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Microwave response of anisotropic high-temperature-superconductor crystals
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Microwave penetration and losses are derived for the anisotropic normal and superconducting states
of single crystals in the shape of thin platelets oriented parallel and perpendicular to the oscillating elec-
tromagnetic field. For platelet crystals with the microwave field parallel to the major flat faces, the large
anisotropy in the normal state can result in dissipation dominated by microwave field penetration
through the thin edges rather than across the main faces. The influence of the extreme anisotropy is also
considered for the superconducting state and can account for an anomalous peak in microwave loss
below T, sometimes observed in Bi-Sr-Ca-Cu-0 crystals. When crystals are mounted with their flat faces
perpendicular to the microwave field, the losses in both the normal and superconducting states are
shown to be strongly peaked towards the outer perimeter of the crystals. This makes critical demands
on the degree of perfection of such regions, if the microwave measurements are not to be complicated by
nonintrinsic eftects associated with local imperfections.

I. INTRODUCTION

Measurements of the complex surface impedance,
Z, =R, +iX„have been widely used to investigate funda-
mental superconducting properties of high-temperature
superconductors (HTS). ' "Measurement of the reactive
component Xs( T)=poco', ( T) provides a convenient
method for determining A,( T), the superconducting
penetration depth. In contrast to the BCS and two-fluid
model predictions, the penetration depth derived from
microwave measurements on thin film HTS samples
varies rather closely as (1—t ) '~, '" where t is the
reduced temperature T/T, . However, in recent measure-
ments on untwinned YBa2Cui07 s (YBCO) single-crystal
platelets, a linear temperature dependence was observed
at low temperatures, providing possible evidence for d-
state pairing and nodal lines of the superconducting ener-

gy gap on the Fermi surface. '

Once the penetration depth is known, microwave losses
from thermally excited "normal" electrons can be de-
rived by assuming a two-Quid model, which predicts a
surface resistance R, =

—,'ltoco A, o'„(T), where cr'„(T) is the
efFective conductivity of the thermally excited quasiparti-
cles. Of particular interest is an apparent increase in the
quasiparticle mean free path deduced from microwave
measurements on YBCO single crystals by Bonn et al. '

These measurements are consistent with an apparent in-
crease in the quasiparticle mean free path because of a re-
duced scattering from antiferromagnetic spin fluctuations
resulting from a proposed gap in their spectrum, which
opens up below T„as inferred from inelastic neutron
scattering' and nuclear quadrupole resonance' measure-
ments.

Microwave measurements thus provide important in-
formation about the nature of the superconducting
ground state and the thermally excited quasiparticles. It
is therefore important to be confident that microwave
surface impedance measurements probe intrinsic proper-

ties and are not affected by unwanted experimental ar-
tifacts. In this paper we consider two potential problems
that arise in microwave measurements on thin platelet
crystals of highly anisotropic high-temperature supercon-
ductors. In particular, we show that the large anisotropy
and high resistivity in the c direction can result in an
anomalous peak in the microwave absorption in the su-
perconducting state, for electromagnetic field parallel to
the ab planes. If measurements are made with the typical
platelet crystals perpendicular to the microwave field, the
concentration of field near the edges leads to highly local-
ized microwave losses in just those regions of the crystals
that are most susceptible to damage, so that the measured
microwave losses may not be intrinsic.

