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I analyze the sliding motion of an elastic block on a substrate with a layer of lubrication molecules.
This model of boundary lubrication illustrates how the surface stress generated by the lubrication layer
at the block-substrate interface is transmitted to the upper surface of the block. It shows that it is essen-
tial to correctly incorporate the elastic properties of the block and of the substrate; otherwise, incorrect
results will result. In light of the theoretical results I discuss the sliding friction measurements of Yosh-

izawa and Israelachvili.

I. INTRODUCTION

The study of sliding friction is one of the oldest prob-
lems in physics and certainly one of the most important
from a practical point of view."? Hence it has been es-
timated that about 5% of the gross national product in
developed countries is “wasted” on friction and related
wear. In spite of this, remarkably little is understood
about the fundamental, microscopic processes responsible
for friction and wear.

Usually, as a “particle” moves slowly (velocity v) in
some medium it will experience a friction or drag force F
proportional to the velocity v. For example, the drag
force on a small spherical particle moving slowly in a
fluid is given by the Stokes formula and is proportional to
the velocity v. Similarly, on a heavy charged particle
moving slowly in a metal acts an electronic friction which
is proportional to v for v <<vj, where v is the Fermi ve-
locity of the metal electrons. In the context of surface
physics, the electronic and phononic friction forces act-
ing on a heavy adsorbate moving slowly parallel to the
surface are both proportional to v if v <<vp and v <<¢,
where c is the sound velocity of the solid.> The basis for
this is that the friction force is due to the creation of exci-
tations in the surrounding media and must vanish con-
tinuously as v —0. Therefore, in a Taylor expansion of
the drag or friction force (assuming analyticity for v =0),
F(v)=av+bv?*+ - - -, the leading contribution as v —0
will in most cases be proportional to v.

In the sliding of a macroscopic block on a substrate,
the friction force is found to be velocity independent for
low velocities v, in apparent conflict with the discussion
above. But it was realized by Tomlinson* that this can be
understood if, during sliding, rapid processes occur some-
where in the system. even if the center of mass of the
block moves arbitrarily slowly relative to the substrate.
The fundamental problem in sliding friction is to under-
stand the microscopic origin of these rapid processes, and
to relate them to the macroscopic motion of the block.

In some cases the rapid processes are quite well under-
stood. For example, during sliding of a metal block on a
metal substrate without a lubricant fluid, the friction
force is due mainly to the shearing of cold-welded contact
“points” (junctions).! After a junction has been formed it
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is first elastically deformed, which occurs very slowly if v
is low, followed by plastic deformations involving rapid
motion of dislocations and other rapid, nonadiabatic,
rearrangement processes. As the block slides on the sub-
strate, junctions are continuously ‘“broken” and
“formed,” at a rate proportional to the sliding speed;
hence the friction force is velocity independent. As
another example, consider two clean insulator surfaces
(or two metal surfaces passivated by layers of chem-
isorbed molecules, e.g., fatty acid molecules), sliding
slowly relative to each other. In this case the rapid pro-
cesses may correspond to local slip events, as indicated in
Fig. 1. That is, atomic groups on the two surfaces will
“interlock,” deform elastically, and finally undergo rapid
slip processes where an atomic group moves or flips from
one potential well to another nearby. The rapid local
motion cannot occur adiabatically, but will generate
sound waves which ultimately are “damped,” giving rise
to irregular heat motion. This type of atomistic slip has
been observed directly with the atomic force micro-
scope.’

It is very hard experimentally to probe directly the na-
ture of rapid processes which occur at a sliding interface.
However, some information can be inferred indirectly by
performing sliding friction measurements on well-defined
systems, and registering the macroscopic (e.g., center of
mass) motion of the block as a function of time. For lu-
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FIG. 1. As two surfaces slide relative to each other, atomic
groups will interlock (a), deform elastically (b), and finally un-
dergo a rapid slip process. The rapid local motion is damped by
the emission of sound waves.
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bricated surfaces, such measurements have been per-
formed during the last few years, in particular by Yosh-
izawa and Israelachvili,® Gee er al.,” and Israelachvili,®
and by Granick® and Reiter et al.'® These studies usual-
ly use mica surfaces which can be produced atomically
smooth (e.g., without a single step) over macroscopic
areas. Figure 2 shows a schematic experimental setup: a
mica block is slid on a mica substrate with an intervening
lubrication fluid. A spring is connected to the mica block
and the “free” end of the spring is moved with some ve-
locity v, which typically is kept constant but sometimes
is allowed to change in time. The force in the spring is
registered as a function of time and is the basic quantity
measured in most of these friction studies. It is obvious
that the time dependence of the spring force (and its
dependence of v;) contains information about the nature
of processes occurring at the sliding interface, but this in-
formation is very indirect. For example, as will be shown
below, it is crucial to take into account the elastic proper-
ties of the block itself, a fact which has been overlooked,
or at least not properly accounted for, in several earlier
studies of sliding friction.

The sliding friction probed in an experiment of the
type illustrated in Fig. 2 can be considered as resulting
from the process of eliminating (or “integrating out”)
physical processes which vary rapidly in space and time
in order to obtain an effective equation of motion for the
long-distance and long-time behaviors of the system. For
example, in the case of boundary lubrication considered
in this paper, the first step may be to eliminate those pro-
cesses in the lubricant film which vary rapidly in space
and time, to obtain the effective surface stress that the lu-
bricant layer exerts on the lower surface of the block.
The next step is to study how this surface stress is
transmitted to the upper surface of the block, and finally
how this affects the spring force studied in a typical slid-
ing friction measurement.

In this paper I study a simple model which illustrates
how the surface stress generated by the lubrication layer
at the block-substrate interface is transmitted to the
upper surface of the block. The study of this problem
turns out to have important implications for the under-
standing of boundary lubrication, in particular during
“starting” and “stopping;” it shows, e.g., that results and
conclusions of some earlier computer simulations of slid-
ing friction, where the elastic properties of the block and
substrate were not properly taken into account, are quali-
tatively incorrect. In the light of the present model
study, I analyze the sliding friction measurements of
Yoshizawa and Israelachvili; their results for the depen-
dence of the spring force on time and on v, are in good
general agreement with the theoretical predictions.
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FIG. 2. Sliding of a block on a substrate. The free end of the
spring moves with the velocity v,.
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In Sec. II I present the basic model and study its prop-
erties with emphasis on ‘“‘starting” and “stopping.” Sec-
tion III contains a general discussion about the origin of
stick-and-slip motion, and a comparison of theoretical re-
sults with the experimental data of Yoshizawa and Israe-
lachvili. Section IV contains a summary and conclusions.
In Appendix A it is shown how the motion of a rigid
block can be obtained from the elastic block case, in the
limit in which Young’s modulus goes to infinity.

II. THEORY

A. The model and basic equations

We consider the model shown schematically in Fig. 3.
A spring with the force constant k, is connected to an
elastic block in the shape of a rectangular parallelepiped
located on a flat substrate. The block has thickness d,
and the side contacting the substrate is a square with an
area A =D XD. We assume that a single monolayer of
lubrication molecules separates the block from the sub-
strate (boundary lubrication). The spring is connected to
the block via a thin rigid and massless sheet (area
A =D XD) “glued” to the top surface of the block, see
Fig. 3. Hence the force exerted by the spring on the
block is assumed to act uniformly on the upper surface,
i.e., if F; is the force in the spring then the tangential
stress acting on the upper surface of the elastic medium
equals o, =F,/ A. The free end of the spring is assumed
to move with the speed v, and the basic problem ad-
dressed below is to determine the variation of the spring
force with time.

