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A resonance phenomenon in the zeroth diffraction order of a gold-wire grating is explained by the ex-
citation of surface polaritons. This effect is connected with a strong enhancement of the electromagnetic
fields on the wire surface and consequently with a peak of power losses in the grating material. Measure-
ments of the zeroth-order transmittance have been performed on gold gratings with periods of 1 and 2
micrometers in the near-infrared region which are in agreement with theoretical results. Furthermore,
dispersion relations of the first-order coupling mode are presented having large energy gaps in the center
of the Brillouin zone. It is shown that this energy gap strongly depends on the wire profile. In this cou-
pling branch, however, practically no dispersion could be observed for optical wavelengths less than the

grating period.

I. INTRODUCTION

Surface polaritons (SP’s) may be exited on periodically
corrugated metal-vacuum interfaces, when the momen-
tum component of the impinging photons, which is paral-
lel to the surface, differs from that of the SP by a nonzero
number of reciprocal-lattice vectors G. The occurrence
of SP’s coincidences with the observation of resonance
anomalies in the diffracted orders.! Numerous experi-
ments have been performed on sinusoidal reflection grat-
ings of rather small amplitudes compared with their
periods?~* such that the corrugation could be considered
as a small perturbation of a flat metallic surface. The
measured dispersion relations having gaps in energy and
momentum, respectively, could be confirmed by means of
theories based on the Rayleigh hypothesis® and the ex-
tinction theorem.® The excitation of SP’s on lamellar
(square-wave) gratings also with larger amplitudes has
been theoretically studied in Refs. 7-9, numerically as
well as experimentally in Refs. 10 and 11.

In this paper, an experimental and numerical study of
SP excitation on metallic wire gratings is presented. The
technique of measurement as well as the results substan-
tially differ from the above-mentioned investigations.
The dispersion of SP’s is exemplified on gold gratings
with a period d =2 um. The influence of the wire profile
to the energy gap is investigated for a large number of
gratings having a period d =0.9911 um.

II. EXPERIMENT

The wire gratings with periods d =2 and 0.9911 um,
respectively, have been manufactured from gold by a
photochemical process.!?> The individual wires, which
have an approximately rectangular cross section, are held
on its position by a coarse support grid. This structure is
illuminated by p-polarized light (E perpendicular to the
wires), where its free-space wave vector k, is perpendicu-
lar to the wires and forms an angle ©, with the normal
vector of the grating plane (Fig. 1). The photons couple
to the SP’s with a momentum transfer nG (n==1, 12,
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+3,...) to the grating, where G=2m/d is the
reciprocal-lattice vector and n is the coupling order. As
shown in the k-space diagram of Fig. 1 for optical wave-
lengths A>d(1+|sin©|), only the zeroth transmitted
and reflected orders propagate and the first evanescent
orders can excite SP’s, when the relation
tkep =kosinOy+ G is fulfilled, where kgp denotes the
real part of the SP wave vector. As a result of energy dis-
sipation due to this excitation, dips of intensity can be ob-
served in the propagating orders.

In contrast to the widely investigated reflection grat-
ings, this wire structure permits the measurement of
zeroth-order transmittance as a function of wavelength
and angle of incidence. The measurements have been
performed by means of a Cary 5 spectrophotometer

FIG. 1. The wire grating (period d, wire width b, width of
free space ¢ =d —b, and wire height 4) is illuminated with p-
polarized light by an angle of incidence ©,. SP’s of the —1 or-
der coupling mode are exited when the relation
ksp =G —k(sin®, holds, where G=27/d denotes the
reciprocal-lattice vector. In this sketch only the zeroth
diffraction orders (T, R,) can propagate.
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FIG. 2. Measured zeroth-order transmittance as a function
of wavelength of the gold-wire grating GH3 (d =2 pm) for p-
polarized light. The angle of incidence is (a) ©,=0" and (b)
6,=0.5".

(Varian Co.). For this purpose, the beam divergence of
the spectrometer was reduced by aperture stops to 0.1°%
the gratings could be tilted within an angular accuracy of
0.03°. The spectral width of the monochromator was 1
nm. Figure 2 shows the measured transmittance of the
grating GH3 as a function wavelength (a) for normal in-
cidence ©,=0° and (b) for ©6,=0.5°. The most obvious
difference of both of these curves is the occurrence of a
sharp resonant dip with its minimum transmittance on
the wavelength A,=2.118 um for the non-normal in-
cidence 6,=0.5°.

