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Intrinsic inductive characteristics of resonant tunneling

15 AUGUST 1994-I

Nanzhi Zou and M. Willander
Department of Physics and Measurement Technology, University of Linkoping, S 58183 Linkoping, Sweden

K. A. Chao
Division of Physics, Department of Physics and Mathematics, Norwegian Institute of Technology,

The University of Trondheim, N 7034 Trondheim, Norway

(Received 26 May 1994)

We have studied the current 1(to, t) =ID(to)+I, (ta, t) through a double-barrier resonant tunneling system

(DBRTS) under a dc-ac bias. With a 2D emitter, the ac shift of the resonant level can be determined from

Io(to), and the intrinsic inductance of a DBRTS is unambiguously defined from I,(to, t). For presently avail-

able DBRT diodes under maximum operation frequency, the photon replica cannot be observed in the I-V
curve. With a 3D emitter, a quantum-equivalent-circuit model can be constructed to calculate the maximum

operation frequency of the diode, with good agreement with the measured value.

Quantum transport in nanostructures, especially in a
double-barrier resonant tunneling system (DBRTS), has at-

tracted the attention of current research. There has been
much work on the I-V characteristics of DBRTS under a dc
bias, focusing on the resonant tunneling (RT) through the

quasibound state in the well. Since this quasibound state has
a finite lifetime 1/I', there is a time delay of the current

following the switch-on of the bias, resulting in an intrinsic
inductive characteristics of each RT process Under .a dc
bias, such a phenomenon manifests itself in the transient

behavior. ' However, when the system is tuned to the RT
condition by a dc bias, the intrinsic inductive property of the

RT process will respond to an additional ac bias. Such a
feature, hardly understood at the present, is of fundamental

theoretical interest, as well as of crucial importance to the

performance of RT devices at high frequency above 100
GHz. When a quantum inductance L is included in the

equivalent circuit for a RT diode, calculated results agree
better with experimental data. '

There are some theoretical calculations of RT current un-

der dc-ac bias. ' Assuming a small ac signal, Liu' has
used the low-order perturbative method to calculate the tun-
nelin current. The linear response of a DBRTS to a dc-ac
bias' and to a pure ac bias' has also been studied recently.
The work on pure ac bias has ~enerated some controversial
discussions in the literature. ' '

The central theme of the problem is to clarify the intrinsic
inductive property of a DBRTS, the physical origin of which
is the finite lifetime 1/I' of the quasibound state. This finite
lifetime causes a delay of the tunneling current with respect
to the applied bias, and the amount of delay depends also on
the electron transmission probability which is a function of
the kinetic energy of the tunneling electron. Therefore, the
inductive characteristic is intrinsic to each individual tunnel-

ing process, specified by the electron kinetic energy, which
contributes a partial tunneling current. On the other hand, all
tunneling electrons contribute to the same measured global
current I(to, t) =Re I(to, t)+i lm I(to, t) To the best of o.ur
knowledge all existing works on the effect of ac bias on
resonant tunneling in a DBRTS have focused their attention
on the global current I(to, t). Consequently, the question

arises under what condition the global quantities Re I(to, t)
and Im I(to, t) can accurately describe the intrinsic inductive

properties of a RT process.
In this paper, with an independent-particle model, we will

not only answer this question, but also solve another impor-
tant problem described as follows. In the single-electron pic-
ture, the DBRTS is illustrated by part (a) of Fig. 1 with the

corresponding electronic Hamiltonian

H, = g [ep „(t)+ea]a „)av „k+g [e,(t)
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FIG. 1. (a) is the schematic illustration of a double-barrier
resonant-tunneling diode under a combined dc-ac bias Vo+ V(tot)
It is represented by the dash-lined box DBRTD in the equivalent
circuit (b).

where k~~ and p are, respectively, the parallel and perpen-
dicular component of momentum. v=l (or r) refers to the
emitter (or collector). The effect of ac bias V(cot) = V,sin&at

on the energy levels in H, depends on the geometry of the
DBRTS, which is assumed symmetric for convenience of
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(a, a (t3)a, t (t2)a, a (t2)a, k (t&)).