Let (x,y,z) be a coordinate system with the z=0 plane
in the top surface of the block and with the positive z axis
pointing toward the substrate; see Fig. 3. The free end of
the spring moves with the velocity v, along the positive x
axis. We assume that the block is made from isotropic
elastic media and that the D >>d, i.e., that the width and
depth of the block are much larger than its height. Un-
der these conditions the displacement field u(x,?) in the
block will to a good approximation depend only on z and
t; close to the vertical sides of the block the displacement
field will be more complicated, but this region of space
can be neglected if D>>d. The field u(x,t)=Xu(z,?)
satisfies the wave equation

QFu _ 0% _
ot? dz?
where ¢ is the transverse sound velocity. The tangential

stress, exerted by the spring on the z =0 surface of the
block, can be related to u(z,t) via

0 (1)
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FIG. 3. An elastic block on a substrate. The free end of the
spring moves with the velocity v;.
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F (1)
L3 0)=—
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=—g,t), (2)
where 1/k=pc? (p is the mass density of the block). If
the stress exerted by the lubrication molecules on the sur-
face z =d of the block is denoted by —o (), then

13U n=—a). 3)
K 0z

Note that o(t) is obtained from the microscopic stress
o(x,t) by averaging over (or “integrating out”) the rapid
(in space and time) fluctuating part of the motion of the
lubrication molecules. It is implicitly assumed that no
spatial fluctuations of o(x,#) occur on the length scale d
or longer; if such fluctuations occurred they would need
to be taken directly into account, and the problem we
study below would be much more complicated. If —o(?)
is the stress exerted by the lubrication molecules on the
bottom surface of the block, then, according to Newton’s
law of action and reaction, the block must exert stress
o(t) on the layer of lubrication molecules. This will in
general lead to some drift motion of the lubrication layer.
If one assumes that the time dependence of o(?) is slow
compared with typical relaxation times associated with
the motion of the lubricant molecules, then one can treat
o as a constant when determining the relation o= f(v)
between o and the speed v of the adsorbate layer.!!

I will now briefly discuss the nature of the relation
o=f(v) between o and v, based on the numerical simula-
tions presented in Refs. 12, 3, and 13. These simulations
considered a system of point particles, interacting via
Lennard-Jones pair potentials and moving on a corrugat-
ed substrate. Owing to the adsorbate-substrate coupling,
each adsorbate experience a friction force —m,nft, pro-
portional to its velocity t and a fluctuating force (arising
from the irregular thermal motion of the substrate atoms)
related to the friction 7 and to the substrate temperature
T via the fluctuation-dissipation theorem. The drift ve-
locity v was obtained by averaging over all the adsorbates
and over time.

The relation o=f(v) can have two qualitatively
different forms. If the adsorbate layer is in a two-
dimensional (2D) fluid state, which is always the case in
some parts of the (6,T) (@ is the adsorbate coverage)
phase diagram, then the o =f(v) relation has the form
schematically indicated in Fig. 4(a). In this case the drift
velocity will be nonzero for arbitrarily small o. This is,
of course, exactly what one expects for a fluid: an arbi-
trarily weak external force can shear a fluid. Further-
more, no hysteresis is observed, i.e., the relation between
o and v does not depend on whether o decreases from a
high value or increases from zero. Hence, if the lubrica-
tion layer in a sliding friction experiment is in a 2D-fluid
state, smooth sliding is expected (i.e., no stick-and-slip
motion) for any spring velocity v,. This is exactly what is
observed experimentally. For example, Yoshizawa and
Israelachvili® have studied a 12-A-thick hexadecane film
between two smooth mica surfaces and found stick-and-
slip motion when the temperature T=17 °C, but smooth
sliding for T=25°C. As will be shown below, stick-and-
slip motion is observed when the adsorbate layer is in a

4773

FIG. 4. The drift velocity (v) of an adsorbate layer as a
function of the external stress o =n,F, where n, is the adsor-
bate coverage and F the external force acting on each adsorbate.
(a) the adsorbate layer is in a fluid state when 0 =0. (b) The ad-
sorbate layer is in a pinned solid state when o =0. From Refs.
12 and 3.

pinned solid state at “stick.” Hence the melting tempera-
ture of the hexadecane film is somewhere between 17 and
25°C.

Assume now that instead the system is in a part of the
(8, T) phase diagram, where the adsorbate layer is in a
solid state which is commensurate with or at least pinned
by the substrate. In this case the o =f(v) relation has
the qualitative form shown in Fig. 4(b). If the system is
first thermalized with o =0 and then o is increased, the
pinned solid structure will remain, and the drift velocity
will be zero (v=0), until o reaches some critical stress
0,. At this point the adsorbate system fluidizes, and the
drift velocity increases abruptly from v =0 to v,. If o in-
creases further the drift velocity continues to increase, as
indicated in the figure. If o is reduced below o, the sys-
tem does not return to the pinned solid state at o =0,
but continues to slide until o reaches some lower critical
stress o, where the system abruptly returns to the pinned
state.

The hysteresis shown in Fig. 4(b) can have two origins.
The first follows from the fact that the temperature in the
adsorbate systems during sliding is higher than that of
the substrate, and might be so high that the fluid
configuration rather than the solid pinned state is stable
for o, <o <0o,. However, a more general explanation is
the following. First, it has been found that the return to
the pinned solid state at 0 =0, is a nucleation process.
However, a drag force from the surrounding flowing 2D
fluid will act on a pinned island.!* Assuming a circular
pinned island, and that the drag force is uniformly distri-
buted on the adsorbates in the island, the drag force is so
large that the island will fluidize if ¢ >0, =0, /2.

The picture presented above has been obtained from
numerical simulations on finite systems, but many of the
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results can be understood based on 2D hydrodynamics
and should therefore be very general. These theoretical
arguments also indicate that the transition to the pinned
state at 0 =0, may be more complex than indicated by
the simulations. I will now present both theoretical and
experimental arguments that the return to the pinned
state may occur as indicated in Fig. 5, i.e., the o0 =/f(v)
relation has a wide almost horizontal region for
v, <v <v,, where o =o .1’

As pointed out above, the return to the pinned state is
a nucleation process.!® In Ref. 3 it has been shown that
the drag force on a pinned circular island (radius R) is
proportional to R2. This drag force acts as a pressure on
the periphery of the island. If the pinning potential is
small compared to the lateral adsorbate-adsorbate in-
teraction potential (at the nearest-neighbor separation),
and if the island is not too large, the drag force will distri-
bute itself more or less uniformly on all the adsorbates in
the island, and the argument given above about the sta-
bility of a circular island for 0 <o.=0,/2 holds. But as
the island grows this condition will finally break down:
for a “very” large pinned island the drag force will only
act on a thin shell of adsorbates at the periphery of the is-
land, where the local stress will be so large as to give rise
to local fluidization. Hence an isolated island will have
some large but finite radius R. It follows that as o is re-
duced to some critical stress o,, the system may “flip”
from a “smooth” fluid state (for o > ;) to some granular
state consisting of a configuration of pinned islands (with
radius ~R) surrounded by 2D fluid. As o is reduced
further the radius ~R,, is likely to increase rapidly, and
the drift velocity v decreases, giving rise to an almost hor-
izontal region in the o = f(v) relation for v, <v <v,.

Another reason for the existence of an almost horizon-
tal region in the o = f(v) relation may be as follows. Sup-
pose we reduce the stress so that pinned islands start to
occur. Now, if the islands are pinned by both of the slid-
ing surfaces simultaneously, then, since it will take time
for an island to grow and since the block and the sub-
strate are in relative motion, during the growth of an is-
land there will be a force on the island building up due to
the local (at the island) elastic deformations of the block
and substrate. If the force on the island grows large
enough, the island will fluidize. On the other hand, if an

incomensurate solid;/
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v
FIG. 5. The drift velocity (v) of an adsorbate layer as a
function of the external stress o. The adsorbate layer is in a
pinned solid state when o =0.
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island is initially pinned by only one of the two sliding
surfaces, with different islands being pinned by either of
the two differents surfaces, then collisions” between
pinned islands would occur during the sliding process
which would result in a fluidization of islands. This
should result in a “granular” sliding state for the adsor-
bate layer, where pinned islands are continuously formed
and fluidized. To what extent these effects are important
in practice will depend on the nucleation and growth rate
of the pinned islands and on the sliding velocity v.

For both of the processes discussed above, one would,
for an infinite system, except the size R, of the islands to
grow without bound in a continuous manner upon ap-
proaching the fully pinned state. But a real contact area
has a finite width (area 4 =D XD), where typically
D ~10° A. Hence, in practice, when R reaches ~ D, the
system has returned to the fully pinned state, and this
might be the origin of the critical velocity v,. It is impor-
tant to note that the “horizontal” region of the o =f(v)
relation cannot be studied by numerical simulations if the
radius of a pinned island is larger than the basic unit used
in the simulations.

