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We carry out a numerical study of the transmittance in a three-dimensional disordered Anderson
model and study the weakly localized regime in the vicinity of the mobility edge, by the vector-recursion
method of Godin and Haydock. This regime is straddled by stochastic resonant states and characterized
by negative magnetoresistance. These stochastic resonances are very diferent in character to the strong
fluctuations in the extended regime which arise due to lead-sample mismatch at the boundary.

Since Anderson's' suggestion that, unlike crystalline
systems, where the electronic states are extended over the
system, sufficient disorder can localize electron states
within the allowed energy band, the physics of quantum
transport in disordered materials has received much in-
terest. The most successful theory to date is the one-
parameter scaling theory, the main prediction of which
is that in one and two dimensions almost all electronic
states of a disordered Hamiltonian are localized. Howev-
er, for systems with higher dimensions there exist sharp
energy barriers between parts of the band which are lo-
calized and those that are extended. Though the predic-
tions of the one-paraineter scaling theory of localization
explains the gross features of quantum transport in disor-
dered media, there are several finer points which are not
taken into account by the configuration averaging in-
herent in that theory. There are indications that al-
though the one-parameter hypothesis is correct, the ana-
lytic approximations used for the scaling function may be
questioned. Questions have also been raised regarding
the correct choice of the scaling variable. Recent analyt-
ic work in one dimension based on the invariant embed-
ding method and random matrix theory predicted
features which are obviously not captured by the simple
one-parameter scaling theory.

Since in two and three dimensions analytic work be-
comes increasingly difficult, one has to rely on numerical
techniques. Recent numerical works on two dimen-
sions suggest that though all states in two dimensions are
localized, there exists a pseudomobility edge separating
exponentially or strongly localized states near the band
edges and nonexponential or weakly localized states near
the band center. This is contrary to the predictions of
one-parameter scaling ideas. It has also been observed
that the transmittance in two dimensions is dominated at
T=O by stochastic resonances, which are probabilisti-
cally exceptional transparent states close to this pseu-
domobility edge. This is a feature which is lost under
configuration averaging and therefore absent in one-
parameter scaling ideas.

The scenario for three dimensions is quite interesting.
Mott, using classical ideas of loafe and Regel' about the
mean free path in disordered materials, argued that at
T=O there exists a minimum metallic conductivity o. ;„
which for three-dimensional systems is of the order of the
inverse interatomic spacing ( —kf). The scaling theory

calls Mott's prediction into question, and argues that
below cr;, quantum interference effects will reduce the
conductivity even further, so that the conductivity con-
tinuously falls to zero at the mobility edge. The metal-
insulator Anderson transition in three dimensions is thus
a continuous transition with o ( T =0)=(E E,)—
where Ec is the mobility edge and p the critical exponent
=1. The one-parameter hypothesis for the continuous
Anderson metal-insulator transition at the Mott mobility
edge is consistent with experiments" on the
temperature-, frequency-, and magnetic-field-dependent
resistivity of disordered conductors. The physics at and
close to the mobility edge (0 & o & o „) in three dimen-
sions appears to be interesting. The narrowness of the
critical region and the effect of electron-electron interac-
tion make a comparison of experiments with scaling pre-
dictions not clear cut. Tit et al. ' anticipated that in a
three-dimensional Anderson model the mobility edge Ec
separates exponentially localized states from resonant
states which extend from Ec [where tJ(Ec )=o;„] to
Ec. On the other side of Ec one has extended difFusive
states. Recently Karpov' employed a modification of
the optimum fluctuation method to demonstrate that
long-lived resonant electronic states lie above the mobili-
ty edge of a disordered system. He further demonstrated
that the density of such states decays exponentially with
energy above the mobility edge into the extended states,
and the tail is almost symmetric to the tail of localized
states with respect to the mobility edge. He further ar-
gued that the signature of such a state is negative magne-
toresistance. He supplemented his arguments with the
large negative magnetoresistance recently observed in the
amorphous alloy of Cd43S157 (Ref. 14) near the metal-
insulator transition.