The two experimental configurations of interest for
measurements on high-T, (HTC) single crystals are illus-
trated in Figs. 1(a) and 1(b). In the first, the oscillating
microwave field h„„,„, is parallel to the major flat sur-
faces of what is usually a rather thin platelet crystal. In
this configuration the induced microwave currents Qow
across the major flat faces but also across the thin edge
surfaces. For an isotropic material, the penetration and
losses from the thin edges would usually be negligible.
However, this is no longer true in either the normal or
superconducting states for highly anisotropic HTC super-
conductors, where p, /p, b in the normal state can typical-
ly be as large as 10 for BizSr2CaCu20s+s (2212-BSCCO)
(Refs. 14 and 15). The normal-state skin depth
5„=(2p/poco)'~ can therefore be —300 times larger for
field penetration through the thin edges (involving
current flow in the c direction) than across the major flat
faces. Microwave losses from the edges relative to the
faces are therefore increased correspondingly. Further-
more, for 2212-BSCCO p, is typically in the range
1 —10 0cm (Refs. 14 and 15) giving a normal-state skin
depth at 10 GHz of 5, -0.5 to 1.6 mm, which is of the
same order as the size of single crystals used in such mea-
surements. Size effects must then be taken properly into
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response for step and 5-function changes in the external b
field. These results can then be used to evaluate the
response to a sinusoidal field variation considered as a se-
quence of 5 functions. Such an approach assumes a
nonhysteretic, linear electromagnetic response.

Immediately following the removal of a static external
field Ii, the field drops to zero outside the sample but is
unchanged within. At t =0, the initial field across the
area of the rectangular platelet crystal can therefore be
written as a double Fourier series

FIG. 1. (a) A thin platelet crystal in the parallel microwave
field configuration. The dimensions a, b, and c have been
chosen to emphasize the relevance to layered cuprate HTC crys-
tals, where platelet crystals grow with the major faces parallel
to the CuO ab planes and c is the thickness of the crystal pla-
telet in the crystallographic c direction, and (b), the perpendicu-
lar field configuration, with induced currents confined to the ab
planes.

b (x,y, 0)=Ii g sin
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where n and m are positive odd integers.
The subsequent difFusion of flux out of the platelet is

governed by the magnetic difFusion equation. For an an-
isotropic conductor, Maxwell's equations result in the
following anisotropic difFusion equation:

a'b a'b ab
P

5 2+Po5 2 PogtX
(2)

account as derived in this paper. In this configuration,
we show that losses from microwave field penetration
through the edge surfaces can easily exceed those across
the major faces and can rarely be ignored.

Similar complications arise in the superconducting
state, since the penetration depth for shielding currents in
the c direction is considerably larger than for currents
parallel to the faces. For highly anisotropic high-T, su-

perconductors, such as 2212-BSCCO, A,,b/A, ,=g, /g, &,

with values typically exceeding 100.'s The microwave
field therefore penetrates —100 times a larger distance
through the edge faces than across the principal faces.

In the second experimental configuration of interest,
Fig. 1(b) the crystal is aligned with its major flat faces
perpendicular to the oscillating microwave field. Mea-
surements are often made in this configuration because
the induced microwave currents are confined to the ttb

planes, so that crystal anisotropy is no longer a problem.
However, because of the large demagnetizing factors in-
volved, the induced surface currents are strongly concen-
trated towards the outer perimeter of the sample and on
the thin edge faces. Any imperfections close to the edges
of the crystal are therefore likely to result in additional
losses associated with weak-link behavior and the result-
ing degradation of superconducting properties.

II. MICROWAVE ABSORPTION
IN THE PARALLEL FIELD CONFIGURATION

A. Normal-state response

We first consider microwave penetration and losses in a
resistive platelet crystal with Bat faces parallel to the os-
cillating microwave field h„„,„„asillustrated in Fig. 1(a),
which also defines the axes and sample dimensions. The
z-dimension length is assumed to be much greater than
the thickness so that demagnetizing fields can be ignored;
we only need to consider losses per unit length in the z
direction.

It is instructive first to derive the electromagnetic

where p, and p, are the resistivities in the ab plane (an-
isotropy in the ab plane is ignored) and the c direction.
Following removal of the external field, the time evolu-
tion of the internal field can be written as

16 y 1 . tt7TX . m 17/

(3)

where

'2
Pc nn + Pa mm

po a po c

'2

(4)

A„ is the time constant for exponential decay of the
(n, m) eigenmode solution. At long times the behavior
will therefore be dominated by the (1,1) mode. When
(a/c} (p, /p, )) 1, the field decays largely through the
thin edges of the platelet; when less than unity, it escapes
through the major faces. For BSCCQ, with an anisotro-
py in resistance of typically 105, flux will escape largely
through the thin edges of the crystal, unless the dimen-
sions across the face exceed the thickness by -300. A
typical 1-mm platelet crystal would therefore have to be
much thinner than 3 pm for edge efFects to be ignored,
which is seldom satisfied. Note that in the limit of
infinite resistance (insulating) in the c direction, the flux
motion would be entirely parallel to the ab planes.