The general form of the o= f(v) relation presented in
Fig. 5 is supported by results of sliding friction measure-
ments (see Sec. III B). Here I only note two facts: First,
smooth sliding (i.e., sliding without stick and slip) is ob-
served (if the damping is large enough so that inertia
effects can be neglected, see Secs. II C and III) in a large
velocity interval v, <v, <v,, where the friction force is al-
most velocity independent; this implies that the o =f(v)
curve has a “large,” almost horizontal, region as indicat-
ed in Fig. 5. Second, direct support for a “granular”
state with pinned regions and fluid regions is drawn from
the study by Reiter et al.,'® who probed the response of
a sliding junction to an oscillatory external force. This
study showed that although the dissipative stress in the
sliding state was almost independent of sliding velocity
(as long as it is not too large) significant (although small-
er) elastic stress also persisted, which decreased with in-
creasing deflection amplitude but was almost independent
of oscillation frequency. The fact that elastic stresses oc-
curred, and that the elastic component decreased with in-
creasing oscillation amplitude, is strong support for the
existence of pinned islands; a large oscillation amplitude
would then imply stronger forces on the pinned islands,
and hence would tend to fluidize a larger fraction of them
as compared with a lower oscillation amplitude.

It is interesting to note that a granular sliding state has
been observed by Chen and Zukoski at low sliding veloci-
ties in experiments involving a ~ I-mm-thick film of a
colloidal crystal (a charge-stabilized polystyrene latex
solution with particles with a diameter of a few times 10*
AV Although this system differs from that involved in
boundary lubrication experiments (in the latter systems
the film is typically only one or two monolayers thick,
while the latex film is about 1000 monolayers thick), the
o = f(v) relation for the two systems is similar, e.g., hys-
teresis of the form indicated in Fig. 5 also occurs in stud-
ies involving colloidal crystals.

It is important to have a rough estimate of the magni-
tudes of o,, v,, and v, (note: that o, and v, are of the
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same order of magnitude as o, and v,). The stress o,
can be deduced directly from the static friction force if
the contact area is known. Typically one finds o, ~ 10
N/m? for lubricated surfaces. The sliding velocity v, is
roughly determined by n,m,nv, ~o, the [dash-dotted
line in Fig. 5], and if we take 7~ 10" s™! (see Ref. 18)
this gives v, ~10 m/s. In the sliding measurement of
Gee, McGuiggan, and Israelachvili, the critical velocity
v, has been measured directly to be of order ~107¢ m/s.
In the quantitative estimates presented below, I have used
these numerical values, although it is likely that they may
vary widely from one sliding system to another.

B. Starting and stopping

Suppose that the free end of the spring in Fig. 3 is
pulled very slowly. This will lead to elastic deformation
of the block (and the spring) as indicated in Fig. 6(a). As
long as the tangential stress at z=d is below o,, the
block will not move, and the displacement field u(z,?) is
given by u =—ko,z so that the tangential stress in the
block equals o, everywhere. When o reaches the criti-
cal stress o, the lubricant layer will fluidize, and the sur-
face z=d of the block starts to move with some velocity
vy to be determined below. This change in the displace-
ment field will propagate with the sound velocity ¢ to-
ward the upper surface (z=0) of the block; see Fig. 6(b).
Let us study this elastic wave propagation in detail. Let
t =0 be the time when the adsorbate layer fluidizes. The
displacement field for times 0 <t <d /c can be written as
[see Figs. 6(b) and 6(c)]

(a)
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FIG. 6. An elastic block on a substrate. (a) The stress o in
the block induced by the external spring is just below the criti-
cal stress o, necessary to fluidize the adsorbate layer. (b) The
spring stress has reached o,, the adsorbate layer has fluidized,
and the bottom surface of the block moves with the velocity v,.
(c) The region of “motion” propagates with the transverse
sound velocity ¢ toward the upper surface of the block. After a
time interval d/c the elastic wave has reached the upper sur-
face, and the whole block moves with the velocity vg.
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u=—xo,z, 0<z<d—ct, 4)
u=uyg—kogzZ+tvet , d—ct<z<d, (5)

where u,, 0y, and v, are constants. The displacement
field ¥ must be continuous for z =d —ct, which gives

ug—koyztvgld—z)/c=—kKo,z

or
ug+vyd/c=0, (6)
koo tvg/c=kKo, . @)

The displacement field given by (4)-(7) is continuous
everywhere, and satisfies the wave equation (1). In order
to satisfy the correct boundary condition on the surface
z=d, the stress o, and the velocity v, occurring in (5)
must satisfy

oo=f(vy) . (8)

In Fig. 7, I show the graphic solution to Egs. (7) and (8).
Note that the system ‘“jumps” [in the (v,0) plane] from
v=0 to a finite velocity vy~v,. It is of crucial impor-
tance to note that this is possible because initially only a
very thin (in the continuum model, infinitesimal) slab or
solid at the bottom of the block (z=d) need to be ac-
celerated to the speed v,. If the block were perfectly rig-
id, then the whole block would have to change its veloci-
ty, which can only occur slowly in order not to generate
enormous forces of inertia. But any real solid has a finite
elasticity (and a finite sound velocity), and the transition
indicated in Fig. 7 may occur practically horizontally and
instantaneously.

Let us discuss the magnitude of v in a typical case. In
Fig. 7 the dash-dotted line is given by o =m_ n,nv. Now,
if n~10"s~1, m, ~500u, and n, ~0.01 A_g, one obtains
mgn,n~ 10" kg/m?s. On the other hand, relation (7) can
be written as oy=o0,—pcv,, where in a typical case
p~10* kg/m? and ¢ ~ 1000 m/s, so that cp~107 kg/m?s.
It follows that the slope of the o = f(v) curve for 0 ~0o,
is of a similar magnitude to that associated with the line
o=o,—pcv. Hence, at the onset of fluidization of the
adsorbate layer, the velocity of the surface z=d of the
block will increase abruptly from v =0 to a finite v of or-
der v,.

v

FIG. 7. “Starting”: Graphical solution of Egs. (7) and (8).
“Stopping”: Graphical solution of Egs. (12) and (13).
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How rapid is the “starting” process? To address this
question, note that in the elastic continuum model the
bottom surface of the block changes its velocity instan-
taneously when the surface stress at the block-substrate
interface changes as a result of the fluidization of the ad-
sorbate layer. For a real system, the continuum model
breaks down at very short distances (on the order of an
atomic lattice spacing); the layer of atoms of the block in
direct contact with the lubrication layer will accelerate
within the time period a /c ~ 107 !* s, where a is an atom-
ic distance, to reach a final velocity v, accurately deter-
mined by the elastic continuum model. The present
study and all experimental sliding friction measurements
performed have until now probed only the properties of
the system on time scales much longer than this “atomis-
tic” time; for our purposes the “starting” and “stopping”
(see below) processes can be considered instantanous.

According to (4) and (5), at the moment (¢ =d /c) the
elastic wave generated at the bottom surface of the block
has reached the upper surface, the whole block moves
uniformly with the velocity vy =(o, —0,)/pc. This is the
same motion as exhibited by a rigid block and, in fact, the
velocity of the elastic block at t =d /c is exactly the same
as that of a rigid block exposed to a surface stress o, on
the upper surface and —o on the lower surface. This
follows at once from Newton’s equation of motion for the
center of mass, MX= A(o,—0,), so that x=A(a,
—0,)t/M. Substituting t=d /c in this equation gives
X=A4d(o,—0¢)/Mc=(0,—0,)/pc, where p=M / Ad is
the mass density. Hence the motion of the block at time
t=d/c is identical to that of a rigid block, but for
t <d /c the results differ and, as shown above, this has
important implications for the nature of “starting.” Fur-
thermore, in the rigid-block limit the stress o, is not
defined.

In principle it is possible to follow the motion of the
block for all times by simply studying how elastic waves
are generated and reflected from the surfaces z=0 and d
of the block, accounting for the appropriate boundary
conditions at these surfaces. But except for the ‘“start-
ing” and “stopping” (see below) time periods of duration
d /c, such a treatment is in most cases equivalent to the
motion of a rigid block. This is shown in Appendix A,
which illustrates how the equation of motion for a rigid
block can be obtained from those for an elastic block in
the limit ¢ — 0.