III. THEORY

This diffraction behavior is now modeled by means of a
modal formalism, which uses the surface impedance as
boundary conditions on the wire surface. This approxi-
mative method, which was recently presented by Loch-
bihler and Depine,!® is particularly suited for highly con-
ducting wire gratings with rectangular cross section. For
highly conducting materials, such as gold in the infrared
region, rigorous methods usually exhibit numerical
difficulties or require rather complicated numerical treat-
ments causing long computation times. In this case, the
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electromagnetic field penetrates into the wires by the skin
depth only and the wires are practically field-free in their
interior. The problems encountered by the solution of
Maxwell’s equations inside the wires is bypassed if a
surface-impedance boundary condition (SIBC) is imposed
on the metallic boundaries.

The SIBC contains the following relation between the
tangential components of the electric and magnetic fields
at the boundary of a vacuum and a metal:

En=ZﬁXH” s (1)

where Z is the surface impedance and @i denotes a normal
unit vector on the boundary pointing into the free-space
side. The approximation of a constant impedance
Z=1/v (v denotes the refractive index of the metal)
yields good results compared with exact methods if the
material is highly conducting.'>!*

For p polarization, we rewrite this boundary condition
[Eq. (1)] by means of Maxwell’s equations leading to

Zk
T AT @
on L

where f(x,y) represents the spatial part of the com-
ponent along the z axis of the magnetic field.

It is well known that the fields in the free half spaces
above the top as well as below the bottom of the wires
can be expressed in terms of plane-wave or Rayleigh ex-
pansions. The total field in the region y >h /2 contains
the sum of the incident wave with its wave vector
ko=w/co=2m/A and the reflected waves, which gives

o0

fxp)= 3

n=—w

{R,explix,(y—h/2)]

+8,, 0exp[ —ixo(y —h/2)]}explia,x) .
(3)

The field below the grating region (y < —h /2) can be ex-
pressed by

fx,p)= 3 T.explila,x—x,(y+h/2)]}, @

n=—oo

where R,, T, are the complex amplitudes of the reflected
and transmitted field, respectively. The coefficient

a, =k0sineo+n3} (5)

represents the tangential component of the k vector of a
diffracted wave, where n is an integer. Its normal com-
ponent is defined by

Vki—a? if |kol=la,l

= e (6)
T iV —K2 i kol <la,l

which means that the wave is propagating if |kl = |a,,|.
The alternate case corresponds to evanescent waves trav-
eling along the grating plane and exponentially damped
in the normal direction.
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In the modal method, the field within the grating re-
gion |y| <h /2 is expanded in a complete set of eigenfunc-
tions, where each term obeys the wave equation and the
appropriate boundary conditions. It is easy to prove that
the functions

sin(p,,y)
Im Sin(u, b /2)

fx,3)= 3 up,(x)
m=0
cos(i,,y)

™ cos(u,,h/2) |’ ™

are eigenfunctions of the wave equation. Imposing the
SIBC at x =0, ¢ we deduce the functions u,,(x) for the
air region between the wires,

1 n ..
Uy, (X)=—= sinf3,,x +cosB,,x | , (8)
VT, | Bnm "
with the normalization factor
2
I,=|1+|-L| |[£+-L . ©)
" Bn| |2 B

The wave equation demands that the separation con-
stants B,, and p,, satisfy the relation B2 +u% =k3. The
eigenvalues 3,, have to be determined as the complex
roots from the transcendental equation

218
B —n*
By matching the Rayleigh and the modal field expan-
sions at the boundaries y =h /2 and y =—h /2, and using
the SIBC on the top and the bottom of the wires, respec-
tively, we finally get a system of linear equations contain-
ing the unknown complex amplitudes R,, T,, a,,, and

b,,. From this system, we easily evaluate the reflexion
and transmission coefficients,