Under the practical condition V1&& Vo, the ~ide band
approximation' X~~V„„~ 8(e~ —e„,)=I'„for v=l and r is
valid. Within this approximation, Johansson' has calculated
this two-particle Green's function exactly. Hence we will ne-

glect all mathematical details and write down the final re-
sults. We will assume perfect interfaces and so the transmis-

sion probability T(t, e ~ r co)=T(t, e—~, co, kll) does not depend
on kll. Let us set fr =1 and define

~ nev, ~

J J ~„
F„, e,~ =~s i'"+'"+'

e —e, +smco~sir/2

~ aeV

where s= ~1, I'=I'I+I'„, and J (x) is the Bessel function
of order m. Then, following the derivation of Johansson, '
we readily obtain

T(t, e~, co) =W(e~, cu)+ g Re(29 „(e~,co)e'" '),
n=1

(2)

where

r,r„~J (aeVt/co)~'(, ) — (r, z"
(e~ —e, —mes)z+

(3)

is the time-independent mean transmission probability, and

2r,r,~(„)=r ' "X XI +inca
m = y(s, n)

m = 1—rg(s, n)

F„,m (eJ,M) (4)

with r/(s, n) =(1+s)(1—n)/2. Most experiments and device
applications are related to the power output, for which the
relevant time-dependent part in (2) is the fundamental n = 1.
In this paper we will also consider only this case.

The total current can be calculated from

e
I(co,t)=—

dkll de~ P(e~)U~(e~)T(t, e~, ~)
m

(fi(e~ kll)
—f.(ei kl~)), (5)

analysis. Because of the uncertainty on the width of the

depletion region, the time dependences of the relevant en-

ergy levels can only be set as e~ &(t) = e~ &,

e,(t) = e,—ueV(rut), and e „(t)=ez „e—V(~t) . The
value of n is crucial to the total power output of a RT diode,
but so far cannot be determined theoretically. In this paper
we will show that for certain realistic DBRTS, n can be
accurately calculated from the characteristic oscillation of
the mean tunneling current.

We need the transmission probability T(t, e~, co, kll) of an

electron from the emitter at initial time t=0 with perpen-
dicular energy e~ and parallel momentum kll, to the collec-
tor at a later time t&0. To do this we must know the two-

particle Green's function

where U~(e~) is the perpendicular velocity of the tunneling

electron, p(e~) the associated partial density of states, and

f„(e~,kII) the Fermi distribution function. We are interested
in the negative differential resistance (NDR) regime, in
which the contributing tunneling processes in (5) have

f„(e~,kII) =0. If we define g(e~) =f—dkII fI(e~, kI~), then (5)
reduces to

e
I(~t) deJ P(&J )UJ (eJ.)g(eJ )T(t~eJ ~~) (6)

m'J

In reality there are two types of sample structure. If electrons
tunnel directly from the 3D Fermi sea into the quantum well,
a case shown in part (a) in Fig. 1, it is called a three-
dimensional (3D) emitter. If electrons tunnel into the quan-

tum well from the discrete levels in the triangle-well next to
the emitter barrier, such structure is called a 2D emitter. The
essential features of a 2D emitter sample have been dis-
cussed in our recent work on phonon-assisted resonant
magnetotunneling. The main difference between the 3D
emitter and the 2D emitter lies in the partial density of states

p(e~). Let us consider first the case of a 2D emitter, and for
simplicity assume only one discrete level E in the triangle
well. Then p(e~) = 8(e~ E), and —(6) can be expressed as

I(ru, t) =In(E, co) +I,(E, cu, t), with the mean current

Io(E, cu) = 8(E),9 (E,cu) and the fundamental oscillating
current I&(E,ru, t) =28(E)Re[,W, (E,cu)e'"'), where 8(E)
= U~(E)g(E) is a material parameter which depends weakly
on the bias through the discrete level E. Since the resonant

tunneling current is sharply peaked in the energy range

~IE e,~=I' arou—nd E= e, , within the corresponding narrow
bias region of resonant tunneling, the material parameter can
be approximated as 8(E)=8(e,) (in the same spirit as the
wide band approximation). Consequently, for a DBRTS with

a 2D emitter, it is sufficient to study W(E, tu) and

Re[ W&(E, cu)e.
' '] in order to understand the measured tun-

neling current.
In realistic situation the frequency is higher than 100 GHz

and eVt is no more than a few meV. Hence, both cu/r and

eV&/r are of the order one. Consequently, with a given
me V&/cu in the NDR region, from (3) we can show that the
mean current W(E, co) oscillates with tu in such a way that in

the very near vicinity of certain frequencies cu = co;

(j= 1,2, . . .) which satisfy Ja(aeV, /~u, ) =0, the mean cur-
rent W(E, cu;) is a local minimum. To check the quantitative
accuracy of this theoretical prediction, we have
calculated the normalized mean current To( e, , co)
—=(I /rrr„)W(e, , ru) as a function of co/r, and in Fig. 2 we
show two typical results for ae V&/r =2 and 3. The positions
of co; are indicated by vertical bars for j=1,2,3, . . . . The
inset shows ae V,/I as a function of co,/r for j=1, 2, and 3.
Within the accuracy of plotting, they form three straight lines
with slopes, &—=ueV, /coj. satisfying Jo(W,')=0. Since W
are well-defined values, the material parameter
a=(P~cu, )/(eV, ) can be determined with rather high accu-
racy by measuring the mean tunneling current as a function
of frequency for various ac bias amplitude V1. The accuracy
can be improved by taking an average over several so-
obtained a's corresponding to different j's.