After the time period d /c, the elastic wave generated
at the bottom surface (z =d) has reached the top surface
(z=0), and the whole block moves uniformly with the ve-
locity v,. From here on we can accurately study the
motion assuming a rigid block; this is the topic of Sec.
II C, where it is shown that, as time increases, the veloci-
ty v and the stress o for z=d both decrease from their in-
itial values v, and o,. When o(¢) has finally decreased to
o . the lubricant layer returns to its pinned state. But just
as in “starting,” this ‘“‘stopping” transition cannot be
treated using the rigid-block limit, as the force of inertia
required to retard a rigid macroscopic block from the
speed v, to zero over a distance on the order of an atomic
lattice spacing would be very high, and would immediate-
ly fluidize the pinned structure. However, in the elastic
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continuum model there is no problem, since we only need
to “stop” the motion of the z=d side of the block in or-
der to return to the pinned state; the region of “stopped”
motion then propagates as an elastic wave with the sound
velocity ¢ toward the upper surface (z=0) of the block,
and after the time period d /c the whole block is standing
still. In order to study this “stopping” motion, let us as-
sume that t =0 corresponds to the time when the adsor-
bate layer returns to its pinned state. Hence for
0 <t <d /c the displacement field u(z,1) has the form (see

Fig. 8)
u=u,~ko.z+tvt, 0<z<d—ct, )
u=u,—ko;z, d—ct<z<d, (10)

where (u.,0,,v,) and (u;,0,) are constants. The require-
ment that u is continuous at z=d —ct gives

u,—ko.tv(d—z)/c=u,—koz

or
u.tv.d/c=u,, (11)
ko, tv./c=ko,. (12)

The displacement field given by (9)-(12) is continuous
everywhere and satisfies the wave equation (1). In order
to satisfy the correct boundary condition on the surface
z=d, the stress o, and velocity v, occurring in (9) must
satisfy

o.=f(v,) . (13)

(a)
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FIG. 8. An elastic block on a substrate. (a) The stress o in
the block is just above the critical stress o, necessary for the ad-
sorbate layer to return to its pinned solid state. (b) The stress
has reached o, the adsorbate layer has returned to its pinned
state, and the bottom surface of the block has stopped moving.
(c) The region of “stopped motion” propagates with the trans-
verse sound velocity ¢ toward the upper surface of the block.
After the time interval d/c the elastic wave has reached the
upper surface, and the whole block has stopped moving.
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In Fig. 7, I show the graphic solution to Eqgs. (12) and (13)
for a typical case. For the same reason as in “starting”
the system “jumps” almost instantaneously from v =v, to
v=0. Again it is of crucial importance to note that this
is possible because initially only a very thin (in the con-
tinuum model, infinitesimal) slab of solid at the bottom of
the block (z=d) needs to be retarded to zero speed. If
the block were perfectly rigid then the whole block would
have to change its velocity, which can only occur slowly
in order not to generate enormous forces of inertial. But
any real solid has a finite elasticity (and a finite sound ve-
locity), and the transition indicated in Fig. 7 occurs prac-
tically instantaneously.

At this point I would like to comment on the sliding
friction study of Thompson and Robbins.!* They per-
formed molecular-dynamics simulations on a system con-
sisting of a molecular thin film between two atomically
flat solid walls. The wall atoms were coupled to the sites
of a rigid 3D lattice via stiff springs. Hence, the walls
had no long-range elastic properties. In their simulations
they found that the transition from smooth sliding to
stick-and-slip motion occurred at some critical spring ve-
locity v, which scaled as M ~!/? with the mass of the
moving wall. This fact was explained as follows: In or-
der for the wall to stop, its kinetic energy must be con-
verted into potential energy in the film. The maximum
potential energy that can be stored in the film is of the or-
der of ~aF,, where a is a lattice constant of the wall, and
F, the static friction force. Equating this to the kinetic
energy at v =v, gives

v, ~(aF, /M)* . (14)

However, for a real physical sliding system this explana-
tion for the occurrence of the critical speed v, is in-
correct, since the block as a whole will never stop abrupt-
ly; initially only the bottom surface of the block stops,
and the inertia forces involved in this are negligible. The
reason that v,~M ~!/? is observed in simulations by
Thompson and Robbins is the unphysical treatments of
the elastic properties of the walls: by assuming that the
wall atoms are connected to the sites of a rigid lattice, all
the atoms in the block or wall must stop simultaneously
at the return to the pinned state. Removing this unphysi-
cal assumption by using an elastic block creates a
different mechanism for the origin of the critical velocity
v, (see Sec. I A). Hence it should not come as a surprise
that the relation v, ~1/F, implied by (14) is not observed
in a recent sliding friction study for hexadecane mole-
cules between two flat mica surfaces.®

C. Motion during slip

The motion of the block between the short “starting”
and “stopping” events (both of duration d/c~107° s)
can be treated accurately using the rigid-block approxi-
mation if the condition

max|v, —v(?)| <<cF, /k,d (15)

is satisfied (see Appendix A). Here F, is the static fric-
tion force and v (¢) the velocity of the center of mass of
the block. This condition results from the requirement
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that the change in the spring force, during the time 2d /c
it takes for an elastic wave to propagate from the bottom
surface to the top surface and back again, is small com-
pared with F,.

The nature of the motion of the block depends on the
initial velocity v, occurring after ‘“starting.” In this sec-
tion, as an illustration, I assume that v,=uv,, i.e., that the
“starting” (and “stopping”) transitions in Fig. 7 are al-
most horizontal. In this case max|v,—v|~wv, and (15)
reduces to v, k,d <<cF,. If this condition is satisfied, the
position of the block, x(2), can be accurately determined
by Newton’s equation for a rigid block:

Ms=k,(I+vt—x)— Af (%) . (16)

Here M is the mass of the block and Ao = Af(x) is the
friction force given by the product of the surface area A4
and the frictionless stress. We assume that time ¢ =0
occurs just after “starting,” where the spring force must
equal 40,, and where the block has the velocity vo=v,.
Hence if we choose x(0)=0 then we must have
k,I= Ao ,, which determines the parameter /. If we mea-
sure x(¢) in units of /, time in units of / /v,, velocity in
units of v,, and stress in units of o,, then (16) takes the
form

Xx=Q[1+vt—x—f(x)], (17
where

Ao, F,I F? F, o,

- My} - My? - k,Mv? - ked pv?

(18)

But the present treatment is valid only if (15) holds, i.e.,
only if

aﬂ
pvc

Since I have assumed that the “starting” transition is al-
most horizontal, the inequality (see Sec. IIB)
0,/pv,c >>1 must be satisfied. Hence (19) implies Q >>1
in order for the rigid-block model to be valid. This corre-
sponds to overdamped motion, which is almost Q in-
dependent and determined accurately by neglecting the
second-order time derivative term in (17), i.e., by setting
the term [ - - - ] in (17) equal to zero. If the condition (15)
is not met (but o, /pv,c >>1 still holds), a more detailed
calculation in necessary to account for the elastic proper-
ties of the block for all stages in the motion.

I have calculated the spring force F, for a few different
forms of the function f(v). In all cases I have chosen
Q =100, but the results are essentially independent of Q
for large Q. In Fig. 9, I show the relation o =f(v) for
four different cases [Figs. 9(a)-9(d)], for which I have
solved (17) by numerical integration. The resulting
spring force is plotted in Fig. 10 as a function of time,
and for several values of the spring velocity v,. The latter
is measured in units of v., which is the lowest spring ve-
locity which allows smooth sliding. As expected, for
v; <v, stick-and-slip motion occurs, while the motion is
smooth for v >v,. The important qualitative effect in

o> (19)
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FIG. 9. The relation o= f(v) for four different cases (a)-(d),
where I have assumed o, =0, /2.
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FIG. 10. The spring force F; as a function of time, for several
values of the spring velocity v;. The four cases (a)-(d) have
been calculated assuming the relation between o and v indicated
in Fig. 9 by cases (a)-(d). In the calculations, Q =100, and I as-
sumed that the “starting” and “stopping” transitions occur hor-
izontally in the (v, o) plane.
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Fig. 10 is the fact that in cases (c) and (d) the stick-and-
slip frequency increases continuously as v, —v, from
below, while it first increases and then decreases in cases
(a) and (b). Furthermore, in the latter case the slip part
of the motion has a rather slowly decaying tail when
v, ~v, while this tail is much shorter in cases (c) and (d).
As discussed in Sec. II only cases (c) and (d) are con-
sistent with experimental data, i.e., the relation o =f(v)
has the qualitative form indicated in Fig. 5.

