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Electron-electron interactions and the Hall insulator
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Using the Kubo formula, we show explicitly that a noninteracting electron system cannot behave like a Hall

insulator, i.e., a dc resistivity matrix p, ~~ and finite p ~ in the zero-temperature limit, as has been observed

recently in experiment. For a strongly interacting electron system in a magnetic field, we illustrate, by con-

structing a specific form of correlations between mobile and localized electrons, that the Hall resistivity can

approximately equal its classical value. A Hall insulator is realized in this model when the density of mobile

electrons becomes vanishingly small. It is shown that in noninteracting electron systems, the zero-temperature

frequency-dependent conductance generally does not give the dc conductance.

A two-dimensional electron system (2DES) in a perpen-
dicular magnetic field displays a rich variety of behaviors at
low temperatures as a result of a delicate interplay between
localization and electron-electron interaction. The most inter-
esting phenomenon for this 2DES is the quantum Hall effect
(QHE), which has been a focus of tremendous amount of
research effort for more than a decade. Recently, much atten-
tion has been directed to the behavior of the Hall resistivity
for a 2DES in an insulating phase. Magnetotransport studies
of the 2DES have shown, ' among many other interesting
properties, that the Hall resistivity of a 2DES in a perpen-
dicular magnetic field equals approximately the disorder-free
value p,Y-B/nec for a wide range of applied magnetic field
strength, except near the QHE plateaus, where B is the ap-
plied magnetic field, n is the electron density of the 2DES, e
and c are the electron charge and speed of light, respectively.
The fact that a large portion of the electrons may become
localized by disorder scattering does not affect the value of
p y substantially. This is in sharp contrast to the behavior of
the diagonal resistivity, which is found to change from
p„„~0in the QHE phase to p„„—+ce in an insulating phase.
This implies, in particular, the existence of an insulating
phase with p,„~~ and finite pzy the so-called Hall-
insulating phase, which has generated much experimental'
and theoretical ' work recently. The goal of this paper is to
show that the Hall-insulating behavior is necessarily an in-
teraction effect. It cannot be explained with any independent-
particle model.

It is well known that there exists a different kind of insu-
lator characterized by p, ~(x and p„Y~~ in a magnetic
field, which will be called conventional insulators here for
convenience. Examples of the conventional insulators are
band insulators in semiconductors and the bulk Anderson
insulators. The difference between a conventional insulator
and a Hall insulator is determined by the different behaviors
in the Hall resistivities in a magnetic field: while p,Y

in a
conventional insulator is a measure of density of mobile car-
riers n, , i e , p„~ B./n. ,ec, in a -Hall insulator it is not, but
rather p Y-B/nec. A successfuI description of the Hall-
insulating behavior should explain the origin of the differ-
ence in p Y. So far, much of the theoretical work on the
Hall insulator has been based on calculating the zero-
temperature frequency-dependent conductivity tensor, where

a finite value of p,Y
is achieved by finding o., -ice and

0xy 0) in the low frequency ~~0 limit. We shal 1 see that
this is not a complete description. If one naively takes
o(co~0) to be the dc conductivity, one would conclude that

all insulators are Hall insulators. In fact, we will see that one
cannot, in general, take the T~O limit before taking ao —+0.

In an insulating phase, the lowest energy extended state is
above the Fermi level by a finite energy difference. Low
temperature electrical current is carried by electrons ther-

mally activated to the extended states. If the activated carri-
ers are effectively decoupled from the localized electrons in
the background, a transport experiment becomes a measure-
ment of the mobile carriers only. As we will show below, the
system is then a conventional insulator. Therefore, in order to
have a Hall resistivity p,Y

which is not a measure of the
mobile carrier density n„but a measure of the total electron
density n as p„Y-B/nec, there must exist a strong correla-
tion between the activated mobile electrons and the localized
electrons in the background. This simple argument directly
implies that a noninteracting electron system cannot become
a Hall insulator. We will exploit this idea and show that the
Hall-insulating behavior can be realized for electrical con-
duction by certain kinds of correlated excitations.

There is another unsettled question related to the Hall
insulator. It is about its ground state: is it essentially a pinned
Wigner crystal or a new type of insulator? The assumption of
a Wigner crystal is found to be qualitatively consistent with
some results from the transport study, radio-frequency
measurement, and photoluminescence experiment. How-
ever, a ground state of disorder-localized electrons rather
than a pinned Wigner crystal has been suggested by a re-
cently proposed globe phase diagram and the observation of
a similar Hall-insulating phase at the Landau level filling
factor v&2. Our work reported here does not settle the ques-
tion of which ground state is correct in a given situation, but
rather shows that the Hall resistivity does not necessarily
distinguish between these possibilities. We will see, instead,
that it is the properties of the excited states that determine the
Hall resistivity.

