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We have performed ab initio calculations of the energies of antiphase boundaries as well as
complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the

face-centered-cubic L1l2 and DO;; structures.

The calculations were performed by means of a

Green’s function technique based on the linear-muffin-tin-orbitals method within the tight-binding

and atomic-sphere approximations.

I. INTRODUCTION

A large class of ordered A3B compounds forms in
the L1, structure, which is a superlattice based on a
face-centered-cubic (fcc) structure, where the minority
B atoms occupy one of the four possible basis positions.
As a result of the cubic symmetry the compounds in the
L1, structure possess the maximum number of slip sys-
tems and often exhibit ductile behavior. A different class
of A3B compounds forms in the tetragonal DO2; struc-
ture, which is also a superlattice based on the fcc struc-
ture. Typically, the ordering tendency of such transition-
metal compounds has been related to the electron to
atom ratio.! Empirically one finds that in compounds
with more than 8.65 electrons per atom the minority
atoms occupy a simple rectangular lattice within each
close-packed layer, while in compounds with fewer than
8.65 electrons per atom the minority atoms occupy a hon-
eycomb structure within the close-packed layers. For fcc
based compounds the first case leads to the tetragonal
DO,5 structure and the second to the cubic L1y struc-
ture. In contrast to the L1, compounds, intermetallics in
the DO, structure are often observed to be less ductile
and this is conventionally ascribed to the lower symmetry
resulting in fewer equivalent split systems.

The mechanical properties of ordered A3 B compounds
are affected by the existence of superdislocations?® and
by the formation of extended superdislocations, which
consists of partial dislocations bounding stacking faults
or antiphase boundaries (APB’s). It turns out that the
energies involved in the formation of these antiphase
boundaries and stacking faults are instrumental in most
theories of the yield behavior of ordered intermetallics.
In particular, the ratio of different fault energies is a pa-
rameter which affects the relative stability of the core
structures of various extended dislocations.® However, as
pointed out by Yoo,” also elastic anisotropy effects play
an important role in determining the core structure of
extended dislocations. Recent theories of the yield stress
behavior and the dislocation core structure of L1, inter-
metallics has been summarized by Sun and Hazzledine,®
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who also reference most of the previous work.

In the context of extended dislocations, the stacking
faults most commonly encountered are the superlattice
intrinsic stacking fault (SISF) and the complex stacking
fault (CSF), which both cause an intrinsic stacking fault
in the underlying fcc lattice. The two types of faults dif-
fer in that the SISF conserves the nearest neighbors of all
the atoms whereas the CSF causes minority atoms to be-
come nearest neighbors. The APB’s found in connection
with the extended dislocations are the plane boundaries
between domains in which the minority atoms occupy
different basis positions in the unit cell. In contrast to
the stacking and twin faults, they preserve the fcc lattice.

It is possible with some caution to estimate the ener-
gies of extended faults from experimental observations,
but the values obtained may depend on the models used
in the interpretation. In this situation it is important to
be able to obtain the faults energies from theoretical cal-
culations. In the past there have been a number of such
calculations, most notably the full potential calculations
by Paxton® and Fu et al.,* who used a supercell geome-
try to describe the extended faults. In the present study,
we apply a linear-muffin-tin-orbitals (LMTO) interface
Green’s function technique,® which has the advantage
over the supercell approach in that it gives the energy
of a single fault in an infinite medium. It is, on the other
hand, based on the atomic-sphere approximation (ASA)
and does not include the effect of relaxation of the sur-
face geometry. The method has, however, proven to be
highly accurate in calculations of surface energies'® and
stacking fault energies'! of metals as well as exchange
interaction in magnetic multilayers.!2

Here we present calculations of the antiphase bound-
ary energies related to close-packed (111) and cube (001)
planes as well as the energies of the complex and su-
perlattice intrinsic stacking faults. The calculations were
performed for six intermetallics observed in the cubic L1,
structure and three intermetallics in the tetragonal DO»,
structure. In the cause of the calculations we encountered
a few compounds where the antiphase boundary energies
were negative and these will be presented in a study of
the formation of long-period superstructures.!?
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A. Experiment

The experimental determination of APB and stacking
fault energies of intermetallic compounds are based on
observation of partial dislocations by transmission elec-
tron microscopy (TEM). The field has recently been re-
viewed by Veyssiére,'* who also discusses the accuracy
of TEM determination of APB’s and the difficulties con-
nected with the interpretation of dislocation images. Fur-
thermore, the experimental determination of fault ener-
gies requires knowledge of elastic constants, and the en-
ergies derived depend on the type of elasticity theory
applied. Douin et al.'® reported a dramatic reduction of
the APB energies of NigAl when elastic anisotropy was
included in the calculation.

In the case of APB’s a further complication is caused
by the possibility of an APB spreading onto other crystal
planes. This may not be detected by TEM. A number
of workers have pointed out the importance of chemical
relaxation, i.e., local disorder near APB’s. This subject
has been reviewed by Morris.'® The effect of chemical
relaxation is to cause a temperature-dependent decrease
in the observed APB energy from its low temperature
value. Chemical relaxation may be important already at
temperatures well below the ordering temperature.

Similar to the determination of stacking fault ener-
gies in elemental metals, the determination by TEM of
APB’s and stacking faults in ordered compounds is es-
pecially difficult when the fault energies are high. The
experimentally determined APB and stacking fault en-
ergies have been collected by Veyssi¢re,'* who also cites
most of the previous work. It may be noted that the
majority of observations of APB’s and stacking faults in
intermetallics have been performed for NizAl.