In a more general case, where the initial velocity v is
less than v,, the sliding process will be more complex. In
particular, instead of a continuous drop in the sliding ve-
locity during the slip period, the block may first ac-
celerate (though the maximum velocity is always below
v,). Furthermore, due to inertial effects, stick-and-slip
motion may occur at spring velocities higher than v,, and
the amplitude of the oscillations in the spring force dur-
ing a stick-and-slip period will not equal F, —F, as above,
but will be larger (see Sec. III B).

III. COMPARISON
WITH EXPERIMENTS AND DISCUSSION

In experimental sliding systems, the block in Fig. 2 is
never in contact with the substrate over the whole ap-
parent contact area 4. This fact must be taken into ac-
count when analyzing experimental data. In this section
I study this problem in some detail.

A. Qualitative discussion

Consider the sliding configuration shown in Fig. 11. A
small block with mass M *, to be referred to as the mini-
block, is connected via a spring (with bending force con-
stant k.*) to a large block with mass M. The large block
has a (bottom) surface area 4 and the miniblock a surface
area 5 A, where 8 4 << A. A spring with a force constant
k, is connected to the large block, and the free end of the
spring is moved with the speed v,, which we assume is
below v,. The miniblock is sliding on a lubricated sur-
face. The big block is acted upon not only by the forces
from the springs k; and k.*, but in addition by a viscous
force —Myx, which we assume is proportional to the
center-of-mass velocity x. This force may result, e.g.,

I 77777 777 777777

FIG. 11. A small block of mass M* is connected to a big
block with mass M by a spring with the bending force constant
k. The free end of the spring k, moves with the velocity v,.
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from the viscous drag from a fluid surrounding the big
block. I assume that the motion of the miniblock is over-
damped, as is likely to be the case in the applications con-
sidered in Secs. III B and III C.

Now, assume that k* >>k; and M >>M*, and I will
discuss qualitatively the nature of the motion of the mini-
block and the big block.

The motion of the miniblock will be as discussed in
Sec. IIC. That is, the miniblock first elastically deforms
until a critical surface stress o, has been reached [point
A in Figs. 12(a) and 12(b)], at which point the lubrication
film fluidizes. During a very short-time period the mini-
block reaches its maximum velocity v, of order v, (point
B), after which the velocity decreases monotonically
(overdamped motion) while the velocity of the big-block
increases. After the short-time period 7, the average ve-
locity v(t) of the surface z=d of the big block (which
corresponds to the spring velocity v,* for the miniblock)
and the velocity of the miniblock will (nearly) coincide; I
denote v(r)=v*. If v* is above the critical speed v,
(which I assume to be the case in what follows), the mini-
block will not return to its pinned state but will continue
to slide at a velocity close to v(t).

Let us now consider the motion of the big block. We
consider two limiting cases, namely zero damping ¥y =0
(underdamped motion) and a large damping ¥ such that
inertia effects associated with the motion of the big block
can be neglected (overdamped motion).

Consider first zero damping, ¥ =0. Just before the slip
starts, the z=d surface of the big block is acted upon by
the (average) tangential surface stress oc=o0,84/A.
Since the ratio 84 /A is assumed to be much smaller
than unity, this surface stress is much lower than the one
which acts on the miniblock. This has the following im-
portant consequence. While after fluidization the mini-
block almost instantaneously reaches the speed vy~v,,
the big block will, after a time period ~d /c, have a ve-
locity v ~(8 4 /A (o, /pc) which is below v,. But since
the mass of the big block is so large, it has not had time
to move any appreciable distance. This implies that the
force in the spring k; is still close to the value F,=8A40,
it possessed at the moment the adsorbate layer was fluid-
ized. Hence, after the initial rapid relaxation of the small
block the big block will be acted upon by the net force
~(F,—F_,)>0 (where F,=8 A0 _), and the block will ac-
celerate. Since the spring k}* is very stiff, the motion of
the miniblock (after the initial rapid relaxation) will
closely follow that of the big block. The motion of the
miniblock is indicated in Fig. 12(a). A full stick-and-slip
cycle involves the sequence A —-~B—C —D —E —F.

I note that in many practical cases, the velocity v* is
negligibly small compared with the highest velocity at-
tained by the block at later times. That is, the motion of
the big block will, after the initial rapid relaxation of the
miniblock, start from v=v*=~0 and only gradually in-
crease and then decrease again. It is easy to prove that
during this motion the inequality (15) is usually satisfied
(see below), and that the motion of the big block can
therefore be studied by solving Newton’s equation for a
rigid block, just as for the miniblock, but with a different
initial condition, namely v =0 at the start of the slip. As
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I discuss in Sec. II B, because of inertia effects, stick-and-
slip motion occurs even if v, >v,, and the amplitude of
the variation in the spring force during a stick-and-slip
cycle is roughly 2(F, —F,) rather than F, —F,, as expect-
ed if inertia effects can be neglected (see Sec. III C).

Next, let us consider the case where a viscous force
acts on the big block, which is so large that inertia effects
can be neglected (overdamped motion). In this case the
following scenario occurs: After the initial rapid motion
(time period 7) where the miniblock relaxes toward lower
velocities while the big block accelerates, the big block
and miniblock reach the same velocity v*. But from here
on, because of the viscous force, the velocity of the big
block will monotonically decrease with increasing time
until v(¢) reaches v, at which point the system returns to
the pinned state. If v* >>v, the shape of the time depen-
dence of the spring force will be similar to that discussed
in Sec. IIC. That is, neglecting the short initial time

| (a)

(o4}

v

FIG. 12. The relation between the stress o at the bottom sur-
face of the miniblock and the velocity v of the same surface. (a)
Underdamped motion of the big block. After the fluidization of
the adsorbate layer (transition 4 — B) a rapid relaxation of the
velocity of the miniblock occurs (B-C). During this time
period the big block accelerates, and at point C the big block
and the miniblock have the same velocity v*. From here on the
big block and the miniblock move together with almost the
same velocity, both accelerating to reach maximum velocity at
point D. The system then retards and when the velocity reaches
the critical velocity v, (point E) the bottom surface of the mini-
block returns to the pinned state (transition E—F) and the
whole cycle F—A—B —C —D —C —E —F repeats iself. (b)
Overdamped motion of the big block. After the fluidization of
the adsorbate layer (transition 4 — B) a rapid relaxation of the
velocity of the miniblock occurs (B-C). During this time
period the big block accelerates, and at a point C the big block
and the miniblock have the same velocity v*. From here on the
big block and the miniblock move together with almost the
same velocity, both retarding (C-D). When the velocity
reaches the critical velocity v, (point D) the bottom surface of
the miniblock returns to the pinned state (transition D — E) and
the whole cycle E — A —B — C — D — E repeats itself.
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period T where the big-block accelerates (the time period
7 is very short and usually not resolved experimentally),
the slip will start with a rapid, almost linear (in time),
drop in the spring force followed by a slower time varia-
tion. The motion of the miniblock is indicated in Fig.
12(a). A full stick-and-slip cycle involves the sequence
A—-B—C—D—E. In this case stick-and-slip motion
occurs only if v; <v,, and the amplitude of the variations
in the spring force equals F, —F,, as expected if inertia
effects can be neglected (see Sec. III C).

In Secs. III B and III C I consider the limiting cases of
underdamped and overdamped motion of the big block in
more detail. The former case occurs in many practical
cases, e.g., when a metal block is slid onto a metal sub-
strate while the latter case seems to prevail in sliding fric-
tion studies such as those in Refs. 6-8, involving two
mica surfaces with a single contact “point” (junction).