The main objective of this work is to study the quan-
tum transmittance of a three-dimensional Anderson
tight-binding model of disordered systems, and to detect
whether the coherent backscattering really develops into
resonances before fully developed localized states are en-
countered below E&. We employ the vector-recursion
method, which has been found to be stable and accurate
in a series of earlier works ' ' for determining the quan-
turn transmittance as a function of the incoming energy.
We shall study the fine structure in the transmittance,
and determine by a scaling argument whether resonances
exist near the mobility edge. Further we will supplement
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The nearest-neighbor overlap term V is chosen to be 1 .
This sets the scale of energy in the system. The site ener-
gies are uniformly randomly distributed between —W/2
and W/2.

The choice of the lead overlap VL determines the ener-

gy window in which electrons can propagate without de-
cay in the system.

The essence of the vector-recursion technique is the
block tridiagonalization of the system Hamiltonian
witkout changing the lead Hamiltonian. This is achieved
by a change of basis. The restriction leaving the lead
Hamiltonian unchanged makes the transformation slight-
ly diff'erent from the traditional Langos method. As the
method has been described in detail by Godin and Hay-
dock as well as our earlier work, here we shall describe
only those salient points which would be relevant to our
present work.

A representation of the original basis is a column vec-
tor of length N. A representation of our basis are N XM
matrices. The members of our basis are generated in the
following way: we give an example of the case where
M=2, where there is only one incoming and one outgo-
ing lead. The starting state where the leads join the sys-
tem is chosen to be

The subsequent members of the basis are generated
from the recursive relations

82 i@2)=(H —A, ) 4, ),
g t+) ~C&„+,) = —(H —A„)~4„)—8„~4„—& ), n ~ 2 .

(2)

The elements [ A„,B„]are MXM matrices. The wave
function has a representation ~%) =g„%„~4„),where

are the wave-function amplitudes in our basis. They
satisfy an equation identical to (2). The solution in the
leads are known, since the periodicity of the potential in
the leads to wave-function amplitudes proportional to
exp(in'). The wave function on the nth member of the
basis is given by V„=X„+p+Y„+„where X„and Y„are
M XM matrices which satisfy the same recursion rela-
tions as the basis with EI replacing the Hamiltonian H.
They also satisfy the boundary conditions:
Xp =I Yp =O' X

&

=0 Y] =I. Now, origina11y the rank of

our studies with the eSect of magnetic field on transport
properties in this region.

Our system is a three-dimensional cubic lattice with N
sites. The Hamiltonian is taken to be a tight-binding,
nearest-neighbor overlap type of model with disorder
only in the diagonal terms. To this cubic lattice we at-
tach M semi-infinite perfectly conducting leads. The pur-
pose of these leads is to bear the incoming reflected and
transmitted waves into and away from the sample. The
Hamiltonian is given by

H., pg,
=g e; I

i & & '
I
+~& I

i & & jI,
l J

H„„,= V~ g gfi&(jf .

the sample basis space since was N, the number of our
basis members are N/M=@, since our basis is produced
by bunching M of the old basis members together. This
leads to another boundary condition: 4 +,=0.

We have shown earlier that this leads to an equation
for the scattering S matrix: S(E}=—[X~+,+ Y +,
Xexp(id)] [X +,+ Y +&exp( —i8)], and the transmit-
tance is given by T(E)= ~S&2(E) ~

.
In the presence of an external magnetic field the Ham-

iltonian of the sample is modified:
~'

H=ge, ft && i f+ Vy y exp— f'A ds ii &(ji,

where $0 is the unit of quantum Hux, A is the vector po-
tential. The Hamiltonian remains Hermitian, so that the
spectrum is still real. However, because the Hamiltonian
matrix elements are complex, the vector-recursion equa-
tions are trivially generalized.