B. Theory

Recent theoretical work on stacking faults and an-
tiphase boundaries in L1, intermetallics include the
local-density calculations by Paxton,® who used the full
potential (FP) LMTO method in the supercell approach
to calculate fault energies on close-packed planes in the
compounds CuzAu, Pt3Al, and NigAl. Fu et al.® used the
full potential linearized augmented plane wave (FLAPW)
method to calculate the (001) and (111) APB energies
and the CSF and SISF energies in Ni3Si and NizAl. Pei et
al.l” extracted (001) APB energies for Co3Ti in the L1,
and Ni3V in the DQ,; structures from a LMTO ASA
calculation of structural energy differences. In a study
of the influence of chemical order on dislocation struc-
ture, Dimiduk et al.'® calculated the (111) APB and the
CSF energies in NizAl by means of the embedded atom
method. In a study of dislocations and grain bound-
aries, Vitek et al.l® calculated (001) APB, (111) APB,
and stacking fault energies in CugAu and NizAl by em-
ploying an empirical potential of the Finnis-Sinclair type.

II. GEOMETRY

Below we shall briefly outline the geometry of the
antiphase boundaries and stacking faults for which we
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have calculated the energy of formation by the interface
Green’s function technique. To do so, we follow the work
of Amelinckx,? Paxton,® and Yamaguchi et al.%

An antiphase boundary may be viewed as the plane
boundary between regions with perfect order. However,
as a consequence of the degeneracy with respect to A and
B occupation of the underlying lattice, the superstruc-
ture within each region may not match. Hence APB’s
may form as a consequence of an ordering process, where
identical atoms occupy different sublattices in different
regions of space. From a formal point of view, APB’s
may be constructed by translating the atoms on one side
of the APB plane relative to the atoms on the other side,
by the fault or shearing vector, which is a lattice vector of
the underlying close-packed crystal structure, but not of
the superlattice. The APB’s described by a translation
vector are of the so-called conservative type, as opposed
to nonconservative APB’s which may only be formed by
removing a number of atomic layers. As a result, the
nonconservative APB may alter the stoichiometry locally.
In the present study, we will consider only conservative
APB’s, the energies of which are determined solely by
changes in the chemical environment of the atoms near
the APB.

APB’s are observed not only as defects in growth
processes but also in the splitting of superdislocations
formed in the mechanical deformation of a solid. In the
latter context, the APB is formed when a dislocation
splits into superpartials in the process

[0T1] - {0T1] + {oT1], (1)

where the superpartials on the right-hand side of the re-
action are separated by an antiphase boundary. In the
L1, structure, both the (001) and (111) APB’s have the
fault vector %a[ﬁli], where a is the lattice spacing.

In Fig. 1 the atomic positions in a close-packed plane
is shown schematically and the positions of the minority

FIG. 1. Close-packed plane in the L1, structure. Shaded
circles indicate the position of minority atoms, while open
circles denote the position of majority atoms. Light shaded
circles and dark circles indicate position of minority atoms
in the close-packed layers below and above. Fault vectors of
the (111) APB, the complex (CSF), and superlattice intrinsic
(SISF) stacking faults are shown as &, ¢, and 3, respectively.
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atoms in the adjacent close-packed layers are sketched.
It may be seen from the figure that no minority atoms
are nearest neighbors in the L1, structure. An APB
on a close-packed plane is formed by moving all layers
above the close-packed layer by the vector a in the figure.
This shear operation causes minority atoms to become
nearest neighbors, as may be seen from the figure, where
translation of dark spheres by the vector a brings dark
and shaded spheres into contact.

The superlattice intrinsic stacking fault is the planar
fault formed by translating all atoms above an arbitrary
close-packed plane by the fault vector 3a[121], indicated
in Fig. 1 as vector s. This shear operation causes an
intrinsic fault in the underlying fcc crystal, while the
nearest neighbors are conserved for all atoms. Similarly,
the complex stacking fault is formed on a close-packed
plane by a translation which produces an intrinsic stack-
ing fault in the underlying fcc crystal. In this case the
fault vector c is $a[121]. Because of the superstructure,
the CSF causes minority atoms in the close-packed planes
nearest to the fault plane to become nearest neighbors.

The CSF is observed in the further splitting of the
superpartial described in (1) by the Burgers or APB fault
vector 2a[011]. This splitting is analogous to the splitting
of a dislocation in an elemental fcc metal into Shockley
partials and may be described by the process

SaloT1] - %a[l?l] + sallT2], @)

where the complex stacking fault is formed between the
Shockley partials on the right-hand side of the reaction.

The SISF is formed in a process similar to the one
causing the CSF. In fact, multiplying (2) by 2 gives a
splitting reaction for a superlattice dislocation. The ex-
tended dislocation formed by this reaction consists of a
SISF separated by partials which have Burgers vectors

FIG. 2. Two unit cells of the L1, crystal structure stacked
along the [001] cube axis. Filled spheres indicate the position
of minority atoms and open spheres indicate the position of
majority atoms. Viewed along the cube axis every second
layer consists of majority atoms only.
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2 X %a[iﬂ], i.e., twice that for a Shockley partial.

In the L1, crystal structure illustrated in Fig. 2 all mi-
nority atoms have only majority atoms as nearest neigh-
bors. Since the stacking sequence along the [001] axis
consists of alternating planes of a square lattice occupied
by either A atoms only or by A and B atoms, all atoms
maintain their nearest neighbors at the APB with fault
vector %a[Oli] on a cube plane. This is in contrast to
the APB on a close-packed plane. The effect of applying
1a[011] to a cube plane is an interchange of the minor-
ity and majority atoms in each mixed plane above the
APB plane. Since nearest neighbors are conserved in the
(001) APB, one may, for strongly ordered intermetallics,
expect the (111) APB energy to be larger than the (001)
APB energy. This, at least, will be the case whenever
ordering can be assigned to a repulsive pair interaction
between the minority atoms.

