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Spin-orbit scattering and the Kondo effect
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The effects of spin-orbit scattering of conduction electrons in the Kondo regime are investigated theoreti-

cally. It is shown that due to time-reversal symmetry, spin-orbit scattering does not suppress the Kondo effect,

even though it breaks spin-rotational symmetry, in full agreement with experiment. An orbital magnetic field,

which breaks time-reversal symmetry, leads to an effective Zeeman splitting, which can be probed in transport

measurements. It is shown that, similar to weak localization, this effect has anomalous magnetic-field and

temperature dependence.

The profusion of works on the Kondo effect in the last

thirty years has led to a good understanding of the strongly
correlated state, ' with the possible exception of systems of
reduced dimensionality. As the temperature is lowered the
electron gas screens the isolated impurity spin, leading to
enhanced scattering on the Fermi surface. Elastic impurities
do not change this picture, and their effect can be absorbed
into renormalizing the Kondo temperature. ' Spin scatterers,
on the other hand, are expected to suppress the effect, as the
electrons lose their spin memory after traveling the spin-
scattering length.

Recently, Bergmann has demonstrated in an elegant ex-
periment that weak-localization effects can be used to study
the effectiveness of the Kondo screening of magnetic impu-

rities. By measuring the magnetoconductance for various
systems and comparing to the theory of weak localization, he
was able to identify the amount of magnetic scattering and,
consequently, the screening of the magnetic impurities. Sur-

prisingly, it was found that adding a large number of spin-
orbit scatterers into the sample (such that the magnetocon-
ductance changes sign due to the weak-antilocalization
phenomenon) does not change the magnetic scattering at all.
Accordingly, the spin-orbit scattering, even though it breaks
the spin-rotational symmetry of the system, does not sup-
press the Kondo effect. Several other groups have also re-

ported the observation of the Kondo effect in the presence of
strong spin-orbit scattering.

In this paper we discuss the effects of spin-orbit scattering
in the Kondo regime. It is shown that because of time-

reversal symmetry, the spin-orbit scatterers play the same
role as elastic, nonmagnetic impurities. As the spin-orbit

scattering rate is usually much smaller than the elastic scat-

tering rate, we expect there will be no observable change in

the Kondo temperature and hence in the Kondo screening of
the magnetic impurities due to spin-orbit scattering, in full

agreement with the experiment. Interestingly, however, the

application of a magnetic field leads to the breaking of tirne-

reversal symmetry, and consequently, suppresses the Kondo
effect. We calculate the effective Zeeman splitting resulting
from this orbital magnetic field, and discuss its experimental

implications.
The resonant scattering of the electrons near the Fermi

energy can be traced back to the divergence of the self-

energy in a perturbation expansion, either in the antiferro-

magnetic coupling between the local spin and the electronic
spin in the Kondo s-d Hamiltonian, or in the hopping in the

Anderson model. Both kinds of self-energies involve mul-

tiple scattering of the conduction electrons by the local im-

purity and accordingly involve those electrons only through
the propagator G(r, r;t), from the impurity position r back
to the impurity position. If the electron spin is rotated ran-

domly during that propagation, the correlations between con-
secutive scattering events are lost and the Kondo effect is
suppressed. Here we prove that when time-reversal symme-
try is obeyed, the propagator G(r, r;t) is diagonal in spin
space. Accordingly, even in the presence of spin-orbit scat-
tering the Kondo effect persists. For example,

1
(ct(r, t)c((r, O))= —g e ~ +' ~ '(4' ~ct(r, O)~"Ir„)(+„lct(r,O)~W )

n, m
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where c (r, t) [ct(r, t)] annihilates (creates) a conduction

electron of spin o. at position r and time t, and K is the
time-reversal operator. In the above the propagator was ex-
pressed in terms of the exact many-body eigenfunctions of
the system, W„, with energies E„, and we have used the

identities (9' /K c&(r 0)K(%'„)= —(4'„/c&(r,O) /%" ) and

(%'„/Ktct&(r, O)K(%'~) =(%"~fcT(r,O) /0"„). In (1) the chemi-

cal potential was taken as zero, for convenience. The same

procedure can be applied to show that (c~&(r,O) c&(r, t)), and,

consequently, the retarded Green function, G
& &(r, r; t)

=——i8(t)([c&(r,0)c&(r,t)+ c&(r t)c&(r,0)]), are also iden-

tically zero, and that G&T(r, r;t) =G&&(r, r;t). Note that the

above results apply for any interacting system satisfying
time-reversal symmetry, even including inelastic scattering.