We have calculated the transmittance as a function of
energy for samples ranging in size from 103 to 203, and
disorder ranging between W/V=1. 0 and 4.0. In each
case, there is a steep drop in the transmittance at a par-
ticular energy E~. In practice, to locate the precise posi-
tion of the mobility edge which separates extended and
weakly localized states is numerically very difficult. The
sharp drop of transmittance is suggestive of a mobility
edge which lies between the band edge of the disordered
sample and that of the corresponding ordered one (with
W= 0}.

Figures l(a) and 1(b) show the plot of the lo arithm of
the transmittance for a cubic sample with 10 sites and
disorder W/V=O (an ordered sample) and 2.0, respec-
tively. For the ordered sample the band edge is at 6 V.
amd for the disordered samples the band edge is given by
the Gershgorin theorem and the Lifshitz criterion' to be
at 6V+ W/2. The energies along the x axes in the two
figures are scaled by their respective half- bandwidths.
The perfectly conducting linear leads are attached to the
corners on opposite faces of the sample at the two ends of
the body- diagonal, and the hopping integral in the leads
is so chosen that the lead bandwidth is equal to that of
the sample bandwidth.

For the crystalline sample, one obtains evanascently
decaying states beyond the band edge. This leads to a
steep fall in the transmittance. We see this in Fig. 1(a).
We also note that within the band the transmittance is
high, but not equal to unity. As discussed by Godin and
Haydock, this is due to the scattering from the sample
boundary and the leads. This lead-sample mismatch re-
sults in resonant coupling between the lead and the sam-
ple states, producing sharp structure in the transmittance
inside the band.

For the disordered sample 8'/ V=2.0, shown in Fig.
l(b}, the band edge is at 7 V. One observes a sharp de-
crease of transmittance analogous to the crystalline case,
but well within the band, suggesting the presence of
universa11y accepted mobility edge in the three-
dimensiona1 Anderson model.

Once we have identified the position of the mobility
edge approximately, the first step is to determine
transmittance, highly resolved in energy, in the neighbor-



50 BRIEF REPORTS 4869

A

LL1

C
V

(a)

(b)

extended part of the spectrum (E/V= 1.0—2.0), and Fig.
2(b) shows the same near the mobility edge
(E/V=4. 0—5.0) for a cube of size 103, and W/V=2 for
a specific configuration. Just within the mobility edge we
note dense sharp resonances resembling the stochastic
resonances we found in one- and two-dimensional Ander-
son models. The transmittance fluctuations in the ex-
tended regime are denser compared to the transmittance
near the mobility edge.

Figures 3(a) and 3(b) show much resolved plots of
transmittance vs energy in the two regimes discussed in

I
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FIG. 1. (a) ln, transmittance vs energy for a cubic lattice of size 10
without disorder. The energy E is expressed in units of half-bandwidth
8. (b) Same as in (a) but with disorder W/V=2. 0, where V is the
nearest-neighbor overlap term in the lead.

Q70

hood of this region, and to examine whether it is dom-
inated by stochastic resonances as indicated earlier. We
have to carefully distinguish between the resonances near
the mobility edge and the fluctuations in the extended re-
gime caused by lead-sample mismatch. Figure 2(a) shows
an energy-resolved plot of transmittance vs energy for the

1240 1244 1247 1251 1254 1258 128t 12K

E/V

ON

Q50 ) '~

Q40 P

MO
' ' '''' ''' ' '' '''' ''' '' '' . . '. -. .~ML.al~Jk.~~k.Label I ~ 4J

4874 4Sl5 4Sf6 4876 4877 4SI8 4879 4gi80 4680 488t 44k

E/V

1N 140 150 180

E/V (c)