The DO3; crystal structure may be formed from the
L1, structure by translating every second mixed plane
along the (001) direction by the APB shearing vector.
This is equivalent to interchanging the position of the mi-
nority and the majority atom within every second cube
plane. On the close-packed planes of the DO3, structure,
the minority atoms form a primitive rectangular unit cell;
see Fig. 3. Consequently, we cannot use the same shear-
ing vectors to define the stacking faults. We will describe
the intrinsic stacking fault also containing a chemical
fault as a CSF in the D3, structure, while the intrinsic
stacking fault that preserves nearest neighbors will be de-
noted the intrinsic stacking fault (ISF). Shearing vectors
for the two types of stacking faults are denoted § and
¢, respectively. As a consequence of the reduced sym-
metry of the rectangular unit cell, the DOs; structure
contains two different APB’s on the close-packed planes.
We will refer to the APB’s related to a; and @, in Fig. 3
as APB; and AP B,, respectively, thus matching the def-
initions used by Francois et al.20 in their study of NizV in

FIG. 3. Close-packed plane in the DO;; structure. Shaded
circles indicate the position of minority atoms, while open
circles denote the position of majority atoms. Light shaded
circles and dark circles indicate position of minority atoms
in the close-packed layers below and above. Fault vectors
of the (111) APB’s, the complex (CSF), and the simple in-
trinsic (ISF) stacking faults are shown as ai, @z, ¢, and 3,
respectively. The two lattice vectors shown represent Burgers
vectors for observed superdislocations.
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the DO, structure. These authors also describe the ob-
served core structures of the two most common extended
superdislocations which have the Burgers vectors ;a[112]
and a[110] shown in Fig. 3.

III. METHOD OF CALCULATION

The calculations were performed by means of the tight-
binding LMTO Green’s function technique,® ! which is
based on the work of Andersen and co-workers.21727 An
essential aspect of the technique is the ability, within the
ASA and in the tight-binding representation, to generate
the Green’s function matrices for a real, two-dimensional
interface by a simple and efficient procedure. The orig-
inal implementation is described in Ref. 9 and the tech-
nique was later improved by the introduction of lin-
ear response theory and a linearized Dyson equation,
which reduced the number of time-consuming iterations
considerably.10:11

Recently we implemented the so-called principal layer
technique?® to calculate the ideal Green’s function. This
technique was first applied in the LMTO framework by
Kudrnovsky and co-workers,23® who used it to calcu-
late the electronic structure of surfaces of random al-
loys within the LMTO coherent potential approximation
framework,3! and our implementation of the technique
essentially follows theirs. It has also recently been used
by MacLaren et al.32 and Crampin et al.33 The principal
layer technique has the advantage that the computational
effort scales linearly with the number of so-called prin-
cipal layers as opposed to the close to cubic scaling of
conventional approaches. Thus we are able to study in-
terfaces with at least 100 atomic layers within reasonable
computer times.

A. The principal layer technique for interfaces

The starting point of an interface Green’s function cal-
culation is the self-consistent one-electron potentials for
the perfect crystals which are to be separated by the in-
terface. Once these potentials have been obtained from
a second-order LMTO eigenvalue problem, one proceeds
to account for the changes in potential and structure
near the interface by Dyson’s equation. It is an im-
portant feature of the Green’s function technique that
one may obtain all information of the electronic struc-
ture needed in a self-consistent total energy calculation
from the Korringa-Kohn-Rostoker (KKR) ASA Green’s
function g defined by

- 9%(z,k) = [P*(2) - $*(k)] 7, @)
where P(z) is the potential function in the o representa-
tion at energy z and S<(k) is the corresponding structure
constant matrix at a particular Bloch vector k.

In the case of an interface one may slice the interface
region into a number of so-called principal layers. A prin-
cipal layer consists of so many atomic planes parallel to
the interface that hopping, as mediated by the structure

constants S, only occurs between nearest-neighbor prin-
cipal layers. In the most-localized tight-binding represen-
tation, i.e., @ = (3, of Andersen and Jepsen,2* the num-
ber of atomic planes in a principal layer of a monoatomic
solid is two or three depending on the close-packing of
the interface layers. Thus the inversion problem, which
is the time-consuming part of a Green’s function calcula-
tion, may have as low a dimension as (18 x 18) for non-f
metals.

The principal layer technique may be introduced via
the ideal Green’s function §, defined as the matrix inverse
of the tight-binding KKR ASA scattering equations for
a semi-infinite crystal, i.e.,

d(z, k) = [P(2) — S(k))] 7" (4)

Here and in the following we suppress the LMTO rep-
resentation index and assume that potential functions,
structure constants, and Green’s functions are all in the
most localized 3 representation. The ideal Green’s func-
tion defined in (4) represents a perfect crystal terminated
by PP = oo rather than by a hard-wall potential and this
termination corresponds roughly to a vacuum potential
lying 1 Ry above the occupied bands.?? In the principal
layer technique the ideal Green’s functions for the semi-
infinite left-hand crystals and the semi-infinite right-hand
crystals form the two boundary conditions which connect
the interface region to the surrounding bulk.