B. Underdamped motion

I will now discuss in detail the sliding problem con-
sidered above when the viscous damping vanishes (i.e.,
y =0). The stick-and-slip motion discussed above in Sec.
I1 C arises from the “forbidden gap” in the o = f(v) rela-
tion (i.e., no stationary motion of the adsorbate layer is
possible for 0<v <v,), but for underdamped motion
stick-and-slip motion has a different origin related to the
fact that the friction force during sliding is lower than the
static friction force. To discuss this important point,
consider a metallic block on a metallic substrate with a
lubrication fluid. Now, the actual contact between the
block and the substrate does not occur over the whole ap-
parent surface area, but only at some contact points
(junctions) where surface roughness “touch.” The sum of
all the junctions is called the area of real contact 8 A4.
The rest of the apparent area of contact is usually much
larger than the real area of contact, but plays essentially
no part in determining the overall interaction between
the two solids.

It has been found that the size of the real area of con-
tact in most practical cases can be estimated accurately
by assuming that plastic deformation has occurred at
each junction, and that all junctions are in a state of inci-
pient plastic flow. This assumption at once gives
8A4A=L /o, where L is the load and o, (the penetration
hardness) the largest compressive stress that the materials
can bear without plastic yielding. As an example, for a
steel cube with a 10-cm side on a steel table, one obtains
84 =~0.1 mm? i.e., the actual contact area is only a frac-
tion 84 / A ~ 1073 of the apparent contact area 4. I also
note that various experiments, e.g., visual inspection of
two surfaces after contact has occurred, have shown that
a junction typically has a diameter of 10° A, so that the
number of junctions is ~ 1000.

Let us refer to those surface roughness structures (sur-
face protrusions) of the block which contact the substrate
as miniblocks, and the rest as big blocks (see Fig. 13).
The miniblocks have some typical mass M * and are con-
nected to the big block via some effective ““springs” with
force constants k* which have their origin in the fact
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FIG. 13. A block on a substrate. The miniblocks represent
the surface roughness of the block which contact the substrate.

that when a tangential force acts on a miniblock it will
displace relative to the big block by local elastic deforma-
tion of the big block (see Appendix B).

The motion of a miniblock will be as discussed in Sec.
IIC. That is, the miniblock first elastically deforms until
the critical surface stress o, has been reached, at which
point the lubrication film fluidizes. During a very short-
time period of order d*/c~10"% s, the miniblock
reaches its maximum velocity v, of order v,, after which
the velocity monotonically decreases (overdamped
motion) while the velocity of the big block increases. The
average velocity v(t) of the surface z=d of the big block
(which corresponds to the spring velocity v, for mini-
blocks) and the velocity of the miniblocks will coincide
after some short time 7; I denote this velocity by v*. I as-
sume that v* is above the critical speed v,. Hence the
miniblock will not return to its pinned state, but will con-
tinue to slide at a velocity close to v(?).

Let us now consider the motion of the big block. Just
before slip starts, the z=d surface of the big block will be
acted upon by the (average) tangential surface stress
0=0,64/A. Since the ratio 84 /4 typically equals
1077 or so (see above), this surface stress is much lower
than the one which acts on the miniblocks. This has the
following important consequence. While after fluidiza-
tion a miniblock almost instantaneously reaches a speed
vo which is of order v, ~10 m/s, the big block will (after
the time period ~d/c) have a velocity v~(84/
Ao, /pc)~10"* m/s which is practically zero. Hence
the motion of the big block will start from v =0 and only
gradually increase and then (if stick-and-slip motion
occurs) decrease again. It is easy to prove that during
this motion inequality (15) is usually satisfied (see below)
and the motion of the big block can therefore be studied
by solving Newton’s equation for a rigid block, just as for
the miniblocks, but with a different initial condition,
namely v =0 at the starting of the slip.

Now, the o =f(v) relation is assumed to have a wide,
almost horizontal, region for v, <v <v,, where the fric-
tional stress equals o, =0, /2. If the velocity of the big
block is below v, during the whole sliding process (this is
often the case in boundary lubrication experiments), the
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friction force acting on a miniblock, during most of the
slip period of the big block, will, to a very good approxi-
mation, equal o.. Hence the kinetic friction force on the
big block will be F, =064, and the static friction force
willbe F,=0,8 4.

To study the motion of the big block, I treat it as a rig-
id block (see above) with mass M, and assume that a
spring with force constant k, is connected to it as indicat-
ed in Fig. 3. The free end of the spring is assumed to
move with the constant velocity v,. Let x(¢) be the posi-
tion coordinate of the block at time ¢, and assume that at
t=0 the block is stationary relative to the substrate
[x(0)=0 and x%(0)=0] and that the spring force vanishes.
Now, for “low” spring velocities v, the solid block is ei-
ther in a pinned state relative to the substrate (i.e., X =0)
in which case the friction force is Ff <F,, or else in a
sliding state where the friction force equals F, <F,. We
assume that the sliding velocity is so low that we can
neglect the velocity dependence of the kinetic friction
force. The equation of motion for the block takes the
form

Mi =k (vit—x)—F, (20)
where

F,<F, ifx=0,

F,=F, ifx>v, .

Since v, is such a small velocity we can set it equal to
zero in the present case. If we measure time in units of
(M /k,)172, distance in units of F, /k;, velocity v in units
of F,(Mk,)~ /2, and friction force F ' in units of F,, then

i=vit—x—F,. 1)

In Fig. 14, I show the spring force F;=v t—x(t) when
F,=F,/2 in a case where the velocity increases from
0.05 to 0.1 to 0.2. The result in this figure can be under-
stood as follows: Initially, as time increases the spring
will extend, but the solid block will not move until the
force in the spring reaches F,. At this point the adsor-
bate structure “fluidizes” (see Sec. II A) and the two sur-
faces can slide relative to each other. The friction force is
now F, <F_, and since the spring force is F, at the onset
of sliding the box will initially accelerate to the right.
Note that owing to the inertia of the block, the velocity x
is initially lower than v,, and the spring will continue to
extend for a while before finally X >v,. The maximum
spring force will therefore not occur exactly at the onset
of sliding but slightly later, where the spring force is
greater than F,. In Fig. 14 this inertia effect is very small
(this is typically the case sliding friction experiments) and
the maximum spring force is nearly equal to F,. When
the sliding velocity x > v, the spring force decreases, but
the analysis presented below shows that the sliding
motion does not stop when the spring force equals F, but
continues until the spring force reaches =~2F,—F,,
where the motion stops and the whole cycle repeats itself.
This model is simple enough that one can analytically
evaluate the amplitude AF of the oscillations in the
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FIG. 14. The spring force F; as a function of time for under-
damped motion of the big block. The static and kinetic friction
forces are denoted by F, and F,, respectively.

spring force which occur during sliding, as well as the
stick-and-slide time periods. Assume that the sliding
process starts at =0 and let ¢, denote the time when the
slip starts so that v;¢y=F,. The general solution of (21)
valid during the first slip period is

x(t)=v;t—F,— A sin(t+a) , (22)
and the spring force is

F (t)=vit—x(t)=F,+ A sin(t +a) . (23)
At t =t both x and X vanish, so that

x(tg)=vsto—F.— A sin(ty+a)=0,

X(ty)=v;,— A4 cos(ty+a)=0,

where vt =F,. Hence
A=[v}+(F,—F,)*]\?, (24)

tota=arcsin[(F,~F,)/A]=¢ . (25)

Now, during the first slip period ¢ +a increases continu-
ously from ¢ to 2m—¢ [note that cosQ2m—¢)=cosd].
Hence slightly after the begining of the sliding, for
t+a=m/2>¢, the spring force takes its largest value
F,+ A [see (23)]; this delay is caused by inertia effects.
Similarly, slightly before the end of the sliding, for
t+a=3mw/2<27—¢, the spring force takes its smallest
value F, — A. Hence the amplitude AF of the oscillations
in the spring force is AF =2 A4 or, using (24),

AF=2[v}+(F,—F,)*"?.

The time between a maximum and the following
minimum of F; equals 7. Similarly, the time between a
minimum and the following maximum in F; equals
2(F,—F_)/v,. Finally, let us prove that inequality (15) is
satisfied, as assumed implicitly. From (22) we obtain
lv,—v(t)|<F,—F,~F,/2 or, returning to coordin-
ates with dimension, |v,—v(t)| <F,(Mk,)"'/2=(cF,/
k,d)d*k,/Mc?)!/2. However, in a typical case d =0.1
m, k, ~ 1000 N/m, M ~ 10 kg, and ¢ ~2000 m/s, so that
d*k, /Mc?~107" and inequality (15) is satisfied.