Rn=[Qp,_n]—I[QpTO+Jp,m(Dlmam +D2mbm)] ’ 1
T,==[Qpn] Ypm(Din@n —Dombn) » (12)

tan(B,,c)= (10

with the mode amplitudes

am =(8j,m _Kj,n[Qp—,_n ]_lJp,mDXm )_1

X%Kj,p([Qq,—p]_quJ,ro +8,,0) (13)
and
b =(8)m —K;n[Qon ] VpmDom) ™"
X 3K;p([20p17'Qgl0 +850) » (14)
and
D,,=p,cot(p,,h/2), (15)
D,,,=—pntan(u,, h/2) . (16)

The matrix elements

J =

om %focexp(—iaqx Ju,, (x)dx , (17)
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Kj’n=focexp(ianx )uj(x )dx , (18)
and
. d .
Q;;::xqﬁq,pi—g-fc exp[i(a, —a,)x Jdx (19)

can be calculated analytically.

The roots B,, of Eq. (10) have to be determined numer-
ically, which can be easily performed by a Newton-
Raphson algorithm. In the exact modal method of Bot-
ten et al.,'’ however, more sophisticated algorithms!® are
needed for the solution of the corresponding eigenvalue
equation. This is the reason that the computation time of
the diffraction problem by means of the method present-
ed here is approximately five times shorter compared
with that exact method. But the more essential point is
that the exact method exhibits numerical instabilities for
highly conducting gratings, which are completely absent
for the SIBC method. The main reason is that a part of
the complex zeros having rather large imaginary parts
converge very slowly against the real axis with increasing
number m. Hence, it is quite difficult to construct an “as
much complete as possible” set of eigenfunctions [Eq.
(7)]. In the SIBC method, however, the complex roots of
Eq. (10) converge rapidly against the real axis (see Fig. 3
in Ref. 13) and for the numerical calculation the criterion
of completeness may be better satisfied as in that exact
method.

It should be noted that the exact modal approach
developed by Sheng, Stepleman, and Sanda!® for calcula-
tions of surface-plasmon excitations on square-wave grat-
ings and its generalization by Lee and George® to multi-
layer gratings is closely related to that formalism of Bot-
ten et al.

Furthermore, we obtain a “more physical” expression
for the power losses in the wires compared with that in
the exact method. Starting from the second Green’s
identity, the power losses normalized to the incident
power P, can be derived as

f Laa: —-f "‘g—{ ds, (20
n n

1
P, =—
s 2ik,d cosO, ﬁs

where the integral has to be determined along the wire
surface. Finally, the expression for the power losses in
the grating simplifies to

_ ReZ 2
P d cosO, ¢S |f| ds , 21

if we impose the SIBC in Eq. (20).

For highly conducting materials, this expression con-
tains a simple relation between the power losses and the
electromagnetic fields on the surface, which means that
dP,., /ds < |H,|? on the wire surface for p polarization.

IV. RESULTS

Figure 3 shows the calculated transmittance and the
power losses P, for a gold-wire grating, which corre-
sponds to the measurement in Fig. 2, assuming a rec-
tangular cross section. The parameters width b =0.653
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pm and height #=0.556 um of the profile have been
reconstructed for the grating GH3 by fitting an elec-
tromagnetic model to transmittance measurements.'*
The complex refractive index of gold, which is used for
numerical calculations, corresponds exactly to the same
grating material as in the experiment (see Ref. 13).

In addition, these curves are compared with the nu-
merical results obtained from the exact method after Bot-
ten et al. (crosses). The excellent coincidence of the
rigorous formalism with the SIBC method — particularly
in the resonance dip—confirms the validity of this ap-
proximative model for this spectral region.

These numerical considerations yield similar results for
the transmittance as in the experiment, shown in Fig. 2.
For non-normal incidence ©,=0.5°, a sharp resonance
occurs in the transmittance and coincidently in the power
losses (A,=2.113 pym). Tilting the grating from normal
incidence only by a half degree, the power losses arise
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FIG. 3. Calculated transmittance and power losses for a
gold-wire grating similar to that in Fig. 2: (a) ©,=0" and (b)
6,=0.5". In the theoretical model a rectangular wire geometry
(d=2 pum, b=0.653 pm, h=0.556 pm) is assumed. The solid
lines correspond to the results of the SIBC method, which are
confirmed by the transmittance data obtained from the exact
modal method (crosses).
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from 0.9% up to 40% in this resonance. From Eq. (21),
we deduce that the squared magnetic field on the wire
surface is strongly enhanced compared with the field for
normal incidence: on top of the wires by a factor of 16,
on the bottom by a factor of 10, and on the walls by a fac-
tor of 125.

