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Tunneling between two two-dimensional electron systems in a strong magnetic field
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We calculate the tunnel current between two parallel two-dimensional electron systems in a
strong perpendicular magnetic field. We model the strongly correlated electron systems by Wigner
crystals and describe their low-energy dynamics in terms of magnetophonons. The eKects of the
magnetophonons on the tunneling processes can be described by an exactly solvable independent-
boson model. A tunneling electron shakes up magnetophonons, which results in a conductance peak
that is displaced away from zero voltage and broadened compared with the case of no magnetic field.
At low temperatures and low enough voltages the tunneling conductance is strongly suppressed and
the I-V characteristics exhibit a power-law behavior. We also analyze the efFects of excitation of
magnetoplasmons, which have a gap equal to the cyclotron energy and therefore give rise to a
second peak in the I-V curves. Most of our results are in good quantitative agreement with the
recent experiments by Eisenstein, Pfeiffer, and West [Phys. Rev. Lett. B9, 3804 (1992)j.

I. INTRODUCTION

The quantum Hall eff'ect, and more generally the
physics of electrons in a strong magnetic field, have been
studied intensively for more than ten years. Quite natu-
rally, most of the experimental effort has concentrated on
measurements of lateral transport properties, such as the
Hall resistance. In recent years, however, a few experi-
ments measuring the tunnel current in or out of the two-
dimensional (2D) electron systems, subject to a strong
perpendicular magnetic field, have been performed.

Ashoori et al. studied the tunneling between a 2D
electron system in a quantum well and a 3D doped sub-
strate. They found that the low-voltage tunnel conduc-
tance was reduced in a strong magnetic field. Eisenstein,
Pfeiffer, and West2 measured the tunnel conductance be-
tween two parallel 2D electron systems in a perpendic-
ular magnetic field, which was strong enough that only
the lowest Landau level was partially filled. They found
eff'ects of the magnetic field in the I-V characteristics of
their tunnel junction that resembled the Coulomb block-

ade eff'ect. The I-V curve showed a pseudogap, i.e., a
finite voltage was needed before any appreciable tunnel
current could Bow between the electron systems. The
tunnel current as a function of voltage exhibited a max-
imum at a voltage roughly corresponding to the electro-
static energy e2/4vre(a) of a pair of electrons separated
by the typical interelectron spacing (a) in the 2D electron
systems (e is the elementary charge and e is the dielec-
tric constant of the material). The suppression of the
small-bias conductance was sensitive to the temperature;
it showed an activated behavior and the experimentally
observed activation temperature was typically 10 K.

In this paper, we present a model calculation aimed
at explaining the essential findings of the experiment by
Eisenstein, Pfeiffer, and West. A short account of our
work has been published previously. The strong suppres-
sion of the tunnel current for small-bias voltages is, as

we understand it, a result of strong correlations between
the electrons in the two 2D systems in the presence of
a strong perpendicular magnetic field B. The electrons
behave as wave packets whose size is set by the magnetic
length l, = (5/eB) ~ . The motion of these wave pack-
ets is correlated, therefore, when a tunneling event takes
place, a local perturbation is created. When the electron
systems attempt to relax back to their ground states, en-

ergy is carried away in the form of collective excitations.
A tunneling event is usually a much faster process than
the relaxation mechanisms in the electron systems, so
we can analyze the process within the sudden approxi-
mation. The state of the electron system immediately
after a tunneling event has a very small overlap with the
ground state. This is characteristic of an orthogonality
catastrophe. ' The only way of getting states of the elec-
tron systems that have large overlaps with the suddenly
created state is by introducing many low-energy excita-
tions. Thus, the scenario is the same as in the x-ray
edge problem where a core hole is suddenly created in-
side an electron gas. In response to this, many low-energy
electron-hole pairs are excited in the electron gas. In the
theory we present here, the tunneling electron and the
"vacancy" it leaves behind play the same role as the core
hole does in the x-ray edge problem. Similar ideas have
been used to explain the eff'ects of quantum Huctuations
in the "ordinary" Coulomb blockade. 7 9

To calculate quantities that can be compared with ex-
periment we need a model for the 2D electron systems.
We have chosen to approximate them by Wigner crystals.
This gives, as we will see, a reasonable description of the
short-range correlations in the real electron systems, and
has the advantage that the low-energy collective excita-
tions are easy to describe. A Wigner crystal has gap-
less collective excitations, called magnetophonons, which
play the most important part in the relaxation processes
that we will discuss. Thus, with the Wigner-crystal
model we can write down an exactly solvable Hamilto-
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nian in which all parameters can be calculated &om first
principles.

The results of our calculation agree very well with the
experiment2 on all the three points mentioned above: (i)
We 6nd that the conductance at low voltage and tem-

perature is strongly suppressed. For small voltages the
current is approximately given by a power law, I V~,
where typically p 5—10. (ii) The tunnel current ex-

hibits a broad maximum around the peak voltage V~,~g.