Let us give another, more transparent argument why an
electron always returns with the same spin. Consider a gen-
eral closed path from point r to itself [e.g., the trajectory in

Fig. 1(a)]. Such a path can be schematically represented by
the left trajectory in Fig. 1(b). The electron spin is rotated
due to spin-orbit scatterers along the path. Due to time-
reversal symmetr~ the spin-scattering matrix along the path
can be written as

( cr P~
S=

I P* ir*)-

M= cog d d +Untn&+g [Voc (0)d +H c.].+W, ,~

The operators d t create a local electron on the impurity;
the second term describes the impurity on-site repulsion

(n =dtd ), while the third term describes the hopping be-
tween the impurity (positioned at r =0) and the electron gas.
The conduction-electron Hamiltonian is given by

1 t eA~'
flak ck ck~+ V g pqcp~q~cp~2lllk ( C j

+iVso g pt )qXp. (c,o c~ ),
qlp

where ck is the Fourier transform of c (r), A is the elec-
tromagnetic potential, and pq and p are the densities of
the elastic scatterers and spin-orbit scatterers, respectively.

The presence of both spin-orbit scattering and magnetic
field leads to anisotropy in spin space of the conduction-
electron density of states. Through the hopping V, this an-

isotropy lifts the degeneracy between the spin states of the
impurity. The resulting effective Zeeman splitting (for
U~IXI) is obtained by diagonalizing the impurity part of the
Kondo Hamiltonian obtained via a Schrieffer-Wolff
transformation, '

The electron can also follow the time-reversed trajectory [the
right trajectory in Fig. 1(b)], where all the scatterers are met
in opposite order, which gives rise to the rotation matrix
St. Since both trajectories have exactly the same weight, one
can add them up, leading to a matrix proportional to the
unity matrix. Thus it is the destructive interference between
time-reversed paths that leads to the vanishing of the off-
diagonal terms

The above argument suggests that this picture will change
dramatically in the presence of a magnetic field, which
breaks time-reversal symmetry. In the absence of spin-orbit
scattering a magnetic field suppresses the Kondo effect
through the Zeeman splitting of the impurity state. The peak
in the impurity density of states moves away from the Fermi
energy by the Zeeman splitting. ' Once the splitting is larger
than the Kondo temperature, the ground state of the impurity
is polarized, suppressing the resonant Kondo scattering at the
Fermi surface. The split peaks can still be probed, though,
via nonlinear transport measurements, where they produce
split peaks in the differential I-V characteristics. '

In the presence of spin-orbit scattering an orbital magnetic
field leads to similar effects, as it destroys the exact cancel-
lation of the contributions of the time-reversed paths to the
off-diagonal propagator. Thus an electron may return to the
impurity position with a rotated spin, mixing the two spin
directions and giving rise to an effective Zeeman splitting.
Such a splitting appears in the Kondo Hamiltonian obtained
via a Schrieffer-Wolff transformation' from the full Hamil-
tonian for the impurity and the conduction electrons. To cal-
culate this effect we consider specifically an Anderson
Hamiltonian in the presence of spin-orbit scattering and
magnetic field,

P'; p=, O S=—0 g dto d
CJ, O

(a)

Q
+
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(c)

FIG. 1. (a) Schematic path contributing to the local density of
states at a Kondo impurity. Even with spin-orbit scattering by im-

purities (the X's), the equal weighting of time-reversed paths (b)
guarantees a diagonal single-particle propagator G& (r, r), which
preserves the Kondo effect. (c) The coope ron contribution,

