation ele-
ment in the orientation space is independent of L The

results are shown in Fig. 10. For the [100] Sber texture
we have assumed two spreads of the orientation, viz.
b =0.20 and 0.06. For this particular case we have
80=0 so that we may convert these widths in terms of
angular spreads of 31' and 14', respectively. Unfor-
tunately, this is not possible for the [111]Sber texture
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FIG. 10. c/a dependence of the elastic moduli as in Fig. 8 for fiber textures exhibiting a finite spread around the ideal orientation
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respectively.

since 80 is sizably di8erent from zero. But it is easy to
see that comparable spreads of the orientation corre-
sponds in this case formally to larger widths which we
have assumed to be b =1.41 and 0.28, respectively. In
assessing the results one should bear in mind that an an-
gular spread of 31 is relatively unrealistic. Typical wire
samples exhibit spreads that are definitely smaller. Fur-
ther work will be directed to the study of rolling textures.
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