Intercalation of AsF_5 in C_{60}

W. R. Datars, T. R. Chien, R. K. Nkum, and P. K. Ummat

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1 (Received 30 March 1994; revised manuscript received 5 May 1994)

The product of a solid solution reaction of C_{60} and AsF₅ in liquid SO₂ is reported. The change of weight of the C₆₀ by the reaction indicates that there is $(AsF_5)_xC_{60}$ with $x = 1.88 \pm 0.04$. Mass spectroscopy identifies the AsF₅ and C₆₀. The x-ray diffraction is distinctly different from that of C₆₀ and can be indexed with a body-centered-tetragonal unit cell. The infrared spectrum has an absorption at 702 cm⁻¹ which is not present in C_{60} .

PACS number(s): 81.10.Dn

Many fullerene-based compounds have been prepared with interesting properties and potential applications. Some of these such, as the alkali-metal-doped C_{60} compounds, are intercalation compounds in which the introduced atoms occupy interstitial sites in the C_{60} lattice, and the fullerene host retains its molecular identity.¹ The $AsF₅$ molecule can be intercalated into graphite. In this Brief Report we show that the intercalation of AsF_5 with C_{60} is also possible.

Fluorinated and chlorinated fullerenes have been reported previously. 2^{-4} Reactions of C_{60} with Cl₂ produce species with $12-15$ Cl's per C₆₀. Chlorine is extracted from these products by thermal, electrical, and electrochemical means. A product from the reaction of $SbCl₅$ and C_{60} has also been reported.⁵ It was identified with xray, far-infrared and mass-spectromagnetic techniques.

A solid-solution method was adopted in order to prepare a homogeneous compound. A solution of AsF₅ dissolved in liquid SO_2 was reacted with C_{60} powder. The black C_{60} powder started to change to a suspension with a green color after ¹ h. The complete reaction took place during three or four days at room temperature with continuous stirring. The final product had a uniformly dark green color. The excess SO_2 and AsF_5 were decanted,

FIG. 1. X-ray diffraction with Cu K_{α} radiation of (a) $(AsF_5)_x C_{60}$, (b) C_{60} .

and the green compound was dried and removed from the reaction vessel for measurements.

It was found that the compound changed to a brown color when it was exposed to room atmosphere. Thus the $(AsF₅)_xC₆₀$ was handled in a dry box and placed in sealed sample cells that were designed for each of the x-ray, mass spectrometric, and infrared measurements of its properties.

Several reactions were carried out to establish the stoichiometry of $(AsF_5)_x C_{60}$. A large amount of C_{60} was used so that the relative error of the weight analysis was small. All reactions with AsF_5 were done in a solution of $SO₂$ at room temperature for four or five days until a green solid was formed. The weights of the C_{60} before and after a reaction were used to determine the formula. It was found that with 550 mg of pure C_{60} as the starting material, x was 1.92. With 420 mg, x was 1.85. These two measurements indicate a formula $(AsF_5)_xC_{60}$ with $x = 1.88 \pm 0.04$.

The Cu K_{α} X-ray powder patterns of the pure C₆₀ and the $(AsF_5)_x C_{60}$ compound are shown in Fig. 1. The xray diffraction of the C_{60} in Fig. 1(b) is the same as that found previously with the fcc lattice parameter $a = 14.172$ Å.⁶ The pattern of the compound in Fig. 1(a) is distinctly different, indicating that it has a different lattice from that of C_{60} . Eight diffraction lines are discernable. They can be indexed with a body-centeredtetragonal (bct) unit cell with lattice parameters of $a = 12.794$ Å and $c = 12.426$ Å, as shown in Table I.

Mass analysis was made with a double-focusing mass

TABLE I. Observed and calculated x-ray diffraction with Cu K_{α} radiation of $(AsF_5)_xC_{60}$ for a tetragonal lattice with $a = 12.794$ Å and $c = 12.426$ Å.

h	k	$2\theta_{\rm obs}$	$2\theta_{\rm calc}$
		9.783	9.769
2		13.769	13.832
$\overline{2}$	o	19.933	19.906
$\mathbf{2}$	2	20.851	20.883
0	O	21.466	21.436
3	2	26.122	26.095
2	2	29.178	29.212
4		31.240	31.144

FIG. 2. Mass spectrum of $(AsF_5)_xC_{60}$.

spectrometer (ZAB-E) with the sample mounted in the source chamber of the spectrometer, and the vapor from a sample was bombarded by electrons with an energy of 70 eV. The mass spectrum of Fig. 2 has masses of AsF_{x} $(x = 1, 2, 3, \text{ and } 4)$. The presence of these ions show that $AsF₅$ is in the sample because these ions are formed with the relative abundance of Fig. 2 from $\text{As}F_5$ without the presence of $\text{As}F_5^+$. The minor constituents of The minor constituents of oxyfluorides were probably present in the commercial $AsF₅$. The spectrum of the sample in toluene gives the characteristic multiplit centered at 720 a.u. Thus the integrity of the C_{60} is maintained by the presence of the AsF_5 . Mass spectra of polyfluorofullerenes were not observed, because they lose fluorine under ionization conditions of the electron bombardment.