As suggested by Kudrnovsky and Drchal,?® the ideal
Green’s function for a semi-infinite crystal may be ob-
tained from Dyson’s equation

go,0(2,k)) = [Po(2) — So,0(ky|)
—S0,-19-1,-1(2, k) S=1,0] %, (5)

which connects an initially isolated principal layer of in-
dex 0 to a semi-infinite stack of principal layers repre-
sented by the ideal Green’s function § projected onto its
top layer of index —1. Once connected, we recover the
semi-infinite stack of principal layers for which go g is the
top-layer projection of the ideal Green’s function. For
the surface of a perfect crystal, it is always possible to
choose the principal layer so that goo = §—1,—1, and this
identity may be introduced into (5) to give a quadratic
matrix equation for the ideal Green’s function of a semi-
infinite crystal, which may be solved by iteration.

In those cases, where the lattice periodicity perpendic-
ular to the interface is considerably larger than the width
of a principal layer, one may apply (5) several times to
stack on top the semi-infinite crystal n different principal
layers that together form a sequence which is commensu-
rable with the lattice periodicity. The condition for self-
consistency then becomes g,_;,—1 = §_1,—1 and this
approach was taken in the calculation of the (001) an-
tiphase boundary of the DO3; structure where the width
of a principal layer is two atomic planes each containing
two atoms whereas the repeat unit consists of four atomic
planes and contains eight atoms. It should be noted that
once the ideal Green’s function for a semi-infinite crys-
tal is obtained, one may, by repeated application of (5),
construct the ideal Green’s function for any stacking of
layers, irrespective of the potential and the structure of
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these layers. This is one of the great advantages of the
principal layer technique.

The major steps in an interface calculation may now
be described. In the first step, one calculates the top
layer projection g{;,o of the ideal Green’s function for the
left-hand semi-infinite crystal and the top layer projec-
tion git +1,N+1 of the ideal Green’s function for the right-
hand semi-infinite crystal by the quadratic equation (5).
One then proceeds to add, one at a time, the N principal
layers of the actual interface to the two semi-infinite crys-
tals, thereby defining a left- and a right-hand sequence
of semi-infinite stacks with corresponding sequences of
ideal Green’s functions. If we denote by g{ji the top layer
projection of the ideal Green’s function when ¢ principal
layers have been attached to the left-hand semi-infinite
crystal we have, from (5),

§£i(z’kll) = [Pi(z) — Sia(ky))

—Sii—1 (k)G i1 (2, k) Sicna(ky )]
(6)

where, running from left to right through the principal
layers of the interface, i = 1,2, ..., N. Similarly, we have,
for the sequence starting from the right-hand side,

3R(2, k) = [Pi(2) — Sia(k))

=Si i1 (ky)FE 1 i1 (2. X)) Si (B )] 77
(7)

The two sequences g* and G® of ideal Green’s functions
are subsequently used to calculate that part of the inter-
face Green’s function which is diagonal in the principal
layer indices. For a given principal layer ¢ this is done
by starting from an initially isolated principal layer for
which one reestablishes the hopping, as mediated by the
structure constants, onto the semi-infinite stacks on both
sides of the principal layer. This is completely analogous
to the procedure for connecting a single principal layer
on top a semi-infinite stack. The Dyson equation for the
diagonal part of the interface Green’s function g becomes

9:.:(2,k))) = [Pi(z) — Sii(ky)
—Siim1 (k)G 1,51 (2, K) Sic1,i (k)

—S; i1 (Ky) G i1 (2, Ky)) Sipn,i (k)] 7
(8)

The diagonal parts of the interface Green’s function
contain the information needed to calculate total ener-
gies. However, the off-diagonal parts of the interface
Green'’s function are essential for the use of the linearized
Dyson equation, which we use to speed up convergence
in a self-consistent calculation. Once the diagonal part
of the interface Green’s function has been calculated, the
off-diagonal parts may be obtained by matrix multiplica-
tion. This is so because the off-diagonal part of the Dyson
equation which connects the left-hand semi-infinite stack
terminated after principal layer ¢ to the right-hand semi-
infinite stack terminated after principal layer i + 1 reads
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Gii+n (2, K)) = §ii(2, k) Sijiv1Gi+1,i4n (2 Ky)- (9)

For the first superdiagonal blocks, i.e., n = 1, this equa-
tion involves only those diagonal parts of the Green’s
function already obtained in (8). However, once the
n = 1 blocks have been calculated, the next n = 2 blocks
may be obtained by a second application of (9) and this
recursive process may be continued until the off-diagonal
elements become insignificant. In the present application
we have stopped at n = 3. The subdiagonal parts g; ;_»
may be obtained in a similar manner.

The principal layer technique described above may be
viewed as a piecemeal solution of Dyson’s equation for
the interface. If this interface consists of N principal lay-
ers, the procedure requires 3N — 2 matrix inversions, the
dimension of which is given by the number of basis func-
tions, here typically nine spd orbitals, times the number
of atomic layers in a principal layer. Thus the principal
layer technique involves matrix inversions of minimal di-
mensions and scales linearly with the number of atomic
layers parallel to the interface plane.

B. Details of the calculations

To initiate the interface procedure, we perform self-
consistent bulk calculations by means of the second-order
LMTO Hamiltonian and calculate the one-electron con-
tribution to the kinetic energy by integrating the bulk
Green’s function on a complex energy contour. The con-
tour is chosen as a semicircle and the integration per-
formed by a Gaussian technique on a mesh of 16 points
distributed exponentially so as to increase the sampling
density near the Fermi level. Furthermore, although it is
more time consuming, we use in the bulk calculations a
Brillouin zone based on the two-dimensional (2D) zone
of the fault structure and in the direction perpendicular
to the plane of the 2D zone we use 400 k; points. This
large number is necessary because the Green’s function
for a fault structure is calculated by the principal layer
technique and hence is completely converged in terms of
k. The one-electron potential is relaxed for a number
of atomic layers in the vicinity of the fault. For all APB’s
on cube planes we used 31 cube planes, each containing
two inequivalent atoms, while for the faults on the close-
packed planes we included eight atomic planes, each con-
taining four inequivalent atoms in the self-consistency.
In a few cases, the interface region was increased to 12
atomic planes, changing the fault energies by less than
10%. For the (001) APB'’s, the outermost atomic planes
included in the interface region are completely bulk like
and do not contribute to the fault energies.