To derive the ac response, consider the sinusoidal vari-
ation of the microwave magnetic field he'"' as a sum of
individual 5 functions of amplitude he' 'dt' at time t',
such that

he'"'= f 5(t —t')he'"'dt' .

The overall response at time t is then the sum of the
responses from the individual 5 functions at times t' & t.
From Eq. (3},it is easy to show that the response to a unit
5 function in field is then given by
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We evaluate the complex power P(co) flowing into the
platelet from the time-averaged Poynting vector
EXh'/2, where the line integral of E around the perime-
ter of the platelet normal to the microwave field is given
by

E. =tcopp H x,y x y

64 1 Anm
=icoacpoh g . e' ' . (9)

n m A„+i
The power per unit length along the z direction fiowing
into the platelet can therefore be written as

P(co) =—he '"'It} E dl
2

(6)

The time development of the field inside the supercon-
ductor in response to an external field varying as he' ' is
therefore given by

h16
y

. nmx . . mayA
x,y, t

icopoh ac g 1 A

2
(13)

where A =(co/2)(nm5, /c) . In the Appendix we show

that Eq. (13}can be evaluated in analytic form to give

P, (co)=1/2Z, h per unit area of the flat faces, where Z,
is the surface impedance of the finite thickness thin slab
specimen given by

where 5, =+2p, /cops and 5, =+2p, /coimo.

The microwave response is therefore determined by the
frequency and An values, which in turn depend on sam-

ple dimensions and anisotropic resistivities. It is straight-
forward to show that the complex microwave power ab-
sorbed is identical to the power absorbed in an isotropic
sample of the same volume with resistivity (p,p&)'~ but
with linear dimensions scaled as a'=a(p, /p, )'~ and
c'=c(p, /p, )' . The large anisotropy of the BSCCO and
Tl-Ba-Sr-Cu-0 superconductors results in microwave
losses per unit area from the edges of platelet crystals be-

ing increased relative to the flat faces by a factor
(p/p, )'~, which typically exceeds a factor ) 100. More-
over, the poor conductivity in the c direction results in a
very long microwave penetration depth parallel to the
crystal surfaces, which can easily exceed typical sample
dimensions, so that the crystal size efFects described by
Eq. (11)must be considered.

Before considering Eq. (11) in its most general form,
we first consider the microwave power flowing into a thin
platelet crystal ignoring any penetration through the
edges, as would occur for p, =0, when A„ is a function
of m only. The double summation then reduces to

iropoh ac 64 1 A„

2 ~4 „n2m~ A„+iso
(10)

and

Re(P(co) }=—
—,'copoh Im(p(co))

Im(P(co)) =
—,'a)poh Re(p(co)) .

A„can be expressed in terms of the normal-state skin
depths in the a and c directions, 5, and 5„such that

For an insulator, A„~~, so that the power flowing

into such a crystal, Po(co}=icopoh~ac/2, is simply the
(reactive) energy flowing into the equivalent free-space
volume per second per unit length, where we have made
use of the identity g„, (1do/n )=m /g

For the more general case of finite conductivities, it is
instructive to express the power flowing into the crystal
as an effective permeability p(co), such that
P(co) = ,'imp(ro)poh per—unit volume, where

64 1 Anm
p( )=

ll m An +&

so that

Z, = iZo tan(kc /2), (14)

with Zo=gicopop, and k =(1 i)/5, =g—copolip,
This result could, of course, be derived more straightfor-
wardly from the one-dimensional solutions of the
diffusion equation subject to the appropriate boundary
conditions at the surface. '

