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The application of gradient-corrected exchange-correlation functionals in total-energy calculations using a
plane-wave basis set is discussed. The usual form of the exchange-correlation potential includes gradients
whose calculation requires the use of a high-quality representation of the density which is computationally
expensive in both memory and time. These problems may be overcome by defining an exchange-correlation
potential for the discrete set of grid points consistent with the discretized form of the exchange-correlation
energy that is used in Car-Parrinello-type total-energy calculations. This potential can be calculated exactly on
the minimum fast-Fourier-transform grid and gives improved convergence and stability as well as computa-

tional efficiency.

First-principles total-energy calculations based on
density-functional theory' have become the major theoretical
tool in solid-state physics, surface science, and molecular
physics. Pseudopotential calculations using a plane-
wave basis set and a Car-Parrinello approach to energy
minimization’* have become increasingly important since
this allows use to be made of the fast Fourier transform
(FFT). Although the local-density approximation (LDA) to
exchange and correlation gives a good description of many
solid-state properties, for many applications it appears to be
essential to go beyond the LDA by including gradient cor-
rections. This is particularly important where accurate mo-
lecular bonding energies are required* as in, for example,
dissociative chemisorption.’ For bulk properties the need for
gradient corrections is less clear although some improve-
ments over LDA have been reported in calculations for
semiconductors® and transition metals.” Unfortunately, the
currently popular generalized gradient approximations
(GGA) to the exchange-correlation energy functional (such
as that of Perdew and Wang® or Becke and Perdew’) give
rise to potentials which are rapidly varying functions near to
ion cores as has been noted previously in the context of
pseudopotential generation.'” Because of this, and in order to
calculate the required gradients accurately, a large number of
plane waves are needed to represent these exchange-
correlation potentials accurately. In this paper it is pointed
out that the exchange-correlation energy is, in practice, in-
variably approximated. It is shown that it is possible to con-
struct an exchange-correlation potential which is consistent
with this approximate form of the exchange-correlation en-
ergy and which can be calculated exactly much more effi-
ciently than the conventional exchange-correlation potential.

First recall the use of FFT’s in Car-Parrinello-type total-
energy calculations.>> This makes use of the fact that the
kinetic energy and Hartree energy/potential are easily calcu-
lated in reciprocal space (the Hartree potential, for example,
becomes a simple product in reciprocal space) while the
electron-ion potential energy is easily calculated in real space
since the required integrals can be performed exactly as sums
over the points of the minimum FFT grid. Here we define the
minimum FFT grid as the smallest on which the charge den-
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sity can be unambiguously represented. If the plane-wave
expansion of the wave functions is restricted to reciprocal-
lattice vectors with magnitude G<G,,, then the Fourier
components of the charge density are restricted to
G <2G sy - Similarly, only those Fourier components of the
potential with G=<2G ,, are relevant and therefore a FFT
grid spanning these reciprocal-lattice vectors is required.
Only the exchange-correlation energy/potential cannot be
calculated exactly on this real space grid since it involves
nonlinear functions of the density which must have Fourier
components with G>2G .. This is not a problem in the
LDA since in this case the exchange-correlation potential is
very slowly varying and the high Fourier components are
entirely negligible. In the GGA, however, significant errors
may occur. In the following, we restrict ourselves to the non-
spin-polarized case, although the arguments apply equally
well if spin polarization is included.

In general the gradient-corrected exchange-correlation en-
ergy is written

Exc[n]=ffxc(n(r)’lvn(r)')dr- 1)

For simplicity we exclude any possible V2z dependence
which causes no particular difficulties. For a small change
on in the density the corresponding change in the exchange-
correlation energy is

5E—I5E‘°5 dJ' én(r)d 2
xc 6”(1') n(r) r= ch(r) n(r) r ( )
which defines the exchange-correlation potential as the func-
tional derivative of E,. with respect to the density n, i.e.,

6EXC[”] _ a.f)((: anC
on(r) dn(r) | IVa(r) "

Since the GGA potential is a rapidly varying function it re-
quires a large number of plane waves (i.e., a large FFT grid)
to be accurately represented. Moreover, since the energy de-
pends on |Vn|, one finds from Eq. (3) that in order to
obtain v, one requires not only |Vn| but also V?z and