In the case of an ordered compound, one should ideally
choose the radii of the atomic spheres so as to minimize
the errors introduced by the ASA. One kind of error is
related to the shape approximation inherent in the use of
atomic spheres. For fcc based compounds this error may
be minimized by choosing spheres of equal radii in which
case the neglected interstitial regions of space and the
size of the overlap between neighboring spheres are re-
duced to a minimum. The second kind of error is caused
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by describing the one-electron potential only within over-
lapping atomic spheres. The choice of equal sphere radii
in a compound causes a discontinuity between the one-
electron potential at the surfaces of neighboring atomic
spheres. This discontinuity may be large, especially if the
Wigner-Seitz radii of the elemental metals deviate appre-
ciably. In the present bulk and interface calculations we
have minimized the discontinuity by choosing the relative
radii as close as possible to the ratio of the radii of the
elemental metals without increasing the overlap region
too much. This is in the spirit of the guidelines given by
Andersen,3* which aim at the best possible (spherically
symmetric) description of the potential inside overlap-
ping spheres.

The k| integration is performed by means of the spe-
cial points devised by Cunningham.3® For the faults at
the close-packed planes of the L1, structure, we used
16 points in one-fourth of the centered rectangular 2D
Brillouin zone. Increasing the number of k£ points to 64
changed the fault energies of CuzAu by less than ~ 2%.
For the faults at the close-packed planes of the DO,
structure, we used 16 points in one-fourth of the primi-
tive rectangular 2D Brillouin zone. For the (001) APB’s
we used 36 k points in one-eighth of the square 2D Bril-
louin zone.

To maintain charge neutrality the small excess charge
(< 107 electrons) of the fault region is placed at two
sheets just outside the fault structure and the corre-
sponding contribution to the one-electron potential and
the total energy is included. In this manner, we take
approximate account of the charge connected with the
Friedel oscillations and ensure fast convergence of the
antiphase boundary energies in terms of the region size.

All calculations included s, p, and d orbitals and the
lattice parameters used in the fault calculations were ob-
tained by minimization of the total energy of the perfect
crystal. Finally, for exchange and correlation we used
the local density functional of Ceperley and Alder3® as
parametrized by Perdew and Zunger,3” except for the
DO3; compounds NizV and Pd3V. For these compounds,
we used the Vosko-Wilk-Nusair3® parametrization of the
local density functional by Ceperley and Alder to allow
for spin-polarized calculations.

IV. RESULTS

In what follows we shall present APB and stacking
fault energies calculated self-consistently by means of
the interface Green’s function technique. However, we
have also applied frozen bulk potentials in conjunction
with the force theorem as implemented by Crampin et
al.3® This approximate approach give energies which are
within ~ 5% of the self-consistent results, except for a
few cases where the deviations are 10-20 %.

A. L1,

In Table I we present the calculated stacking fault and
antiphase boundary energies for a series of intermetallic
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TABLE 1. Calculated and experimental Wigner-Seitz ra-
dius Sws together with calculated antiphase boundary en-
ergies (APB), superlattice intrinsic stacking fault energies
(SISF), and complex stacking fault energies (CSF) for selected
L1; compounds. Wigner-Seitz radii are in Bohr and energies
in mJ/m?.

Sws APB SISF CSF

Compound Present Expt.® (001) (111)
Au3Cu 2.987 2.943 48 157 119 220
CuzAu 2.755 2.763 69 309 199 369
NisSi 2.588 2.588 640 752 466 842
NizAl 2.628 2.634 137 240 147 308
Pt3Al 2.932 2.862 673 663 617 769
CosTi 2.674 2.667 280 301 175 222

2Reference 46.

compounds observed in the L1, structure. As expected
from the relation to ordering energies, the noble-metal
compounds have low antiphase boundary energies while
Ni3Si has the highest fault energies of the compounds
considered. In this context the fault energies of NizAl
appears anomalously low relative to those of NizSi and
PtzAl. In fact, the weakly ordered noble-metal com-
pounds have APB and fault energies which are compara-
ble to the values found for the strongly ordered NizAl.

In general, the relation to the ordering energies is
not found to be well obeyed. Thus the energy of the
faults that preserve the nearest neighbors of atoms at
the interface, i.e., the (001) APB and the SISF, are only
marginally smaller than the CSF and the (111) APB en-
ergies, although the fault geometries of the latter intro-
duce neighbor bonds between minority atoms.

It should be noted that the APB energies of the noble-
metal compounds are highly anisotropic. Thus the (001)
APB energy is a factor ~ 3-4 smaller than the (111)
APB energy. For CuzAu this is in agreement with the
observation of a preferential orientation of thermally pro-
duced APB’s.*® Recently, Morris!® has estimated the
anisotropy of the APB energy by studying the shape
of grown-in domain networks in rapidly solidified NizAl.
This leads to an anisotropy ratio of 1.4 at the stoichio-
metric composition, which should be compared to the
ratio 1.75 in the present study. The anisotropy of the
antiphase boundary energy plays an essential role in the-
ory of the anomalous yield stress behavior observed in
NigAl, since the ratio of the (111) to the (001) antiphase
boundary energy enters into the energy criterion, derived
by Yoo,” for cross slip to occur.