The time dependence of the spring force during stick-
slip motion, as shown in Figs. 14 and 15, is often seen in
experiments. However, the discussion above is valid only
if the maximum of the sliding velocity is below v,. If this
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time

FIG. 15. Magnification of a “stick-and-slip” period shown in
Fig. 14.

condition is not satisfied the frictional stress during slid-
ing will not equal o, but will vary with time. The max-
imum slip velocity in the model calculation above equals

Vax = Vs +[02+(F, —F,)*/Mk,]"/? ,

and the condition for the validity of the discussion above
is that v ., <v,. Since for a block on a substrate without
an “external” load, F, and F, are both proportional to M
(since F=fL=fMg), it follows that (F,—F,)*/Mk,
~M /k,, and the condition v ,, <v, will be satisfied if
the spring is stiff enough (i.e., k, is large enough) or the
mass of block M small enough.

C. Overdamped motion

In this section I discuss the limit of overdamped
motion, i.e., I assume that a viscous drag force acts on
the big block, which is so large that inertia effects can be
neglected.

Mica has a layer structure which makes it possible to
prepare macroscopic surface areas with atomistic
smoothness, e.g., without a single step. Mica surfaces are
therefore ideal for model studies of sliding friction. In
this section I discuss the sliding friction measurements of
Yoshizawa and Israelachvili® for thin hexadecane films
between two shearing mica surfaces. In these measure-
ments thin mica crystals are glued on curved glass sub-
strates. By pressing the two mica-covered surfaces to-
gether a small circular contact area will arise, the diame-
ter of which depends on the load, but which in most ex-
periments is somewhere in the range 10-100 um. In the
sliding friction measurements presented in Ref. 6, a large
fraction of the sliding apparatus is immersed in the lubri-
cating fluid, and this generates a viscous drag force which
might be the reason why in this case the sliding motion is
observed to be overdamped.

To discuss the sliding process, let us define a miniblock
as the dotted volume element in Fig. 16, and the rest as
the big block. The width, depth, and height of the mini-
block is on the order of the diameter of the contact area
to the substrate, which we take to be D*~6X10"° m.
The miniblock is connected to the big block via an
effective spring with force constant k.*, which has its ori-
gin in the fact that when a tangential force acts on the
miniblock it will displace relative to the big block by local
elastic deformation of the big block (see Appendix B).
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FIG. 16. A mica block on a mica surface. The mica block
has a slightly curved surface with a single contact junction with
the substrate. The dashed volume element defines the mini-
block.

I assume that the motion of the miniblock is over-
damped (i.e., that inertia effects are negligible). That is,
the miniblock first deforms elastically until the critical
surface stress o, has been reached at which point the lu-
brication film fluidizes. During a very short-time period,
of order d*/c ~10"% s, the miniblock reaches its max-
imum velocity v, of order v,, after which the velocity
monotonically decreases (overdamped motion) while the
velocity of the big block increases. The average velocity
v(t) of the surface z=d of the big block (which corre-
sponds to the spring velocity v,* of the miniblock) and the
velocity of the miniblock will coincide after some short
time 7; I denote this velocity by v*. I assume that v* is
above the critical speed v.. Hence the miniblock will not
return to its pinned state but continue to slide at a veloci-
ty close to v (?).

To study the motion of the big block, I treat it as a rig-
id block with mass M and assume that a spring with force
constant k; is connected to it as indicated in Fig. 3. The
free end of the spring is assumed to move with the con-
stant velocity v,. Let x(¢) be the position coordinate of
the block at time t. For v, <v, the block is either in a
pinned state relative to the substrate (i.e., X =0), in which
case the friction force is Fy <F,, or else in a sliding state
where the friction force equals F, <F,. We assume that
the sliding velocity is so low that we can neglect the ve-
locity dependence of the kinetic friction force. With
1=F, /k, the equation of motion for the big block takes
the form

Mi=k(l+vt—x)—F,—Myx ,
where

F;<F

', ifx=0,

F,=F, ifx>v, .
If we measure time in units of (M /k,)!/?, distance in
units of F, /k,, velocity v in units of F,(Mk,)™"'/?, fric-
tion force F in units of F,, and y in units of (M /k;)~ 12
then

X=1+tvit—x—F;—yx . (26)

In the measurements of Yoshizawa and Israelachvili,
M =0.02 kg and k, =500N, so that the units of time, dis-
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tance, velocity, and ¥ become ~0.01 s, 1073 m, 1073
m/s, and 100 s~ respectively. The initial conditions
can be determined as follows. After fluidication has oc-
curred, the miniblock will accelerate almost instantane-
ously to the velocity vy ~v, and then retard, so that after
a short-time interval 7 it reaches the velocity v*. Since
M >>M* the big block will not move very much during
the short time 7, and we can set x(7)=0. However, the
big block has picked up some momentum (impulse) which
can be determined from the equation of motion of the
miniblock. The coordinate g(¢) of the miniblock is ob-
tained from the corresponding Newton’s equations, with
the initial conditions ¢(0)=0 and ¢(0)=v,. The momen-
tum Mx(7) of the big block, to be used together with
x(7)=0 as initial conditions for the motion of the big
block, is obtained from ¢g(t¢) by integrating the spring
force from t =0tot=r:

Mx(‘r)=Mv'zfont kX[1*—q(D)] .

It is easy to solve (26) to obtain the coordinate x (¢) and
the spring force during the slip:

*

_ VU —A_t__ —Agt
x(2) a+vst+———k+_k_ (e e )

_ a —A_t_ —A,t
—7»+"7~— (Aie A_e ),

F,=1+vt—x(1),

where a=1—F,—yv, and A=y /2t(y*/4—1)"/% In
Fig. 17, I show the spring force F,=1+v,t —x(¢) when
F,=1, v,=0.005 (or in coordinates with dimension,
v, =1 pm/s), v,=0.8v,,v*=0.1, and y =3.

The time dependence of the spring force found above
differs in three important ways from that in the un-
damped case studied in Sec. III B: (a) At the beginning of
the slip, the spring force has a sharp falloff (linear in
time), followed by a slower decay. (b) Smooth sliding
occurs when the spring velocity v, is above the critical
velocity v,. (c) The amplitude of the variation of the
spring force during a stick-and-slip cycle is F, —F, rather
than 2(F,—F,), as observed in the undamped case.

an

] 1
0 200 400
time

FIG. 17. The spring force F; as a function of time for over-
damped motion of the big block. The static and kinetic friction
forces are denoted by F, and F,, respectively.
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FIG. 18. The spring force as a function of time for a hexade-
cane film between two mica surfaces. Above some fairly sharply
defined critical velocity v.=~0.4 um/s, the stick-slip spikes
disappear and the sliding occurs smoothly. From Ref. 6.

These three attributes are exactly what are observed in
the experiments by Yoshizawa and Israelachvili.

In Fig. 18 I show a typical result of a sliding friction
measurement of Yoshizawa and Israelachvili. For v >v,
smooth sliding occurs, while stick-and-slip motion occurs
for v <v.. The shape of the spring force during slip in
Fig. 17 is similar to that in Fig. 18.

IV. SUMMARY AND CONCLUSION

I have presented a simple model study of the motion of
an elastic block on a substrate with a layer of lubrication
molecules. The study illustrates how the surface stress
generated by the lubrication layer at the block-substrate
interface is transmitted to the upper surface by the block.
During “starting,” initially an infinitesimally thin layer at
the bottom surface of the block starts to move with a
finite velocity. Similarly, during “stopping”, initially an
infinitesimally thin layer at the bottom surface of the
block stops moving. This implies that there are no
“problems” associated with inertia effects in “starting” or
“stopping.” I have also shown that stick-and-slip motion
can have two different origins depending on the nature of
the sliding system.

The discussion in this paper has been based on the as-
sumption that the adsorbate layer can be in two different
states, a solid pinned state and a fluidized flowing state,
and that during a stick-and-slip cycle the adsorbate sys-
tem oscillates between these two states. However, some-
times the lubrication molecules bind so strongly to the
surfaces that no fluidization can occur. This seems to be
the case with fatty acid molecules which are often used as
boundary lubrications. But even in this case one would
expect the o= f(v) curve to have the schematic form
shown in Fig. 5 (but the static and kinetic stresses o, and
o, may now have very similar magnitudes). Hence the
discussion presented in this paper about the role of elasti-
city in boundary lubrication should be very general.