ij &, . i .Ij. +,M, ) . ,Ji. LJ.Ll~
4N 4$) 420 43l 4AO 450 4N 470 4N 4N 5N

E/V

FIG. 2. (a) ln, transmittance vs E/V, where V is the nearest-

neighbor overlap term in the lead, in an energy window in the extended
regime. (b) ln, transmittance vs E/V, where V is the nearest-neighbor
overlap term in the lead, in an energy window near the mobility edge.
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FIG. 3. (a) A resonance in the extended regime arising due to lead-
sample mismatch, shown in a much resolved energy window. (b) A sto-
chastic resonance with a Lorentzian shape in the weak localized regime
in a much resolved energy window. (c) The decrease of resonance width
with size for a stochastic resonance. We show the full width at half
maximum as a function of L/a, where the system is a cube of sides of
length L, and a is the lattice spacing.
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the earlier paragraph. In the energy regime
[4&E/V &5] we observe the resonance shape be
Lorentzian, characteristic of stochastic resonances as de-
scribed by Pendry' and Azbel. ' This Lorentzian shape
of the resonance is easily understood within the model.
Since a resonance at a real energy E arises out of a
second-order pole of the propagator in the complex ener-

gy plane at E+I,y, the resonance shape, related to the
imaginary part of the propagator, is a Lorentzian cen-
tered at E and with a half-width y /n. .

The stochastic resonances observed in the weak local-
ized regime are detected for larger sample sizes ranging
from 12 to 20 . These resonances are found to be slight-
ly shifted in energy as the size increases and the width
rapidly decreases. Figure 3(c) shows the plot of full
width at half maximum vs system size for a particular
stochastic resonance which we have tracked with increas-
ing size. We find that the width decreases with size in
agreement with Azbel and Pendry's idea. However, no
such feature is observed for resonances arising due to
lead-sample mismatch. The same feature persists for res-
onances in other configurations.

Our next step is to identify whether the weak localiza-
tion develops in the region near the mobility edge, which
is dominated by the stochastic resonances. An important
aspect in which the quantum diffusion differs from the
classical transport is the phenomenon of coherent back-
scattering. As long as the scatterings are elastic and time
reversa1 invariant, the scattered waves in the backward
direction are coherent in time and therefore exhibit con-
structive interference. This introduces a negative correc-
tion to the classical diffusion constant. As the scattering
strength increases, this correction due to back-scattering
effect increases. This results in the reduction of conduc-
tivity beyond o. ;„. In the weak-localization region the
quantum interference effect should begin to show up. If a
magnetic field is now applied, the time-reversal symmetry
responsible for producing the backscattering effect is bro-
ken, and one expects an increase of conductance (or
transmittance). To look at this we have calculated the
transmittance with magnetic field applied to the sample.
This is displayed in Fig. 4, where we plotted
configuration averaged ln (transmittance) vs energy for a
cube of size 10 with strength of disorder W/V=2. 0, in
the absence and in presence of a magnetic field of
strength H=0. 08 expressed in units of fraction of quan-

tum fiux Po. We have used typically 50 configurations for
the averaging procedure. A comparison of the two plots
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FIG. 4. ln, transmittance vs E/V, where V is the nearest-neighbor

overlap term in the lead, for a three-dimensional disordered Anderson
model of 10 sites and disorder W/V=2. 0, with and without magnetic
field.

shows that in the presence of the magnetic field there is
no appreciable change in transmittance in the extended
region, while transmittance begins to increase in the knee
region with E/V between 4 and 5, and is supposed to be
the weak-localization regime. One obtains a negative
magnetoresistance in this region, as expected by Karpov
and also experimentally observed by Gantmakher et al. '4

This is clear from Fig. 4.
Our numerical work suggests that the weak-

localization regime in the disordered three-dimensional
Anderson model is dominated by stochastic resonances.
Such resonances, which were anticipated earlier, find
confirmation in our numerical work. Furthermore, it ap-
pears that sharp resonances arising in the extended re-
gion due to lead-sample geometry mismatch are quite dis-
tinct in character from those due to probabilistically ex-
ceptional stochastic resonant states in the localized re-
gime. This is indicative of the fact that an electron may
become localized due to geometry mismatch even in the
absence of any disorder, which needs further investiga-
tion.

In conclusion, we have studied the transmittance in the
weak localized regime of a three-dimensional disordered
system, and our work indicates that resonating states
dominate the spectrum near the mobility edge before the
fully developed localized states appear below in the spec-
trum.
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