In Fig. 2 we have plotted the real and imaginary com-
ponent of p(co), the complex power flowing into the crys-
tal relative to that flowing into the equivalent free-space
volume as a function of coiMoc2/p, =2(c/5, )~. On in-

creasing frequency the absolute losses initially increase as

poio c /24p, per unit length parallel to the field reaching
a peak value of 0.417 of the free-space power penetration,
i~ppA /2 per unit volume, when c/5, -2 as expected.
Well above the maximum, the real and imaginary com-

ponents of the complex surface impedance approach the
same values with R, =X,=+pop, co/2=p, /5„which is

the familiar skin-depth result.
If the sample is a thin platelet of finite area, the proper-

ties are affected by microwave field penetration through
the edge faces in addition to that across the Inajor Sat
faces. This does not necessarily lead to an increase in ab-
sorbed power, because field penetration at the edges
reduces the field gradients and currents flowing parallel
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FIG. 2. Electromagnetic energy flowing into a conducting
plate of thickness c as a function of cop,oc'/p, =2(c/5, ), nor-
malized to the energy flowing into the same free-space volume.

1

2& cy
10-5

FIG. 3. Two-dunenssonal plot of the unay. nary component
of is{co) for a rectangular rod of cross section a Xc for elec-
tromagnetic fields parallel to its length as a function of
p, /cocoa' and p, /copoc'.

to the major faces, hence reducing microwave losses to-
wards the edges of the major fiat surfaces. In general, the
losses determined by Eq. (11) depend in a rather compli-
cated way on the frequency, the anisotropic resistivities,
and the sample dimensions.

The convergence of the double summation in Eq. (11)
is extremely slow, particularly for the reactive com-
ponent. It is therefore convenient to replace one of the
summations by an analytic expression similar to that ob-
tained for the infinite slab geometry, as described in the
Appendix. The effective permeability of the platelet crys-
tal can then be expressed as

tan(yra„/2) tan(yrym /2)
p(ra) = g, +

um yt +n Xm

where

(15)
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The above expression converges relatively rapidly and
can readily be evaluated using standard computer rou-
tines.

Both terms in Eq. {15)depend on the ratio of the ap-
propriate skin depth to the sample dimension, as in the
in6nite thin slab geometry, but in addition also depend on
the ratio

p, a (a/5, )

PcC (c/5, )

Microwave Seld penetration through both the fiat faces
and the side edges reduces the size of the loss peak, as in-
dicated in Fig. 3, where we show a two-dimensional plot

32 1 tan(m a/2)
Asymmetric

n
(16)

which is equivalent to the result for an isotropic square
rod. This function is plotted in Fig. 4 as a function of
2(a /5) =2(c/5, ), where comparison is made with
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FIG. 4. The dependence of the complex magnetic permeabili-
ty p,„„„,of a rectangular rod with cross-section dimensions
such that a /p, =b /p, (equivalent to the isotropic square
cross-section rod problem) compared with p evaluated for a
finite thickness slab, both plotted as a function of copoc /p, .
The solid lines represent the resistive components and the
dashed lines the reactive.

of the imaginary (loss) component of y(ro) as a function
of pc/copen and p, /copse . This diagram shows that the
affect of considering microwave losses from all four faces
parallel to the field is always to reduce the peak in mi-
crowave loss relative to that calculated across any two
parallel faces alone. By symmetry, the minimum value of
the loss peak occurs when p, c2/p, a =1,where
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p(co) evaluated for the thin slab geometry. These calcula-
tions place absolute limits on the magnitude of the loss
peak observed in any ac or microwave absorption mea-
surement of between 0.366 and 0.417 of the power fiow-

ing into the equivalent free-space volume. %e note that,
for purely resistive microwave losses, changes in samp1e
anisotropy with temperature or field can only vary the
size of the loss peak by 13% below its maximum value.

In a cavity perturbation experiment the (complex) frac-
tional shift in frequency introduced by a small platelet
can be written as

0.3
T

0.25

0.2

+ 0.15

O. l

40 60

Temperature (K)

80 100

h, X sample volume= ——(1—p)f 2 fh'„„,,„d'r

where h, is the microwave field at the sample position
and ii„„;,„ is the cavity field. Provided the geometric fac-
tor associated with the field distribution within the cavity
is known, measured changes in resonant frequency and Q
factor can be used to derive absolute values for the
changes in the real and imaginary components of p(co).