In the following, we will first discuss the noninteracting
2DES and show explicitly that it cannot display Hall-
insulating behavior. We will then discuss the interacting
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2DES with correlated excitations and explain how the Hall-

insulating behavior is realized.
We start with the Kubo formula for conductivity o.;,

l ne l
o;(T., (o) =— 8;.+—II; (T,o)).

o) m 'j co

For noninteracting electrons with an arbitrary disorder, the
correlation function II;,(T, co) can be evaluated using the
complete set of eigenfunctions of the Hamiltonian. It is
straightforward to obtain the result

Jnnt mn Jnnt mn

yz
= M [xnmymn ynmxmn]

m n mi m

=(nlxy y—xln) =0

o.„»(T)-e P for T~O.

Putting together Eq. (7) and Eq. (10), one finds

(10)

The summation X„ in Eq. (8) may then be restricted to
extended states only. If the lowest energy extended state is 5
above the Fermi energy, Eq. (8) gives

1, , f(e„) f(e—)
II;;(T,co) =—g J'„Q' „

nm

(2) e
—pb,

e
—2pd

Im[o;, (T,a))]=O(co)+O(co )+O(co )+ (3)

(2) Re[o;,(T, cu)] is an even function of cu,

Re[o.;;(T,co)]=Re[o;;(T,O)]+O(coz)+O(co4)+ . . (4)

In the following, we show that if the system is insulating,
it must be a conventional insulator. We will reach this con-
clusion by calculating the finite-temperature dc conductivity
and then taking the low temperature limit.

From Eq. (3) and Eq. (4), we can see that Im[o(T)) =0 for
so=0. We only need to consider the real parts, which are
easily obtained from Eq. (2). The diagonal conductance is

o„,(T)-g IJ"„
I

b(e„—e ).
Bf(e„)

nm n
(5)

For any localized state, ' we have

Jam =("I
Jlm) ("IHr rHIm) =r„~(e„e~). (6)

Inserting the above expression into Eq. (5), we see that
only extended states can contribute to o.„,because the 8'

function requires e„=e . Now for an insulator, suppose that
the lowest extended state has an energy 6 away from the
Fermi level, Eq. (5) gives

o„„(T)-e ~ for .T~O. (7)

The off-diagonal conductance has the form

(8)

Any localized state cannot contribute to o. Y. For ex-
ample, if (n I

is localized, then we are allowed to use Eq. (6),
and the contribution from the state (n I

is

where n and m label the eigenstates of the Hamiltonian
(H=X;h; and h„ln)= e„ln)), J„ is the matrix element of
current operator, and f(e) is the Fermi distribution function.
From the above expression, one can prove the following
properties of the conductivity matrix: (1) Im[o;, (T, ru)] is an
odd function of co,

Similarly, one has p„~~.
The above result shows that the noninteracting electron

insulator is a conventional insulator. We have not made any
approximation in our derivation, except the restriction that
we consider only noninteracting electrons with a gap be-
tween the Fermi level and the lowest extended state. We
therefore conclude that noninteracting electrons cannot be-
have like Hall insulators.

Several authors have described an ac form of the Hall
insulator, by calculating the zero-temperature ac conductivity
and then considering the low frequency limit; i.e., they took
the limit T~O first and the limit co~0 second. This method
will give a finite value for p,Y

when p„„~~.It is easy to see
that this does not describe the dc conductivity and could
mislead one to conclude that every insulator is a Hall insu-
lator.

For an insulator at zero temperature, Re[o.;J(T=O,
co= 0)]= 0. From Eq. (3) and Eq. (4), we have

cr„„(0,cu)+o.„(0,ru) =O(co )+higher powers in ru,

Re[o,»(T, cu)]=0(co )+higher powers in ~.

Then we have

Re[o,»] co
g„»= z z

—~ =const.
Oxx+O'xy „0 (12)

If one associates g„» with the dc Hall resistivity of the
system, then every insulator would be a Hall insulator. How-
ever, this is not consistent with experiment, suggesting that
interchanging the order of T—+0 and co~0 is in general not
valid.

We will now argue that if correlations, in the Laughlin-
Jastrow sense, "are important between conduction electrons
and the localized electrons, then the Hall-insulating behavior
may be obtained. We consider low temperature activated
conduction of a 2D electron gas in an insulating phase. Let
N=N, +Nr and n=N/A, n, =N, /A, nr =Nr/A, where A
is the system size and N, N„and NL are, respectively, the
number of electrons in the system, the number of electrons in
extended states, and the number of electrons in localized
states, with n, n, , nz the corresponding densities. N, is
activated, so N, ~ e as T~O. We consider only the mo-
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tion of conduction electrons and treat the remaining localized
electrons as a scattering source. Although the electrons be-
low EF are well localized, they are still dynamic and respon-
sive to the motion of the conduction electrons. This dynamic
correlation is a very complicated problem. We would like to
find an effective Hamiltonian to represent the coupling be-
tween the conduction electrons and the localized electrons,
which is much simpler and yet it still gives the same effect
on the motion of the conducting electrons. This may be
achieved using a Chem-Simons approach. '