(©)
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Vn-V|Vn|. 1t is this final term which causes the problems
since the Fourier expansion of | V| is not restricted to terms
with G<2G,.. Thus, calculation of the exchange-
correlation potential using FFT’s on the minimum FFT grid
is inevitably inaccurate. This can result in instabilities with
the total-energy oscillating above the correct minimum (see
later). The usual procedure for overcoming these problems is
to evaluate the gradients (in particular, the problem term
Vn-V|Vn|) using an improved representation of the
density."! In fact, one can see that the Fourier representation
of |Vn|? is restricted to terms with G<4G,, so that it is
possible to calculate V|V r|? exactly by FFT on a grid which
is linearly twice the size of the minimum grid (i.e., eight
times the number of grid points). One can then obtain the
exact values of V|Vr| at the grid points using

V|Vn|?

V[an=——————2lvn|

)

This enables us to calculate the exact value of the exchange-
correlation potential of Eq. (3) at any grid point, albeit at
significant expense in computer time and memory because of
the larger FFT grid. It should be remembered, however, that
its value on every grid point is still insufficient for an exact
representation of the rapidly varying exchange-correlation
potential.

We now show that a more efficient method of calculating
the exchange-correlation potential can be found if we exam-
ine more closely the way in which the exchange-correlation
energy is actually calculated in practice. In practice, the in-
tegral in Eq. (1) is replaced by a sum over the N real space
points R of the minimum FFT grid, i.e., we approximate the
exchange-correlation energy E . of Eq. (1) by a discretized
form

cell

2 Fren(R),|Va(R)]), (5)

Eyfn]=

where ) is the unit cell volume. We therefore choose to
define the exchange-correlation energy by this discrete sum
and ask for the potential consistent with this definition. The
appropriate (discretized) exchange-correlation potential v,
is defined, equivalently to Eq. (2), in terms of the change in
E . due to a small change in the density

S e (R) Sn(R)= ;;"E 5.(R)8n(R).  (6)
R

R

Note that E,_ can be considered as a function of the N values
of the charge density at the grid points (both explicitly and
implicitly through the Vn dependence of f,.) and it is an
ordinary derivative rather than a functional derivative which
appears in Eq. (6). This definition of the exchange-
correlation potential tends to the functional derivative of Eq.
(3) in the limit of an infinite number of grid points N. By
direct differentiation of Eq. (5) we obtain
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To interpret the final derivative here it must be remembered
that a change in the charge density at any grid point will
affect the charge-density gradient at all points since

A 1 A
Va(r)=2, iGn(G)e'S*==2 iGn(R)e'S "R (8)
G NG,R

where the G are the N reciprocal-lattice vectors of the mini-
mum (reciprocal space) FFT grid. Substituting this into Egq.
(7) and replacing G by —G we obtain

~ _ afxc 1 . afxc iG*(R—R,)
PR =GR N, ¢ AR ¢ ©)

G,R’

which, since f,. depends on Vr only through its magnitude,
becomes

 fe
Uxe(R)= n(R) Ng,‘

VrR)  9fs
[VaR)] 6]Va(R)

X G (R-R") (10)

Only discrete Fourier transforms appear in Eq. (10) so that
this v, can be calculated exactly using FFT’s on the mini-
mum FFT grid, i.e., no higher-quality representation of the
charge density is required. This is of obvious benefit with
regard to computational speed and memory requirements but
also, by discretizing the potential in a manner consistent with
the energy functional, it eliminates any problems of conver-
gence and stability. Replacing df,./dVn by its Fourier trans-
form in Eq. (3) it is not difficult to show that Eq. (10) is
equivalent to Eq. (3) in the large-N limit. On the minimum
FFT grid, however, the potentials of Egs. (3) and (10) will be
different. Given the charge density on the real space grid,
only eight FFT’s are necessary to obtain v, from Eq. (10) on
the real space grid. The only functions needed, in addition to
fxe are the first derivatives df,/dn and df,/3|Vn| which
are somewhat easier to derive than the second derivatives
required to evaluate the conventional potential. Subroutines
for calculating the necessary functions for the GGA func-
tional of Perdew and Wang?® are available from the authors.