B. Suyerconducting state

In the Meissner state, the electromagnetic field
penetrates a distance A,(T) into the sample. We confine
our discussion to situations where this length is very
much less than the sample dimensions. The power ab-
sorption P(co) per unit length in the field direction of a
platelet crystal is then simply the sum of the power ab-
sorbed on the major faces and the edges, given by

P(co)= (Z, a +Z, c )h

We assume a two-fiuid model for the anisotropic super-
conductor such that

Z, , =iso@ A,O, +(1/2)co poA, ,o.. .
where the subscripts refer to the appropriate crystallo-
graphic directions, and the penetration depth and the
quasiparticle conductivity in both directions will depend
on temperature. The reactive contribution from the fiat
faces relative to the edges is therefore ah, , /ck, „while the
ratio of the resistive components is ak, cr, /cA, ,a, . A
possible method to distinguish between the contributions
from the fiat faces and the edges would be to use a rec-
tangular rather than a square platelet and to perform
measurements first with the long edge and then with the
short edge parallel to the field, which would allow an in-
dependent evaluation of all four unknowns provided the
sample properties are uniform.

In a high-T, superconductor an applied magnetic field
perpendicular to the ab planes introduces flux lines or
two-dimensional pancakes, which at low temperatures
are forced to oscillate about their pinning sites by the in-
duced microwave currents. This leads to an increased
penetration depth A,c, the Campbell penetration depth, '

related to the strength and spatial variation of the pin-
ning potential, and to additional damping from viscous
flux flow. ' ' At su%ciently high temperature the flux
lines are thermally excited out of their pinning sites and
are subject only to resistive damping. If this damping is

FIG. 5. R, as a function of temperature for a thin platelet
2212-BSCCO single crystal with rf field parallel to the Sat faces
and external dc magnetic fields parallel to c.

described by a Aux-Sow resistivity of the form proposed
by Bardeen-Stephen, ' with p (B-/B,2)p„, the efFective
penetration depth will be -(B/B,2)'~ 5„, which ap-
proaches the normal-state value at T,z(B).

While measurements on YBCO thin films 3 and single
crystals are consistent with an approximate B ' depen-
dence, this is not observed in 2212-BSCCO single crys-
tals. In 2212-BSCCO an anomalous peak in the loss has
even been observed in one crystal, which moves to lower
temperatures on increasing field, as illustrated in Fig. 5.
We account for this behavior by assuming that in the
normal state the microwave penetration depth through
the thin edges of the crystal is larger than the lateral di-
mensions of the crystal (-2 mm). As the sample is
cooled through T„ the resistance in the c direction even-
tually decreases until the penetration depth becomes
comparable with the lateral dimensions of the major
faces of the crystal resulting in the expected peak in mi-
crowave loss, the loss going to zero at lower temperatures
as the resistance decreases further. As expected the peak
moves to lower temperatures in the presence of a magnet-
ic field because of the B dependence of the c-direction
resistivity. ' ' If a simple resistive model for the conduc-
tivity along the c direction is assumed, with microwave
losses entirely determined by penetration through the
edges, an estimate of p, ( T,B ) can be inade.

In practice, as we have shown above, the size of the
loss peak will depend on the resistivities parallel to the ab
planes and c directions, but assuming resistive losses only,
the peak height can only vary by 13%%u&. A resistive model
alone therefore cannot account for the much larger varia-
tions in peak height observed in Fig. S. The larger varia-
tion in height of the loss peak can, however, be modeled
by including a reactive term in the conductivity along the
c axis, as would be expected if we model the conductivity
in terms of parallel arrays of weakly coupled resistively
shunted Josephson junctions, as proposed to describe the
V(I) characteristics and coherent microwave radiation
for small single crystals.