The Hamiltonian for the conduction electrons is

Nc

H, =g V;——A'"'(r;) +—g V(r; —r )
EJ=1

Nc

+g U(r;)+H, j,

where A'"' is the vector potential for applied magnetic field
B'*', V(r) is the electron-electron interaction between a pair
of the conducting electrons, U(r) is the disorder scattering
potential. H,L is the interaction between the conduction elec-
trons and the remaining localized electrons, which is impor-
tant in strongly correlated systems and presumably is the
term responsible for Hall-insulator behavior. Our next step is
to determine a mean-field form of H, which characterizes
correctly the influence of the localized electrons on the mo-
tion of the conduction electrons. It is enlightening to recall
an earlier study' on correlated interstitials in a weakly dis-
ordered Wigner crystal, where one finds that energetically
favored excitations are described by the wave function

NL

W„„&(zo)=W „„(z;—zo) ' (14)

where z; =x;—iy; are the lattice electrons in complex nota-
tion, zo is the interstitial coordinate, and v is the Landau
level filling fraction with B'"'=neo/v The values .of m; may
be chosen to minimize the energy of the excitation, and we
argued in Ref. 13 that this may be accomplished if
(m;) =1/v, where ( ) denotes an average over lattice sites.
W„„„„describes an uncorrelated interstitial, which in a
Hartree-Fock approximation would simply be given by a
Gaussian orbital at some favorable interstitial site in the lat-
tice. The addition of the Jastrow factor introduces correla-
tions, and it may be shown that its introduction converts
the excitation into a delocalized state. Antisymmetrization
corrections between the interstitial and the lattice electrons
have been shown to be small. '

One can clearly see that the physics of such a wave func-
tion is more general than the Wigner crystal context in which
it was derived. In particular, one can choose W„„,„to be any
insulating state of an excited electron, and introducing the
Jastrow factor creates an excited electron in an extended
state, provided (m;) = 1/v.

The Jastrow factor in Eq. (14) may be thought of as at-
taching a flux tube of strength m;Po to the ith localized
electron. ' If we consider the long-wavelength response of
the conduction electron, then an appropriate mean-field

Hamiltonian will account for interaction with the localized
electron by an additional field' ' B' =ni Po/v, we then

have

Nc

HMF

1=1
V,.——A""(r,) + —g V(r; —r )

1J=1

Nc

+X U(r)

where A"" is the vector potential for the net magnetic field
V XA""=B""=B'"' B' —=n, Po/v dc t.ransport properties
of the conduction electrons described by H, "ofEq. (15) are

easily obtained from the Kubo formula in the memory-
function formalism

m
Pij i+ij+ z I ij ~

n, e

where i0„„=iQ»»=0 and i0„»= iQ»—„=B""/(n,ec)
=B'"'/(nec). Since the electrons are in extended states, the
disorder scattering can be treated perturbatively. To the low-
est order in the disorder potential, l,Y=l

Y
=0. Denoting

I'„,=I »»=1/r, we have

m
Pxx 2

C

Pxy=
Bext

The above result shows clearly that p,~ depends only on the
external magnetic field and the number of total electrons in
2D system, independent of how many of the electrons are
localized.

The idea can be recast in the Drude picture. Suppose there
is a current j„=n, ev with p„,= 1/(n, e p,). A Hall voltage is
generated to balance the Lorentz force p„» =E»/j „
=(vB/c)/(n, ev)=B/(n, ec). For uncorrelated conduction
electrons, B=B'"' and p„z depends on n, , not the total elec-
tron number n. One would get p,„~~ and P,Y~~ when

n, ~0. For strongly correlated systems, we have shown that
B=B""=(n,/n)B'"' so that p„»=B/(nec), regardless of the
number of electrons which are localized.

We have demonstrated this model of correlation between
the activated conduction electrons and the remaining local-
ized electrons does make the system a Hall insulator. The
key is that we characterize the interaction between the acti-
vated conduction electrons and remaining localized electrons
as flux-tube-like, and describe them using a Chem-Simons
statistical field. However, we would like to emphasize that
the introduction of a Jastrow factor in the trial wave function
in the early work' on correlated interstitials yields extremely
low energies with a microscopically realistic Hamiltonian.
We note also that previous work has shown that a nondiver-
gent p„Y may be obtained using the Chem-Simons approach.
However, in that case the correlation was introduced in the
ground state rather than in the excited states, and while
p„»(~, it was not necessarily equal to B'"'/(nec) By in-.
troducing the correlation in the excited states, it is possible to
have localized electrons for which the flux tube strength is
site dependent, leading to the classical Hall resistivity.
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To summarize, we have shown rigorously with the Kubo
formula that a noninteracting electron system cannot display
the Hall-insulating behavior and treatments based on zero-
temperature frequency-dependent conductivity are insuffi-
cient to explain this behavior. Instead, the Hall-insulating
behavior should be considered as an interaction effect. We
have constructed an explicit form for the strong correlations
between the temperature-activated mobile electrons and the

localized electrons in the background and demonstrated that
this kind of correlation does lead to the Hall-insulating be-
havior.
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