(Gsgr, r;e2)G& (r, r; er)), to the disorder-averaged two-particle
propagator, (II p&s(r, r'er E2)).
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and

fi-—Q-o.=
2

ep+ BE't t. be))

ep+ Be&&)
(6)

i Vo "" 1 f(e—)
Be~~i = de

277 J oo ep e

X [G",(r, r, e) G'— , (r, r, e)] (7)

The Green functions in (7) are for the conduction electrons in

the absence of coupling to the impurity. The energy shift in

Eq. (7) is due to processes in which the impurity electron
hops to an unoccupied state in the conduction band, propa-
gates as a conduction electron, and finally hops back to the

impurity, possibly with a rotated spin. Combining Eqs. (5)
and (7), we find that the effective Zeeman splitting 6 is

given by'

0

(2 )z detdez

[1 -f( 1)][1 -f( z)]
~~(e1 ez)

where o. indicates the Pauli spin matrices. The energy split-

ting 5 between the eigendirections of spin is then given by

—= ( e1 ez) = ( Bet t Bel l ) + 4 [ Bet l )

where

In two dimensions, we find

A, l—l CO+
7y/

(2D)
3 V 1 l'

AD(1 i—cur) 2 4AD l

( 4g—+ —+ —l GO+ +—
2 4AD I, 3rso

i co—+ fi/r~—ln'
i c—u+ 4'/3 rso+ f1/r~]

(13)

In the above, v is the single-spin conduction-electron

density of states, l is the magnetic length PhcieH, . D is
the diffusion constant, iso is the spin-orbit scattering time

(=f1/[2mvP~t 01Vso(PXq) ]), r& is the Phase-breaking

time, and 0" is the digamma function. In deriving those
results it was assumed that r&& rso, r~, where r= f1/

(2mvpq o V ) is the elastic lifetime. By inspection, only the

real parts of expressions (11) and (13) contribute to the ef-
fective Zeeman splitting given by Eq. (8).

Since the magnetic-field dependence of the cooperon dia-

gram also determines the magnetoconductance in the weakly
localized regime, we can deduce the magnetic-field depen-
dence of the splitting from the weak-localization magneto-
conductance. Thus we expect the splitting to be linear in

small magnetic fields, crossing over at high fields to

gin(H) in two dimensions and to H'~ in three dimensions.
To see the amplitude of the effect we expand the II's in small

magnetic field and find

where

II&(el, ez) IIt t t 1 (r, r;el, ez) + II( ill(r, r, el, ez)

—2IIlltt(r r &1,ez)+41Ilttl(r'r'et'&z)

and

m pgH (7p 1

m* 4 In(W/ksTx) e /h kFlso

2 m p,sH o'o ( 3 r~
ln

, m m* 4 In(W/k&Tx) e /h (4rsol

for 3D

for 2D,

(14)

AD(1 —i rur) 1 4AD

l' / 4A A, '
—F —i co+ +—

where co= eq —e2, and

F(()= g 2(gN+ 1+f gN+ ()——
gN+ 1/2+ ( (12)

II pry(r, r; et, ez) = —[G&r(r, r; ez) —G&r(r, r; ez)]

x[G& (r, r;e1) —
G& (r, r;e, )] (10).

In the absence of magnetic field, IIz, is explicitly zero and

there is therefore no effective Zeeman splitting of the impu-

rity.
The magnetic-field dependence of the splitting is deter-

mined by the magnetic-field dependence of II~, which, after
averaging over disorder, is determined by the cooperon dia-

gram [Fig. 1(c)].The cooperon diagram has been calculated
in the context of weak localization theory, ' and the dif-
ference between II~ at finite field and its zero field value is
given in three dimensions by