Finally, let me point out that the model studied in this
paper may need extensions in some cases. First, I have
assumed that o = f(v) relates the stress o(¢) to the veloci-
ty v(t) at the same time. This assumes that the important
relaxation processes in the lubrication film occur rapidly
compared with the typical times involved in the sliding
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processes (e.g. the “slip time” during a stick-and-slip cy-
cle). This assumption may not always be true, since mol-
ecules on a surface may exhibit large rearrangement bar-
riers which imply long relaxation times. Hence, in a
more general case one may have to replace the local (in
time) relation between v and o with a more general non-
local relation,” where the velocity at time ¢ depends on
the stress at earlier times, ¢t' <t. This extension of the
theory may be particularly important when the external
force acting on the sliding system is oscilling in time, as
in the experiments by Granick® and Reiter et al.'®

Another extension, which may be important in some
practical cases, is to include elastic coupling between the
miniblocks (see Sec. III B) as in the study by Carlson and
Langer.! It would be interesting to repeat their model
study using the relation o = f(v) discussed in Sec. IT A in-
stead of the quite arbitrary friction law they used.

APPENDIX A

In this appendix, I show how equations of motion for
an elastic block go over into those of a rigid block as the
sound velocity ¢ (or, equivalently, the Young’s modulus
E) goes to infinity. As in Sec. II, we assume that the
thickness d of the block is small compared with its extent
in the x and y directions, and we can therefore neglect the
modification of the displacement field close to the vertical
surfaces of the block. Hence the displacement u in the x
direction of a material point in the block will depend only
onzandt,i.e., u =u(z,t), and satisfy the wave equation

Qu_ 28u _

or? 09z
where c is the transverse sound velocity. The tangential
stress is given by

g=L104
k 3z’

0,

where 1/k=pc?, p being the mass density.

Assume that a spring is connected to the block (see
Fig. 2) and that the free end of the spring moves with the
velocity v,. The block will not start to move until the
stress at the z=d surface of the block reaches the critical
value o,, at which point the lubrication layer fluidizes
and the motion starts. As discussed in Sec. II, the initial
motion consists of an elastic wave propagating with the
(transverse) sound velocity ¢ from the z=d surface to-
ward the z=0 surface. We now consider the motion of
the block at an arbitrary time ¢ during the slip. The
motion of the block can be considered to result from elas-
tic waves in the block, and it turns out to be enough to
consider elastic waves with sharp steplike wave fronts.
Let us call the time period 2d /c it takes for an elastic
wave to propagate from the surface z=0 to z=d and
back again to z =0 for a “cycle.”

Let ¢ be an arbitrary but fixed time, and consider the
time interval from t to t+d/c. Assume that the dis-
placement field has the form (see Fig. 19)

u=up—koyztvg(t+7), 0<z<d—cr,

u=iy—kKkopz+0(t+7), d—cr<z<d,
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t+2d/c

FIG. 19. Elastic wave propagation in a block sliding on a
substrate. d is the thickness of the block, and c the transverse
sound velocity.

where (u4,00,00) and (#y,5(,0y) are constants, which
must be chosen so that u is continuous at z=d —cT, i.e.,
so that

ug—Kkogz+uvo[t+(d—2z)/c]
=iy, —kTz Tvo[t+(d—2z)/c]
or
ugtug(t+d/c)=u,+vo(t+d/c), (A1)
koo tvy/c=kGyt0y/c . (A2)

The displacement field given above satisfies the wave
equation and is continuous everywhere. Now, at the sur-
face z=d, the stress and velocity must obey the relation
o= f(v); see Fig. 5. Since in the present case 0 =7, and
v =0, for z=d, this implies

Fo=1(7,) .

Next, consider the time interval from ¢t +d /c to t +2d /c,
where (see Fig. 19)

(A3)

u=u,—ko;z+v(t+d/c+71), 0<z<ecr

U=,k +0y(t+d/c+7), cT<z<d .
The condition that u is continuous for z =c implies
u,—kozz+v(t+d/c+z/c)

=#y,—kOpz +0y(t+d/c+z/c)

or
(A4)
(AS5)

u,+tv,(t+d/c)=u,+0y(t+d/c),
Ko~V /Cc=KTy—Dy/cC .

Now, note that the time 2d /c of a “cycle” is very short
(we are interested in the ¢ — o limit). Hence we can con-
sider the spring force F, as constant during a “cycle.”
The spring will act with a surface stress o, =F, / 4 on the
surface z =0, which we take to be

Ust _ u0+Uot
1 l

O,

during the time interval from t—d/c to t+d/c. But
during this time interval, the surface stress equals o, so
that we obtain
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vt uytuet
1 1

0'0=0'a

Similarly, during the time interval from t+d/c to
t +3d /c, we take the spring force to be

Og

v,(t+2d /c) u1+v1(t+2d/c)]
I I ’

which must equal o;. Hence

0'1_0'0=0'a

1 l

Us2d/c ul—u0+(v1—v0)t+v,2d/c l

(A6)

Now the time period €=2d/c—0 as c¢—o and
(ug,00,0o) must deviate less and less from (u,,04,v,) as
¢ — . Hence we take the continuum limit by introduc-
ing [u(#),0(2),v(z)], which takes the value (u4,00,00) at
time ¢, (u,,0,,v,) at time ¢ +¢, and so on. Using

Ul—aozd(t)Zd/C y

u—ug=u(t)2d /c ,

vl—vozl')(t)Zd/C Py

we obtain, from (A6),

Ug _ u+ovt+v

] ] (A7)

=0,

Next, using (A1) and (A4) gives
ugtuvo(t+d/c)=u,+v(t+d/c)
or
u+ovt=0 (A8)
to leading order in 2d /c. Using (A7) and (A8) gives
d=0,(v,—v)/l. (A9)
Adding (A2) and (A5) gives
klogto,)—(v,—vy)/c=2kTy ,
or, using pc*=1/x,
0o=0—pdv (A10)

to leading order in 2d/c. Similarly, subtracting (AS5)
from (A2) gives

k(og—0o,)+(vg+v)/c=204/c,
or, using k~1/c?,
To=v (A11)

to leading order in 2d /c. Substituting (A10) and (A11)
into (A3) gives

o—pdo=f(v) . (A12)
Next, note that

u(z,t)=u(t)—ko(t)ztv(t)h,
and hence

Ju . . .

—(z,t)=u—«koz+vt+v .

at
Using (A8), this gives

ou _

EY (z,t)=v (A13)

to leading order in 2d /c. Substituting this into (A9) and
integrating with respect to time gives

o=o,[ltvt—ulz,t)]/l .
Finally, substituting this into (A12) gives

pdv=0c, [l+tvit—u(z,t)]/l—f(v). (A14)

Since in the limit ¢— o« the elastic displacement term
—kozin u(z,t) vanishes, Eq. (A14) is just Newton’s equa-
tion of motion for the center of mass of a rigid block. In
particular, introducing the mass M =pd 4 and denoting
the center-of-mass position by x(z), (A14) takes the form

M3 =F,(1+u,t/l—x /1)—F;(%)
where F,= Ao, and F,= Af(x).

APPENDIX B

Assume that isotropic elastic media occupy the half
space z >0. On the surface z=0 I assume that a tangen-
tial stress acts within a small circular region with radius
R that is centered at a material point P. This will give
rise to an elastic deformation of the solid, and P will dis-
place parallel to the surface by the amount (see, e.g., Ref.
22)

u= l+v(7
2wE r<R

2
dxL 20-v+2vEs
r r

b

where r2=x2+y?, and where v is Poisson’s ratio and E
)(oung’s modulus. The integral is trivial to perform, giv-
ing

u=(2+v—+v*)oR /E=(1—v/2)(aR /pc?),

where c is the transverse sound velocity. If we define a
force constant by k*u =F, where F=aR 25 is the total
force, then

*=mpc’R /(1—v/2)=2pc*D* ,

where D*=(w/2)R /(1—v/2).
that D*=~2R.

For metals, v=0.3, so
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FIG. 13. A block on a substrate. The miniblocks represent
the surface roughness of the block which contact the substrate.