III. PERPENDICULAR FIELD CONFIGURATION

A. Normal state

Microwave cavity perturbation measurements are fre-
quently made with platelet crystals oriented perpendicu-
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h, (r)=ho'&1—r'+ m&r'
' (20)

where r =x la is the normalized radial distance. The sur-

lar to the microwave h field, as illustrated in Fig. 1(b).
The induced microwave currents then fiow parallel to the
ab plane so that crystalline anisotropy is no longer a
problem.

At su5ciently high frequencies, the normal-state mi-
crowave penetration depth 5„will be much less than any
crystal dimension, so that the field distribution over the
surface can be approximated by assuming near perfect di-
amagnetic behavior. An estimate of the surface fields for
a fiat platelet slab can then be made from the known solu-
tions for an oblate ellipsoid of revolutions of the same
maximal dimensions, as illustrated in Fig. 6. In a recent
paper, Parvin et al. i have derived the general result for
the ac response of a conducting oblate spheroid over the
whole frequency range, from low frequencies giving near
coinplete fiux penetration to the high-frequency situation
considered here.

At high frequencies, the problem is reduced to consid-
ering the microwave losses —,'h, Z, per unit area of the
surface, where h, is the component of the microwave field
parallel to the surface. This can be evaluated by noting
that the h field inside a uniformly magnetized ellipsoid of
revolution is uniform and is equal to the external field ho
at the perimeter. For a diamagnetic ellipsoid of revolu-
tion with c la « 1, ho =h,»h, z/(1 D), w—here
D=l —(ir/2)(c/a), 2s so that ho=(2/mn)h, »h, z with
m =c/a.

Simple geometrical considerations then enable us to ex-
press the field parallel to the surface as a function of radi-
al distance as

FIG. 6. A flat platelet crystal and the circumscribed ellipsoid
of revolution referred to in text. Note that the internal field in-
side the ellipsoid is uniform and is equal to ho =(2a/m. c)X the
applied microwave field amplitude at a distance from the sam-

ple.

P(.r) I —h, Z, d=s
r ]

(21)

so that the normalized integrated power absorption is
given by

face field normalized to ho is plotted for a few representa-
tive m values in Fig. 7. Note the very strong field
enhancement within a normalized distance -m /2 from
the edge.

The microwave power fiowing into the sample is even
more peaked towards the outer edges because of the
singularity in surface area with respect to r at the perime-
ter. The microwave power, —,'h,~Z, per unit area, contrib-
utes to an integrated power input P(r) as a function of
normalized radial distance given by

P(r) ~ mr3 dr J~ mr dr
P(1) 0 Ql —r +m r Ql —r 0 Ql —r +m r gl —r

(22)

which is illustrated in Fig. 8 for the same m values used
in Fig. 7. The energy absorption is very strongly peaked
within a short distance -m a =c la of the outer perim-
eter. For example, for a crystal with aspect ratio
a/c =10, -50% of the power absorbed is concentrated
within 1% of the radial distance from the outer edge of
the ellipsoid. Although the exact behavior will clearly be
highly shape dependent, we would expect a similar
behavior for a fiat platelet crystal, with the major power
absorption being strongly concentrated towards the outer
perimeter edges of the fiat crystal faces. There will be a
major contribution from the edge faces also. The degree
of perfection of such edges may then be more important
than the perfection of the major Sat area, most of which
contributes very little to the microwave power absorp-
tion.

B. Suyerconducting state

0.9--

h(r)
h(a) 0.7--

06--

0.5--
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0.2--

0.1--
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FIG. 7. The field h, (r) parallel to the surface as a function of
normalized radial distance normalized to the field h, (1) at the
edge for representative values of m = c/a.

In this configuration, the microwave currents and
losses will again largely be concentrated very close to the
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current, component to account for the observed variation
in peak height.

In the perpendicular configuration, the large demag-
netizing factor causes a large concentration of the mi-
crowave field towards the outer perimeter of the crystal.
For an oblate ellipsoid of rotation circumscribed by the
platelet volume, the microwave losses are concentrated
within a distance -c /a of the perimeter. Although this
concentration of microwave field towards the outer edges
of a crystal will, in practice, be strongly shape dependent,
it is always likely to be important in practice. Care must
therefore be taken to avoid damage to the outer edges of
a crystal, if the microwave measurements are not to be
degraded by localized defect structures.