Since we choose V(cot) = Vrsincut, in terms of the adrnit-
tance Y(E,cu), the oscillating current can be expressed as
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FIG. 2. The normalized mean current To(e„ru) as a function of
co/I for neV&/I =2 and 3. The inset shows the linear relation of
eeV&/I and co,./I' for j=1, 2, and 3.

10

I,(E, ro, t) =(Re Y) Vrsimot+(Im Y) Vqcosrot . (7)

The ac conductance G(E, tu)=[Re Y '(E, to)] ' and the in-

trinsic inductance L(E, tu) —= (1/to)im Y (E,to) can then be
derived. It is convenient to introduce Ae=E e, and —define

a normalized admittance

y(b e, co)=y„(he, co)+ty;(b e, tu)

—=[(I' /4)/10I', I'„]Y(E,tu),

since then both the real part y„(he, co) and the imaginary

part y;(b e, ro) are odd functions of b e, and so we only need
to consider he~ 0. As shown in our earlier work, ' all matrix

elements in H, can be computed, and hence the current and

the admittance can be derived. With a realistic parameter
ueV, /I'=0. 4, we have calculated y(he, to) for to/I'=0. 3,
0.5, 0.6, 0.74, and 0.9. The results are shown in Fig. 3 as
functions of b, e/I'~0, part (a) for y „(b,e, co) and part (b) for

y;(b, e, co). We see that in all parameter ranges, y;(Ae, to) is
positive and well behaved. Consequently, for a 2D emitter
the DBRTS has a well-defined intrinsic quantum inductance
L(E,cu).

When an electron tunnels through a DBRTS, it can emit
or absorb photons with microwave energy cu (we set fr=1)
via all allowed processes. If co&&I', then this phenomenon is
similar to the phopoz-az&I'+ted resonant ~zpeIipg,
where cosh,„,„&I and so if the electron recoil is neglected
the phonon replica in the I-V curve of a pure dc biased RT is
well separated from the main tunneling peak. However, even
for the maximum operation frequency of a realistic DBRT
diode under a dc-ac bias, co can hardly be larger than I .
Hence, the interesting RT processes are those with

e, I /2(E ~ ro—(e, + I /2, which will not produce an
equivalent photon-replica separated from the main RT peak
in the I-V curve. For the case he~0 considered here, since
I(E—ro) —e,I((E+cu) —e, , the photon emission process
contributes more to the RT current than the photon absorp-
tion process. The well-approximated condition for the ab-
sence of such contribution by a single-photon emission
process is E ro~e, —I /2, or—ro —I'/2~E —e, =he~0.

00 2

FIG. 3. Real (y„) and imaginary (y;) part of the normalized

admittance as functions of 5e/I'—=(e~ —e,)/I' for various values of
co/I . The inset shows the broadening and the suppressed peak
value of the mean current To as co/I decreases from 0.9 to 0.1.

Therefore, if we fix at a frequency to/I'& —,
' and increase b, e,

around b e/I'=to/I —
—,', we expect a change of the conduc-

tance G(E, ro) [or y„(be, ro)] due to the opening 'of the

single-photon emission channel. Since all photon processes
are included in (2), this physical picture will be modified but
will still be valid qualitatively.

When a photon is emitted coherently, the phase shift m in
the electron wave function manifests in the phase

q(E, to) of the admittance, which is simply rp(E, to)
= tan '[y;(he, to)/y„(Ae, to)]. Since y;(he, ro) is always
positive, the phase shift of m results in the change of sign of
y„(he, t0). While the details of such behavior may be modi-
fied by other photon processes, the conclusion remains to be
correct as indicated by part (a) of Fig. 3. For a given value of
ru/I' & —,', at certain energy 5 e/I' ~ co/I' —

—,', y;(di, e, tu)
changes from positive to negative.

Due to the emission and absorption of photons, obviously
the mean current peak To(E, ro) will be broadened with the
peak value suppressed. Since all multiple photon processes
are included in (2), the amount of broadening and suppres-
sion is larger for smaller ro/I . This is clearly demonstrated

by the inset in Fig. 3 for to/I'=0. 1, 0.5, and 0.9, which are
calculated with the same parameter value ueVr/I'=0. 4.