The other singularity in the transmittance curve could
be identified as the Rayleigh anomaly, which results from
the redistribution of energy when a propagating
diffraction order becomes evanescent. In this case the
power losses and, subsequently, the electromagnetic fields
on the grating surface are enhanced.

The remaining discrepancies between theory and ex-
periment are probably due to the simple approximation
of the wire profile by a rectangle as well as the finite beam
divergence and the limited monochromism of the spec-
trophotometer.

A microscopic analysis of the electromagnetic fields in
the vicinity of the wires, which will be published else-
where, shows that the individual wires act like electric di-
pole resonators with poles on the upper and lower wire
surface. For the resonance in Fig. 3(b), the squared elec-
tric field on these sites is enhanced by more than a factor
of 100 compared with that of the incident field. Al-
though the wire grating represents a periodical arrange-
ment of isolated objects, a concentrated energy stream
propagates along the grating plane such as marked in
Fig. 1 with the arrow —kgp.

A. Dispersion of SP

Furthermore, the position of this resonance dip has
been measured as a function of wavelength and angle of
incidence ©,. Following the suggestion of Weber and
Mills,!” the transmittance minima around the (—1,+1)
minigap region have been determined from wavelength
scans with fixed angle of incidence ©, The dispersion
curves evaluated from these transmittance measurements
on the grating GH3 are presented in Fig. 4. The Ray-
leigh threshold, where the first diffracted order becomes
evanescent, is marked by the dashed lines.

In the same manner as in the experiment, the disper-
sion relations have been numerically constructed by lo-
cating the transmittance dips in the (A,0,) plane (shown
in Fig. 4 as solid lines), which confirm the experimental
results. The lower curve exhibits an energy gap (energy
difference between Rayleigh threshold and SP excitation)
of 33 meV in the center of the Brillouin zone. It should
be noted that the maximum of SP excitation occurs close
to normal incidence (6,=0.8°), where the power losses
P, are approximately 50%. The higher-frequency
branch coincident with the dip in the Rayleigh anomaly,
however, is obviously nondispersive.

Figure 5 demonstrates the strong influence of the wire
profile to the dispersion of SP’s. The lower-frequency
branch was experimentally obtained for three gold grat-
ings (d =2 pm) with different wire profiles. The largest
energy gap of 60 meV could be observed for the grating
GH1. Now the influence of the wire width to this disper-
sion relation around the (—1, +1) minigap region is nu-
merically analyzed. Figure 6 shows the lower-frequency
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FIG. 4. Comparison of measured and calculated dispersion
of the SP’s (—1 and + 1 order coupling mode) in the vicinity of
the center of the Brillouin zone. The branch for A > d exhibits a
large energy gap, while no dispersion occurs in the higher-
frequency branch. The dashed lines indicate the Rayleigh
threshold, where the first diffracted order becomes evanescent.

branches for gold-wire gratings of rectangular cross sec-
tion with different wire width b and constant period
d=2.0 pm and height h=0.8 um. Apparently, the
quantity of the energy gap strongly depends on the width
of the free space between the wires. For increasing width
of the free space (1.0, 1.2, 1.4, 1.6 um), the energy gap
arises from 3, 31, 64 up to 88 meV. In all cases, no
dispersion in the first-order coupling mode could be
found for wavelengths A <d. Since for these wavelengths
the first diffracted orders are no longer evanescent, the
coupling to SP’s with a momentum transfer G to the grat-
ing becomes rather unlikely.
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FIG. 5. Measured dispersion of the SP in the first coupling
mode for gold gratings (d =2 pm) with different wire profile.
Grating GH1: b=0.62 um, h=0.96 pum. Grating GH2:
b=0.76 um, h =0.86 um. Grating GH3: b=0.65 um, h =0.56
pm.
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FIG. 6. Numerically obtained dispersion relations of the SP
(first-order coupling mode) for a gold-wire grating with a rec-
tangular cross section for different wire widths b in the vicinity
of the center of the Brillouin zone. The period d and the wire
height A are constant for all curves.