FIG. 8. The normalized power absorbed P (r}within the nor-
malized radial distance r, for representative values of m =c/a,
illustrating the extremely strong peaking of power absorption
towards the perimeter of the sample.

outer perimeter, as remarked above. Flux is effectively
excluded over a sphere of radius a, so that the changes in
moment on making a transition from the normal to the
superconducting state are -4na [5,—A,(T)+El(T)],
compared with -2na [5,—A,(T)+b,l(T)c/a] for the
parallel configuration, where hl( T) is the change in a di-
mension over the measured temperature range. The sen-
sitivity is therefore not very different for the two
configurations. In both cases it may be necessary to
make corrections for changes in the magnetization due to
thermal expansion, which will be more important for the
perpendicular field orientation. These corrections inay
significantly affect the derived reactive component of the
surface impedance. In general the losses in the supercon-
ducting state in this configuration depend on geometric
factors, which are usually poorly defined. Most authors
therefore simply quote measurements in the supercon-
ducting state relative to those in the normal state just
above the transition, which are assumed to be given by
the measured (or assumed) normal-state resistivity.

IV. CONCLUSIONS

In conclusion, we have considered the microwave
properties of the anisotropic thin platelet high-T, crystals
oriented with their major flat faces parallel or perpendic-
ular to the oscillating h field for both normal and super-
conducting states.

In the parallel field configuration, the microwave prop-
erties in both the normal and superconducting states are
strongly influenced by the very large anisotropy of the
resistivity parallel and perpendicular to the ab planes. In
addition, finite-size effects can lead to an anomalous peak
in the absorption below T„ if the microwave penetration
depth in the normal state is larger than the sample di-
mensions. This accounts, at least qualitatively, for the
temperature and field dependence of a peak in the mi-
crowave loss below T, observed in some 2212-BSCCO
crystals, though the conducting properties along the c
direction must be generalized to include a reactive, super-
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APPENDIX

To evaluate Eq. (13) for the complex power per unit
length flowing into a finite thickness slab, we first rewrite
P, (ro) in the form

ia)poh ac
P, (rd) = p(co), (Al)

where the effective permeability may be written as

8 1 A
(A2)

and A =p/po(m/c) m =am, where m is an odd in-

teger. Equation (A2) can then be rewritten as

8 l
p(rd) =

77 ~ odd m + / 67/Q
(A3)

m-odd m P

so that

modd m P

tan(m. P/2)
rrP/2

tan(m p/2)
2P

(A4)

(A5)

The surface resistance Zz for the slab geometry is given

by equating the energies per unit area flowing into the
two surfaces Z, h =i coppoah /2, so that

where P =co/ia.
To evaluate this series, we consider the contour in-

tegral g [tan(z~/2)/(z —p )]dz around a contour along

the imaginary axis and a semicircle at infinity enclosing
the poles 2/m ( m —z ) of the tan function when z =m

(positive odd integers) and the pole at +p. The integrals
along the imaginary axis and at infinity are zero. We
may therefore write
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tan(trP /2)
Zs =lotto

= iZo tan(kc /2), (A6)

( ) 64~ 1 1 1 1
4 2 2 2 2 2

where Zo =Qicopop and k =+cope/ip, which is the re-
quired result.

%e now consider the more general case of the platelet
crystal with rectangular cross section, where p(co) may be
written as and

ppa = l'co
Pc

r '2
a Pa&—l m'

2pre

64 +nm 1
p( )=

nm n m ~nm +~~ (A7)

Po
l 'CO

Pa
n

2
Pa&

with

We may write Eq. (A7} as

'2

(A8}

Each term can now be summed separately over one of the
integers to give

tan(ma„ /2) tan(n y„/2)
p(to)=

3 g +
n +n Yn

(A 10)

which is now a rapidly convergent series of the single odd
integer n.
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