The high values of the (001) APB energy in Pt3Al and
CosTi relative to the (111) APB energy is particularly
interesting since these intermetallics belong to a special
class of L1; compounds that show a large flow stress in-
crease with decreasing temperature.541:42 According to
Wee et al.,*! the flow stress behavior is caused by ei-
ther a high APB energy on both the (001) and (111)
planes or a low SISF energy. This will lead to sessile
SISF dissociated superdislocations causing the flow stress
increase with decreasing temperature, as observed in ex-
periment. Similarly, Liu et al.#? investigated Co3Ti and
found SISF dissociation to be dominant at low tempera-
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TABLE II. Comparison between calculated antiphase boundary (APB) energies and experimen-
tal results taken from the compilation by Veyssiére (Ref. 14). Vitek et al. (Ref. 19) used an empirical
N-body potential of the Finnis-Sinclair type (FS). Paxton (Ref. 3) used the full potential LMTO
method (FP LMTO) while Fu et al. (Ref. 8) used the full potential LAPW method (FLAPW).
Both Paxton and Fu et al. employed the supercell approach with relaxation included, but also give
values for the unrelaxed case here listed in paranthesis. All energies are in mJ/m?.

(001) APB (111) APB
Compound Present Expt.® FLAPW® FS° Present Expt.®* FLAPWP FP LMTO? FS°
CuzAu 69 52 309 39 160 (180) 54
Ni3Si 640 250 707 752 250 625 (685)
NizAl 137 140 140 53 240 180 175 170 (220)
Pt3Al 673 663 560 (500)
CosTi 280 210 301 270

2Reference 14.
PReference 8.
°Reference 19.
dReference 3.

tures. Although Wee et al. considered the possibility of
a very low SISF energy, it is clear from Table I that the
present calculations support the assumption of SISF dis-
sociated superdislocations for Pt3Al and Co3zTi because
of the high (001) and (111) APB energies. In fact, since
the present calculations do not include the effect of relax-
ation, the (001) APB energy may very well be higher than
the (111) APB energy since one would expect relaxations
to be important only for the latter type of APB. This is
in contrast to the anomalous yield compound NizAl in
which cross slip is known to occur.

Fu and Yoo*? calculated the elastic constants of Pt3Al
and NizAl using the FLAPW method. Based on the en-
ergy criterion derived by Yoo” for cross slip to occur, they
found that the ratio of the (111) to the (001) antiphase
boundary energy had to be larger than 1.47 for Pt3Al. As

may be seen from Table I, we find a ratio < 1 for Pt3Al,
which indicates that cross-slip pinning will not occur for
Pt3Al. In contrast, the elastic constants calculated by
Fu and Yoo indicate a minimal APB anisotropy ratio of
~ 1 for cross slip to occur in NizAl and this is fulfilled
by the present APB energies in Table II.

NizSi belong to the group of anomalous yield alloys**
and the calculated APB energies lead to an anisotropy
ratio of 1.18. However, compared to CuzAu and NizAl
the anisotropy in APB energies is relatively moderate,
especially since one would expect relaxation effects, not
included in the present calculations, to lower our calcu-
lated anisotropy ratios. Fu et al.® calculated elastic con-
stants for Ni3Si and their values lead to a minimal APB
anisotropy ratio of 1.15 for cross slip to occur. Hence it
is not possible from the present calculations to determine
whether the criterion for cross slip is fulfilled. In addition,
one may expect that effects of off-stoichiometric concen-
tration and ternary additions will significantly alter the
mechanical properties of NizSi.

In Table II, the APB energies calculated in the present
work are compared with results from previous studies,
both experimental and theoretical. As noted in the Intro-
duction, calculated APB and stacking fault energies are
sparse. As for experimental values, a range of measure-
ments for NizAl exist, most of which have been obtained

from samples containing ternary additions. In addition
to the values in Table II, Dimiduk et al.!® calculated the
(111) APB energy of NizAl to be 141 mJ/m? compared
to the present value of 240 mJ/m? and the experimental
value of 180 mJ/m?. For the (001) APB energy of NizAl
the present result and the experimental value are in ex-
cellent agreement, while the calculated value by Vitek et
al.'® is low.

The largest deviations between the experimental re-
sults and the present APB energies are found in CuzAu
and NizSi. For Ni3Si, it should be noted that all experi-
mental APB energies are smaller than ~ 250 mJ/m? and
that the method applied to determine APB energies, i.e.,
TEM of partial dislocations, becomes increasingly un-
certain as the APB energy increases. Furthermore, in
the case of Ni3Si the elastic constants used to derive the
fault energies were assumed to be identical to the elas-
tic constants of the ternary compound Nis(Si, Ti). This
assumption is by no means obvious, since NizTi is ob-
served in the DO, structure, which is based on a com-
plex stacking sequence of close-packed planes. As for the
(111) APB of CuzAu, the present calculation seems to be
an overestimate compared to experiment, but so is the
full potential LMTO value of Paxton,® and only the value
of Vitek et al.!® is in reasonable agreement with the ex-
perimental result. However, Vitek et al.'® found isotropic
APB energies for CuzAu, which does not agree with the
observation by Marcinkowski and Zwell*® of thermally
produced cuboid domain networks.

It may be inferred from Table II that part of the de-
viation between the present calculation and the full po-
tential results of Paxton® and Fu et al.® is caused by
the neglect of relaxation in the present work and one
would tend to attribute the remaining deviation to the
use of the atomic-sphere approximation. However, the
full potential calculations rely on the supercell geometry
and therefore include an unknown energy of interaction
between antiphase boundaries whereas the present tech-
nique gives the energy of a single antiphase boundary
embedded in an infinite medium.