where p,11=efi/2mc is the Bohr magneton, W is the band-

width of the conduction electrons, m* is their effective mass,

oo is the conductivity (conductance in two dimensions), and

iso= PD rso is the spin-orbit length. For quasi-two-
dimensional systems (where the thickness of the sample d is
larger than one-half the Fermi wavelength) the two-
dimensional result has to be divided by the square of the
number of subbands kFd/m. To obtain Eq. (14) it was as-
sumed that the depth of the impurity level, p ep is much
larger than the energy broadening due to elastic scattering
A/r and that r&)) rso. The result indicates that the splitting
in a finite magnetic field increases the more conductive the
sample is. In two dimensions it is also predicted that the
splitting depends on the temperature logarithmically through
the inelastic lifetime. We thus predict that nonlinear measure-
ments will reveal a temperature-dependent splitting, with
anomalous magnetic-field dependence at high fields. In typi-
cal metallic samples, three dimensional or quasi-two-
dimensional, the amplitude of the effect is only a small frac-
tion of the usual Zeeman splitting for typical experimental
values. This explains why the Kondo effect has been ob-
served in experiments with strong spin-orbit scattering even
in the presence of a magnetic field. ' On the other hand, the
effect is expected to be much larger in two-dimensional
semiconductor systems, because of the reduced dimensional-
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ity and because of the higher mobility. The Kondo effect
has indeed been observed in dilute magnetic semi-
conductors, ' while spin-orbit scattering in the weakly
localized regime has been systematically investigated in
several semiconductor compounds. In fact, spin-orbit scat-
tering in the weakly localized regime has been recently re-
ported in a dilute magnetic semiconductor. With the ex-
perimentally measured parameters for a two-dimensional
electron gas in Hgp79Cdp $9Mnpp2Te reported by Dietl, Gra-
becki, and Jaroszynski, where both spin-orbit and magnetic
scattering have been observed, the impurity splitting due to
the orbital magnetic field is an order of magnitude larger than
the usual Zeeman splitting. In addition, with the progress in
building heterostructures involving diluted magnetic
semiconductors, it should be feasible to systematically
check the predictions of our theory.

To conclude, we have studied in detail spin-orbit scatter-
ing in the Kondo regime. It was shown that due to time-

reversal symmetry, spin-orbit scattering, even though it
breaks spin-rotation symmetry, does not suppress the Kondo
effect. This explains the surprising results of Bergmann on
thin films containing both Kondo impurities and spin-orbit
scatterers. We find that in a finite magnetic field, which
breaks time-reversal symmetry, spin-orbit scattering leads to
an effective Zeeman splitting, with anomalous magnetic field
and temperature dependence, similar to the magnetoconduc-
tance in the weakly localized regime. It is hoped that this
work will stimulate further experiments to explore these ef-
fects.

We acknowledge discussions with Boris Altshuler and
Yoseph Imry. Work at U.C.S.B.was supported by NSF Grant
No. NSF-DMR-9308011, by the NSF Science and Technol-
ogy Center for Quantized Electronic Structures, Grant No.
DMR 91-20007, and by NSF, ONR, and ARO at the Center
for Free Electron Laser Studies.

For a recent review see The Kondo Problem to Heavy Fermions,

by A. C. Hewson (Cambridge University Press, Cambridge,

1993).
R. P. Peters, G. Bergmann, and R. M. Mueller, Phys. Rev. Lett.
58, 1964 (1987); C. Van Haesendonck, J. Vranken, and Y.
Bruynseraede, ibid 58, 1968. (1987).

G. Chen and N. Giordano, Phys. Rev. Lett. 66, 209 (1991);J. F.
DiTusa, K. Lin, M. Park, M. S. Isaacson, and J. M. Parpia, ibid.
68, 678 (1992).

V. Chandrasekhar et al., Phys. Rev. Lett. 72, 2053 (1994).
K. Fischer, Phys. Rev. 158, 613 (1967); J. Kondo, ibid 169, 437.