The infrared spectra of C_{60} and $(AsF_5)_xC_{60}$ are shown in Fig. 3. The C_{60} spectrum has lines at 527, 575, 1182, and 1428 cm^{-1} , in agreement with previous reports for C_{60} .⁷ The intensity of these lines is very small for $(AsF_5)_x C_{60}$. However, there is a strong absorption at 702 cm^{-1} . This absorption is characteristic of all samples with the peak in the range $702-709$ cm⁻¹. The spectra

 r_0 of the intercalated species.

	$a(\tilde{A})$	$c(\mathbf{A})$	c/a	r/0
$K_{4}C_{60}$	11.886	10.774	0.906	1.38
Rb_4C_{60}	11.962	11.022	0.921	1.47
Cs_4C_{60}	12.057	11.443	0.949	1.70
		12.426	0.971	1.577 axial
				1.534 equatorial
		$(AsF_5)_xC_{60}$ 12.794		

of samples heated in vacuum to different temperatures for several hours were also recorded. The spectrum for heat treatment at 150'C was similar to Fig. 3(a). However, treatments at 300 and 400'C eliminated the absorption at 702 cm⁻¹ and increased the intensity of the C₆₀ lines, indicating that the sample was returned to the C_{60} state by the decalation of AsF_5 .

The strongest lines of the infrared spectrum of gaseous AsF₅ at 798 and 819 cm⁻¹ (Ref. 8) are not observed from $(AsF_5)_x C_{60}$, indicating that AsF_5 is not an isolated molecule in the material. Rather, there is the line at 702 cm^{-1} . This is not due to the C-F stretch mode which is expected in the range 1120–1350 cm⁻¹ for CF₂ and CF₃.

Table II compares the cell parameters with those of A_4C_{60} ($A = K, Rb, Cs$) that forms a tetragonal lattice The lattice parameters and the c/a ratio increase as the size of the ion increases. The alkali ions occupy the four smaller lattice sites that are formed with $c < a$ from the six bcc tetrahedral sites. The two larger ones in the ab plane of the bct lattice are necessary for the AsF_5 ion. The AsF_5 molecule is a trigonal bipyramid and is similar to the $PF₅$ molecule with axial and equatorial distances of 1.577 and 1.534 Å, respectively.⁸ This requires a large site with some distortion. The weight of $(AsF_5)_x C_{60}$ with x close to 2 indicates that most of the larger sites are occupied.

Resistivity measurements indicate that the $(AsF_5)_x C_{60}$ is conducting at room temperature. The resistivity is of the order of $10^6 \Omega$ cm, and increases as the temperature is

FIG. 3. Infrared spectra of (a) $(AsF_5)_xC_{60}$, (b) C_{60} .

lowered below room temperature. The resistivity is too large to be measured at temperatures below 170 K. Further tests at temperatures down to 4.2 K indicate that it remains insulating and does not become a superconductor. This was confirmed with susceptibility measurements taken with a superconducting quantum interference device (SQUID} magnetometer which showed no superconducting effects for temperatures down to 4.2 K.

In conclusion, $(AsF_5)_xC_{60}$ with $x=1.88\pm0.04$ is formed by intercalation. It has a strong infrared absorption at 702 cm^{-1}. The x-ray diffraction indicates that there is a tetragonal lattice with $a=12.794$ Å and $c = 12.426 \text{ Å}.$

The participation of W. Gong from the McMaster Institute of Materials Research and R. Smith from the McMaster Regional Mass Spectroscopy Laboratory is gratefully acknowledged. Technical assistance was provided by T. Olech, and the infrared measurements were taken by S. Gaits. The research was supported by the Natural Sciences and Engineering Research Council of Canada.

- 'Otto Zhou and David E. Cox, J. Phys. Chem. Solids 53, 1373 (1992).
- ²Fred N. Tebbe, James V. Becker, D. Bruce Chase, Lawrence E. Firment, Edward R. Holler, Brian S. Malone, Paul J. Krusic, and E. Wasserman, J. Am. Chem. Soc. 113,9900 (1991).
- ³H. Selig, C. Lifshitz, T. Peres, J. E. Fischer, A. R. McGhie, W. J. Romanow, J. P. McCauley Jr., and A. B. Smith III, J. Am. Chem. Soc. 113, 5475 (1991).
- 4J. H. Holloway, E. G. Hope, R. Taylor, G. J. Langley, A. G. Avent, T. J. Dennis, J. P. Hare, H. W. Kroto, and D. R. M. Walton, J.Chem. Soc. Chem. Commun. 966 (1991).
- 5W. R. Datars, P. K. Ummat, T. Olech, and R. K. Nkum, Solid

State Commun. 86, 629 (1993).

- ⁶R. M. Fleming, M. J. Rosseinsky, A. P. Ramirez, D. W. Murphy, J. C. Tully, R. C. Haddon, T. Siegrist, R. Tycko, S. H. Glarum, P. Marsh, G. Dabbagh, S. M. Zahurak, A. V. Makhija, and C. Hampton, Nature 352, 701 (1991).
- 7W. Kratshmer, L. D. Lamb, K. Fostopoules, and D. R. Hoffman, Nature 347, 354 (1990).
- L. C. Hoskins and R. C. Lord, J. Chem. Phys. 46, 2402 (1967).
- D. W. Murphy, M. J. Rosseinsky, R. M. Fleming, R. Tycko, A. P. Ramirez, R. C. Haddon, T. Siegrist, G. Dabbagh, J. C. Tully, and R. E. Walstedt, J. Phys. Chem. Solids 53, 1321 (1992).