In Table III we compare the present stacking fault en-
ergies with previous theoretical and experimental results.
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TABLE III. Same as Table II, but for complex (CSF) and superlattice intrinsic stacking faults

(SISF).

CSF

SISF

Compound Present Expt.* FLAPWP® FP LMTOQO° FS? Present FLAPW® FP LMTO°® FS¢

CusAu 369 13 260(270) 40 199 120 16
NisSi 842 710 466 460

NisAl 308 250 225 240(300) 189 147 40 60 11
Pt3Al 769 600(700) 617 560

®Reference 14.
bReference 8.
°Reference 3.
dReference 19.

In addition to the values given in the table, Veyssiére et
al.*® obtained an experimental value ~ 5-15 mJ/m? for
the SISF energy of NizAl using weak beam TEM and
Dimiduk et al.'® obtained, by embedded atom calcula-
tions, a value of 121 mJ/m? for the CSF of NizAl. In the
comparison between the present results and the full po-
tential calculations, both the FP LMTO results® and the
FLAPW results,® we find that in general the energies are
comparable, except for the SISF value of NigAl. How-
ever, there are order of magnitude deviations between
the present calculations and the work of Vitek et al.l®
as well as the experimental value for the CSF energy of
CuzAu and the SISF energy of NizAl. In contrast, the
experimental value for the CSF energy of NizAl is in good
agreement with the present result.

The work of Paxton® also includes LMTO ASA cal-
culations of (111) APB energies. He concludes that the
LMTO ASA values are clear overestimates compared to
experiment and that this is caused by the ASA. In view
of the present calculations it appears that this conclusion
should be modified. First of all, the LMTO ASA calcula-
tions by Paxton rely on a supercell geometry and there-
fore include an unknown energy of interaction between
stacking faults while the present technique gives the en-
ergy of a single fault embedded in an infinite medium.
Furthermore, because of the Green’s function technique
the 2D k-space integration is somewhat better converged
than the 3D integration of conventional energy band
methods. Finally, we have calculated the APB energies
at the average Wigner-Seitz radius which minimizes the
total energy and chosen the relative Wigner-Seitz radii
so as to minimize the errors of the ASA while Paxton
employs equal radii. As a result, the errors of the ASA
have been reduced and the APB energies are now 25—
50 % smaller than the LMTO ASA values obtained by
Paxton.?

B. DO;;

We have calculated antiphase boundary and stacking
fault energies of three vanadium based compounds NizV,
Pd3V, and Pt3V, which form in the DOj; structure. It
is known from previous local spin-density calculations
that NizV is ferromagnetic in the cubic L1; structure
but paramagnetic in the DO, structure.*® Furthermore,
based on a band theory approach Williams et al.3° pre-

dicted that Pd3V should be ferromagnetic in the L1,
structure with a moment of 1.4up per formular unit
(fu.). We find, in agreement with these calculations,
that all three compounds are ferromagnetic in the L1,
structure and paramagnetic in the DO, structure, ex-
cept for Pt3V, which develops a small magnetic moment
in the DOy, structure. In addition, we find, in agree-
ment with Xu et al.,*® that the exchange energy gained
in the formation of a magnetic moment in the L1, struc-
ture is considerably smaller than the energy gained by
the transition to the D3, structure and as a result the
DO,; structure is found to be the ground state in all
three compounds. We note that the magnetic moment of
Pt3V in the DO, structure is calculated to be zero at the
experimental lattice constant. Hence the small moment
predicted at the minimum of the total energy may be an
artifact of the overestimated lattice constant. However,
this is not the case for the miagnetic moments calculated
in the cubic L1, structure.

The spin-polarized structural energy calculations for
NizV, Pd;3V, and Pt3V are presented in Table IV and
compared with the calculated energy of the (001) an-
tiphase boundary in the DOy, structure. It is seen that,
although of similar magnitude, one may not in general
identify the (001) APB energy with the structural energy
difference, as it was assunied by Pei et al.'7 in their cal-
culations for Ni3V, and Co3Ti. The three LMTO ASA
calculations of the structural energy difference in NizV
agree quite well and apart from possible differences in k-
point convergence, the 20% difference between them may
be caused by the choice of sphere radii. Pei et al. used
equal sphere radii while we used radii that minimized the
errors of the ASA. Furthermore, Xu et al. used the ex-
perimental c¢/a ratio for the DO, structure, while the
ideal c/a ratio was kept both in the present work and in
the work of Pei et al.

The calculated antiphase boundary and stacking fault
energies in NigV, Pd3V, and Pt3V are presented in Ta-
ble V together with recent experimental results for the
fault energies in NigV.2° The experimental APB ener-
gies were obtained at temperatures in the range from
600° C to 800° C and the APB energies were found to be
strongly dependent on temperature, while the intrinsic
stacking fault energy was nearly temperature indepen-
dent. It is seen that, with the exception of the (001)
APB energy, the agreement between the calculated and
experimental fault energies in NizV is quite remarkable.
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TABLE IV. Calculated and experimental Wigner-Seitz radius Sws together with the calculated
magnetic moment M, the calculated structural energy AFE,:; of the cubic L1, structure relative to
the tetragonal DO,; structure, and the calculated antiphase boundary energies (APB) for three
vanadium based DO;; compounds. All calculations are based on the LMTO ASA method. Numbers
in parentheses refer to calculations assuming paramagnetic L1;. Wigner-Seitz radii are in Bohr,
magnetic moments in pp/f.u., and energies in mRy per formula unit (f.u.).