As an illustration of these points, Fig. 1 shows the con-
vergence of energies for a single hydrogen atom in a large
cell (a cube of side 8.1 A) with a 48X 48 48 FFT grid. Here
the GGA functional of Perdew and Wang® is used. For the
hydrogen ion the bare Coulomb potential is used. The calcu-
lations are performed using the code CASTEP.> We use only a
single k point (the gamma point) and an energy cutoff of 350
eV. Although this is not sufficient to converge the total en-
ergy fully, it is adequate to illustrate the points considered
here. Each iteration involves two conjugate gradient steps.'”
Using the new potential of Eq. (10) the energy converges
rapidly to its minimum value. Using the conventional
exchange-correlation potential of Eq. (3), however (calcu-
lated on the same FFT grid), the energy fluctuates above the
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FIG. 1. Total energy vs number of iterations for a single hydro-
gen atom in a large (8.1-A cube) unit cell. Each iteration consists of
two conjugate gradient steps. Using the new potential of Eq. (10)
(solid line) and using the conventional potential of Eq. (3) calcu-
lated on the same FFT grid (dashed line).

correct minimum. In this case the energy may increase be-
cause the exchange-correlation potential is not accurately
represented, i.e., the incorrect value of the energy gradient
with respect to changes in the wave function (and hence
charge density) is obtained. If the conventional potential is
calculated on the larger grid of 8N points [as described
above Eq. (4)] most of the errors are eliminated, the energy
converging to a value 5X 1073 eV above the correct mini-
mum. Of course, such calculations are far more time con-
suming than calculations which use the minimum FFT grid.

Finally, we consider the error arising from the discretiza-
tion of the exchange-correlation energy functional. This re-
sults in a converged total energy which is dependent on the
atomic positions relative to the grid points. In effect the grid
points break the crystal symmetry so that slightly asymmet-
ric charge densities and small spurious Hellmann-Feynman
forces occur. We have calculated, for hydrogen and for mag-
nesium, the variation of energy and force on a single atom
positioned along a line joining nearest-neighbor grid points.
For hydrogen, the cell size, energy cutoff, etc. are as above
for Fig. 1. For magnesium a cubic cell of side 8 A is used
with an energy cutoff of 150 eV and a 32X 32X 32 FFT grid.
The Mg ion is represented by a pseudopotential in the
Kleinman-Bylander form'? and in this case the (3,,3) spe-
cial k point is used. Figure 2 shows the total energy relative
to the value when the ion is centered on a grid point (the total
energy is —12.284 eV and —22.907 eV for H and Mg, re-
spectively). Typical energy variations for these single atoms

Atom Position x

FIG. 2. Variation of energy with atomic position along a line
joining one real space grid point (x=0) to a neighboring grid point
(x=1). For hydrogen (solid line) grid point separation is 0.169 A
and for magnesium (dashed line) grid point separation is 0.25 A.

are 10™* eV. The spurious Hellman-Feynman forces obtained
are exactly consistent with this energy variation and are typi-
cally of order 10™3 eV/A. These forces are too small to give
any significant error in molecular dynamics so the discreti-
zation [Eq. (5)] is justified. It is interesting that these forces
tend to push a hydrogen atom onto a grid point whereas a
magnesium atom is pushed away from a grid point. We ex-
pect this to be related to the fact that for magnesium we are
working with a pseudopotential which gives a minimum
(pseudo)charge density at the ion core, i.e., V?n at the ion
core is positive for magnesium whereas it is negative for
hydrogen.

To summarize, it has been shown that a discretized form
of GGA exchange-correlation potential can be defined, con-
sistent with the discretized exchange-correlation energy used
in Car-Parrinello-type total-energy calculations, and can be
calculated exactly by FFT on the minimum Car-Parrinello
FFT grid. This enables one to perform efficient, fully self-
consistent and completely stable gradient-corrected calcula-
tions. The error due to discretizing the exchange-correlation
energy functional appears as spurious but insignificant
Hellmann-Feynman forces.
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