This behavior of the SP in the minigap region is quite
different from those obtained by other authors®* for shal-
low sinusoidal gratings. Heitmann et al.,* however, ob-
served a strong asymmetry in the SP response, which has
been interpreted with the interference of SP’s propaga-
ting in opposite directions with different coupling mecha-
nism.

Andrewartha, Fox, and Wilson’ theoretically studied
the resonance anomalies on lamellar gratings by deter-
mining the poles of the mode amplitudes for complex
wavelengths. The trajectories of these poles (real part)
behave similar to the dispersion of SP’s on wire gratings
reported here. Moreover, in the case of infinite conduc-
tivity, these resonances are still present for both kinds of
gratings, only the dip position is shifted compared with
finite conducting materials.

B. Relation between energy gap and wire profile

The most characteristic feature of these dispersion
curves is the energy gap, which we denote here as the en-
ergy difference between the Rayleigh threshold and the
SP excitation for ©,—0°. This parameter has been ana-
lyzed for a large number of gold gratings with a period
d=0.9911 ym. In the experiment, the transmittance dip
has been located for an angle of incidence 6,=0.3°. For
smaller angles the resonance dip practically does not
change its position, but it becomes weaker and, therefore,
harder to detect.

Figure 7(a) shows the energy gaps for gratings which
have different wire width and approximately the same
wire height (h /d =0.42). These data are compared with
theoretical values of the energy gap as a function of wire
width. In Fig. 7(b), the relation between the energy gap
and the wire height is demonstrated for gratings that
have a constant wire width (b/d =0.48). From these
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represents the theoretical data of the energy gap (a) as a func-
tion of wire width and fixed height #/d =0.42, and (b) as a
function of wire height and fixed width b /d =0.48.

curves it is obvious that the quantity of energy gap de-
pends much stronger on the wire width than on wire
height if b/d <0.5. Gratings with broader wires
b/d>0.5 do not seem to support a strong coupling
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mechanism to SP excitation and the dispersion of SP’s
obviously becomes weak.

The deviations between the theoretical and experimen-
tal data are mainly due to the assumption that all grat-
ings correspond to that constant wire parameter. There-
fore, in Fig. 7(b), the discrepancy is larger than in Fig.
7(a), since an uncertainty in the wire width results in a
greater variance of the energy gap around the predicted
value than an uncertainty in the wire height would cause.
Moreover, the real grating profile deviates somewhat
from the rectangular shape which is assumed in the
theory.

V. CONCLUSIONS

We have investigated a resonance phenomenon that
occurs in the electromagnetic transmittance on gold-wire
gratings. An approximated theory, which appears supe-
rior against existing rigorous formalisms for this applica-
tion, was used to study the diffraction on highly conduct-
ing wire gratings. For reasons mentioned in the previous
section, this resonance phenomenon on wire gratings is
attributed to excitation of SP’s, which hitherto was ob-
served on sinusoidal and lamellar gratings. The disper-
sion of SP’s has been studied in the first-order coupling
mode for gratings with different wire profiles. In this
coupling branch, however, practically no dispersion
could be observed for optical wavelengths less than the
grating period. This is due to the fact that for those
wavelengths, the first diffracted orders are no longer
evanescent.

Furthermore, it was demonstrated by measurements as
well as by numerical calculations that the energy gap
strongly depends on the wire profile. Subsequently, the
knowledge of the dip position in the transmittance for
near-normal incidence yields important information
about the wire profile, which may be helpful for the char-
acterization of those gratings. Due to the possibility of
strong field enhancement on the wire surface, it is hoped
that this kind of gratings could be used as an alternative
tool for surface-enhanced Raman scattering.’
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FIG. 1. The wire grating (period d, wire width b, width of
free space ¢ =d —b, and wire height h) is illuminated with p-
polarized light by an angle of incidence ©,. SP’s of the —1 or-
der coupling mode are exited when the relation
ksp=G —kysin®, holds, where G=27/d denotes the
reciprocal-lattice vector. In this sketch only the zeroth
diffraction orders (T, R) can propagate.