Sws M AEq:. APB(001)
Compound Present Expt.® DOy, L1, Present LMTO Present
NizV 2.638 2.632 0 0.8 31(35) 26°(30)° 22
(28)°
PdsV 2.907 2.848 0 1.2 8.0(21) 15
PtsV 2.944 2.864 0.5 1.3 5.1(19) 7.7

2Reference 46.
PReference 49.
°Reference 17.

The disagreement as to the energy of the (001) APB
constitutes a problem, since one would expect the cal-
culation to be particularly accurate for this case where
the neglect of atomic relaxations will cause a minimal
error. Furthermore, Francois et al.2 predominantly ob-
serve splitting on close-packed planes which would occur
when the (001) APB energy exceeds the (111) APB en-
ergy. One may therefore question the low experimental
value for the (001) APB in NizV.

The APB energies in Pd3V are of the same order of
magnitude while the ISF energy is one order of magnitude
smaller. It is known that the short-range order in disor-
dered Pd3;V exhibits the cubic concentration waves typi-
cal of L1, ordering whereas the low temperature state is
DO3,.47 On the other hand, the short-range order above
the order-disorder temperature in NizgV is dominated by
the ordering vector %(210) of the DOy, structure.?® This
qualitative difference in the short-range order in disor-
dered alloys of the two compounds agrees well with the
calculated difference in (001) APB energy. That is, the
structural energy difference between the DO2; and the
L1, structure is a factor of 4 larger for NizV than for
Pd;V. For Pt3V, the (001) APB energy is even lower
than for Pd3V and this is consistent with the observa-
tion of long-period superstructures in Pt3V just below
the order-disorder temperature.5! It may be inferred from
Table IV that the decrease in structural energy difference
between the L1, and the DOy, structures in going from
Ni3V to Pt3V is due to the corresponding increase in spin
polarization, i.e., assuming a paramagnetic state would
result in only a weak decrease in the structural energy
difference from NizV to Pt3V.

V. CONCLUSIONS

We have calculated the energies of antiphase bound-
aries and stacking faults in six L1, and three DO, in-
termetallic compounds. For the Cu-Au compounds, the
values obtained in the present calculations are typically
50-100 % larger than those of a previous full potential
LMTO calculation by Paxton® and one order of magni-
tude higher than the experimentally derived values. For
Pt3Al and Ni3zAl the discrepancy between the present re-
sults and the full potential calculations of Paxton is much
smaller and appears to be dominated by the neglect of
atomic relaxation in the present work. A similar conclu-
sion is reached when comparing the FLAPW calculations
to the present results for NizAl and Ni3Si. The ab ini-
tio calculations are all in good agreement with the few
experimental values for NizAl. We find that the com-
pounds Pt3Al and Co3Ti have high APB energies on the
close-packed as well as the cubic planes while the SISF
energy is smaller. This supports the explanation pro-
posed by Wee et al.%! of the flow stress behavior of these
compounds.

We find that the ground state of NigV, Pd3V, and Pt3V
is a DOg3; structure which is paramagnetic for NizV and
Pd3V but ferromagnetic for Pt3V. In contrast, the L1,
structure of lowest energy is found to be ferromagnetic
in all three compounds. The calculated structural energy
difference between the DOy, and the L1, structure in
Ni3V is in good agreement with earlier local (spin-) den-
sity calculations. We also found the expected decrease
in (001) APB energy in going from NizV to Pd3V. Fi-

TABLE V. Antiphase boundary energies APB(001), APB(111):, and APB(111)z2, intrinsic stack-
ing fault energies (ISF), and complex stacking fault energies (CSF) for the DO22 compounds NizV,

Pd;V, and Pt3V. All energies are in mJ/m?.

APB(001) APB(111), APB(111); ISF CSF
Compound Present Expt.* Present Expt.® Present Expt.®* Present Expt.® Present
NizV 372 145 167 177 54 40 22 25 325
PdsV 209 154 139 24 283
PtsV 106 176 158 27 441

2Reference 20.
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nally, in Ni3V we found excellent agreement between the
calculated fault energies and the experimental results ob-
tained by Frangois et al.,2® except for the energy of the
(001) APB where the calculated value is 2.5 times the
experimental result.

Finally, we point out that trahsition-metal compounds
and compounds with strong directional bonding do not,
in general, obey simiple rules derived by considering only
nearest-neighbor pair interactions. Therefore one can-
not assume APB anisotropy in transition-metal com-
pounds. In fact, for the transition-metal compounds in-
vestigated here it is the rule rather than the exception

4857

to see APB energies of the same magnitude on (001) and
(111) planes.
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FIG. 1. Close-packed plane in the L1; structure. Shaded
circles indicate the position of minority atoms, while open
circles denote the position of majority atoms. Light shaded
circles and dark circles indicate position of minority atoms
in the close-packed layers below and above. Fault vectors of
the (111) APB, the complex (CSF), and superlattice intrinsic
(SISF) stacking faults are shown as @, &, and 3, respectively.
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FIG. 2. Two unit cells of the L1, crystal structure stacked
along the [001] cube axis. Filled spheres indicate the position
of minority atoms and open spheres indicate the position of
majority atoms. Viewed along the cube axis every second
layer consists of majority atoms only.



FIG. 3. Close-packed plane in the DO;; structure. Shaded
circles indicate the position of minority atoms, while open
circles denote the position of majority atoms. Light shaded
circles and dark circles indicate position of minority atoms
in the close-packed layers below and above. Fault vectors
of the (111) APB’s, the complex (CSF), and the simple in-
trinsic (ISF) stacking faults are shown as a,, @z, ¢, and 3,
respectively. The two lattice vectors shown represent Burgers
vectors for observed superdislocations.