All above analyses are for DBRTS with 2D emitter. For
devices with 3D emitter, the current (6) has contribution
from electrons with different energies e~ . Then, the result in
Fig. 2 is no longer valid. While the transmission probability
(2) and the current (6) can be computed numerically without
difficulty, we will not show them here because they have
already been calculated by Johansson' with the same ap-
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proach as we used here. It is interesting to observe that even
for the case of 3D emitter, the crossover of Re Y(to) vs

applied bias can still be detected, as indicated in Fig. 3 of
Ref. 13.

For a DBRTS with 3D emitter, using the relation similar
to (7), we find that Re Y(to) remains finite for all to, and so
the conductance G(co) —=(Re Y '(co)) ' and the inductance
L(co)—= (I/to)im Y '(co) can be defined. Knowing these
quantities, an equivalent circuit is constructed as shown by
part (b) of Fig. 1, in which the dash-lined box simulates the
DBRT diode and the external circuit is represented by C, 8,
and Zz . The upper limit of operating frequency co,„for the
DBRT diode can be calculated from this equivalent circuit.
Using the diode of Brown et al. we set u=-,' and obtain

to,„=1876Hz for the temperature 300 K, in good agree-
ment with the observed cu,„=200 GHz.

Since the conductance, the inductance, and I' all depend

on the barrier strength of a DBRTS, their product should
be an intrinsic property of individual tunneling process
specified by to/I' and Ae/I'. This conjecture can be easily
justified for the case of 2D emitter, because here

G(E, to)L(E, to) I = —(I /to) tang (E,to) which depends
strongly on to/I and he/I . However, for a DBRT diode
with a 3D emitter, the product G(co)L(co)I has been dis-
cussed in the literature and was claimed to be 1 by Brown
et al. , and to be 2 by Fu and Dudley. ' Our calculation
shows a non-negligible frequency dependence of this prod-
uct. Corresponding to the above calculated co,„=187GHz,
we found G(to,„)L(to,„)I'=1.7.

In conclusion, we should point out that with presently
available DBRT diodes, the cu,„ is still too low to allow a
photon replica in the I-V curve.

W. R. Frensley, Phys. Rev. B 36, 1570 (1987).
N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer,

IEEE Electron. Dev. Lett. 9, 457 (1988).
J. M. Gering, D. A. Crim, D. G. Morgan, P. D. Coleman, W.

Kopp, and H. Morkoc, J. Appl. Phys. 61, 271 (1987).
J. F. Young, B. M. Wood, H. C. Liu, M. Buchanan, D. Landheer,

A. J. Spring Thorpe, and P. Mandeville, Phys. Lett. 52A, 1398
(1988).

E. R. Brown, W. D. Goodhue, and T. C. L. G. Sollner, J. Appl.
Phys. 64, 1519 (1988).

E. R. Brown, T. C. L. G. Sollner, C. D. Parker, W. D. Goodhue,
and C. L. Chen, Appl. Phys. Lett. 55, 1777 (1989).

E. R. Brown, C. D. Parker, and T. C. L. G. Sollner, Appl. Phys.
Lett. 54, 934 (1989).

T. C. L. G. Sollner, E. R. Brown, J. R. Soderstrom, T. C. McGill,
C. D. Parker, and W. D. Goodhue, in Resonant Tunneling in
Semiconductors, edited by L. L. Chang et al. (Plenum Press,
New York, 1991).

9D. D. Coon and H. C. Liu, Appl. Phys. Lett. 49, 94 (1986).

'eW. R. Frensley, Appl. Phys. Lett. 51, 448 (1987).
"N. S. Wingreen, Appl. Phys. Lett. 56, 253 (1990).
' C. Jacoboni and P. J. Price, Solid State Commun. 75, 193 (1990).

H. C. Liu, Phys. Rev. B 43, 12 538 (1991).
i"L. Y. Chen and C. S. Ting, Phys. Rev. Lett. 64, 3159 (1990).
'sY. Fu and S. C. Dudley, Phys. Rev. Lett. 70, 65 (1993).
'6C. Jacoboni and P. J. Price, Phys. Rev. Lett. 71, 464 (1993).
' M. Buttiker, A. Pretre, and H. Thomas, Phys. Rev. Lett. 71, 465

(1993).
' N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev. B

40, 11 834 (1989).
'9P. Johansson, Phys. Rev. B 41, 9892 (1990).

Nanzhi Zou, K. A. Chao, and Yu. M. Galperin, Phys. Rev. Lett.
71, 1756 (1993).

'Nanzhi Zou, J. Rammer, and K.A. Chao, Phys. Rev. B 46, 15 912
(1992); Int. J. Mod. Phys. B 7, 3449 (1993).

22V. J. Goldman, D. C. Tsui, and J. E. Cuningham, Phys. Rev. Lett.

5$, 1256 (1987).
Nanzhi Zou and K. A. Chao, Phys. Rev. Lett. 69, 3224 (1992).