(1968); Y. Nagaoka, Prog. Theor. Phys. 39, 533 (1968).
Note that large enough disorder may have anomalous effects, as

the distribution of Kondo temperatures Tz may diverge at

TK +0 [V. Dobrosa-vljevic, T. R. Kirkpatrick, and G. Kotliar,

Phys. Rev. Lett. 69, 1113 (1992)].
G. Bergmann, Phys. Rev. Lett. 57, 1460 (1986).
W. Wei, R. Rosenbaum, and G. Bergmann, Phys. Rev. B 39, 4568

(1989); J. Vangrunderbeek et al. , ibid 40, 7594 (198.9); C. Van

Haesendonck et al., Physics B 175, 179 (1991);H. Akiyama et
al. , J. Phys. Soc. Jpn. 62, 639 (1993).

J. Friedel, P. Lenglart, and G. Leman, J. Phys. Chem. Solids 25,
781 (1964); N. Zanon and J. L. Pichard, J. Phys. 49, 907 (1988).

Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett. 63,
798 (1989).

' In an actual physical system an electron may hop from the im-

purity to some point, travel around and then hop back onto
the impurity from a nearby point. As in this case the time-

reversed trajectories no longer go between the same points, they
accordingly acquire an additional relative phase, kFI» r I,

—
where kF is the Fermi wavelength. Indeed one can show that

& I
G t t('r "t)I')i& IG t t('»'t) I') =1-sin'(l Fl» "l)&(lFl» »'I)'. — —

As the spatial extent of the impurity (d or f level) wave function
is much smaller than fi/kF, we expect that a given electron will
always hop into the impurity with the same spin, even in the
presence of spin-orbit scattering.

' Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70, 2601
(1993).

' J. A. Appelbaum, Phys. Rev. 154, 633 (1967).
D. C. Ralph and R. A. Buhrman, Phys. Rev. Lett. 72, 3401

(1994).
ts J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).The

effects of spin-orbit scattering of the conduction electrons on the

Schrieffer-Wolff transformed Hamiltonian are obtained by di-

agonalizing the conduction-electron Hamiltonian before making

the transformation.
' A very similar expression can be obtained in the context of the

Kondo s-d Hamiltonian. Using the Abrikosov auxiliary-fermion

diagrammatic approach [A. A. Abrikosov, Physics 2, 5 (1965)],
one can show that in the presence of spin-orbit scattering an

orbital magnetic field leads to an additional SH,ff term, with

((it,&H,tt) ) given by an expression very similar to (5 ).
' B. L. Altshuler, D. Khmelnitzkii, A. I. Larkin, and P. A. Lee,

Phys. Rev. B 22, 5142 (1980).
' A. Kawabata, J. Phys. Soc. Jpn. 49, 628 (1980).

B. L. Altshuler, A. G. Aronov, D. E. Khmelnitskii, and A. I. Lar-

kin, in Quantum Theory ofSolids, edited by I. M. Lifshits (MIR,
Moscow, 1992).

2O For a review see J. K. Furdyna, J. Appl. Phys. 64, R29 (1989).
2tR. R. Gafyzka et al. , Phys. Rev. B 43, 11093 (1991); V. A.

Kul'bachinskii et al. , Fiz. Tekh. Poluprovodn. 25, 2201 (1991)
[Sov. Phys. Semicond. 25, 1326 (1991)]; M. P. Boiko, A. V.

Nikorich, and M. E. Guerrero, Pis'ma Zh. Eksp. Teor. Fiz. 55,
113 (1992) [JETP Lett. 55, 106 (1992)].

O. Millo et al. , Phys. Rev. Lett. 65, 1494 (1990); R. Taboryski
and P. E. Lindelof, Physica B 165-166, 859 (1990); C. Kurdak
et al. , Phys. Rev. B 46, 6846 (1992);J. E. Hansen, R. Taboryski,
and P. E. Lindelof, ibid. 47, 16 040 (1993).

T. Dietl, G. Grabecki, and J. Jaroszynski, Semicond. Sci. Technol.
8, S141 (1993).

J. J. Baumberg et al. , Phys. Rev. Lett. 72, 717 (1994).