Theoretically, we find that V~, g is approximately given

by

e
peak

This is in close agreement with the experiment. 2 (iii)
When we vary the temperature in our calculation we 6nd
an activated behavior of the zero-bias conductance. The
values of the activation temperature show the same kind
of dependence on the magnetic 6eld as in the experi-
ment and the absolute values do not differ by more than
= 20%.

A number of other theories addressing these
experiments ' have been presented recently. Hatsugai,
Bares, and Wen calculated the one-electron spectral
function of a 6nite electron system in a strong magnetic
6eld by an exact numerical diagonalization, and discussed
their results in terms of selection rules. A similar calcu-
lation was done by He, Platzman, and Halperin. The
tunnel current is proportional to the convolution of the
spectral function associated with the addition of an elec-
tron and the spectral function associated with the re-
moval of an electron. Due to the finite size of the systems
used in these calculations it is not possible to get contin-
uous results for the tunnel current, but both calculations
seem to predict a peak in the tunnel current at about
the same voltage as in the experiment. The authors of
Ref. 11 also presented analytic results for the tunnel cur-
rent in the limit of a small voltage. In doing this, they
mapped the tunneling problem onto the x-ray edge prob-
lem, in a way similar to what we do here. The collective
excitations shaken up by the tunneling event in their the-
ory were density Buctuations in a Chem-Simons Fermi
liquid. Yang and MacDonald calculated the tunneling
density of states of a 2D electron system in a strong mag-
netic field also taking rather strong disorder into account.
They found a suppression of the tunneling conductance
at small voltages, but no (pseudo)gap. Their calculation
is most likely primarily applicable to the experiment by
Ashoori et aL, since the samples used there had much
lower mobilities than the ones used by Eisenstein, Pfeif-
fer, and West. Finally, Efros and Pikus have studied a
lattice-gas model of an essentially classical electron liquid
using Monte Carlo methods.

The rest of this paper is organized in the following
way. In Sec. II, we present and discuss our model. We
calculate the magnetophonon frequencies of the model
Wigner crystal, and the matrix elements that couple the
tunneling electrons to the magnetophonons. In Sec. III
we calculate the tunnel current between the two electron
systems including effects of magnetophonon shakeup. We

also present numerical results for the current as a func-
tion of the magnetic field, the temperature, and the elec-
tron density. The measured tunnel current exhibits an
additional peak associated with excitations to the next
Landau level. In Sec. IV, we extend our theory to also
take into account this effect. Section V contains a dis-
cussion and evaluation of our results. The main text is
ended by a short summary in Sec. VI. In Appendix A,
we give rapidly converging expressions for the dynamical
matrix of the Wigner crystal. To arrive at a second-
quantized form of the magnetophonon Hamiltonian one
must perform a canonical transformation, which we de-
scribe in Appendix B. The implications of our model for
the I-V characteristics at very low voltages are discussed
in Appendix C.

II. THE MODEL

The two-dimensional electron systems studied in the
experiment by Eisenstein, Pfeiffer, and West2 were in
a strong perpendicular magnetic field. Only the lowest
Landau level was partially filled, i.e., the filling factor v
was less than one. The kinetic energy of such a system is
quenched, and the motion of the electrons is inevitably
strongly correlated. The single-electron states can be
thought of as Gaussian wave packets with a linear size
of the order of the magnetic length. All these states have
the same energy; the creation of a single-particle excita-
tion requires an amount of energy equal to the cyclotron
energy

m' '

where B is the magnetic field and m' is the electron ef-
fective mass. Thus, the low-energy dynamics is governed
by the potential energy. The electron wave packets try
to avoid each other so the 2D electron systems are most
likely in strongly correlated, compressible, liquid states,
or, for very small filling factors (v +1/6), in a Wigner-
crystal state.

In a tunneling event an electron is suddenly brought
&om one of these liquids into the other leading to rear-
rangements in both systems. In one quantum well "res-
ident" electrons must fill the empty space left behind
by the tunneling electron, while in the other well they
are pushed aside by the newly appeared tunneling elec-
tron. When these rearrangements take place, energy is
carried away in the form of collective excitations in the
electron liquids. In our view, this is the fundamental
reason for the fact that the tunnel current and conduc-
tance both have maxima at finite-bias voltages, and are
strongly suppressed at zero voltage. The energy lost in
relaxation processes must be provided by the external
voltage source.

Let us contrast this to the situation with no perpen-
dicular magnetic field. Then the electron motion parallel
to the barrier is essentially &ee, and the single-electron
states are extended over a large area. Consequently, a
tunneling event does not lead to any appreciable changes
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in the correlation energies of the other electrons. Thus,
the I-V characteristics are determined by the fact that
the electron momentum parallel to the barrier, as well
as the energy, is conserved in each tunneling event. This
leads to a tunneling conductance that shows a sharp peak
at zero bias. The small width of this peak is caused by
processes in which parallel momentum is not conserved,
such as impurity and interface-roughness scattering.

In the subsequent calculations we model the 2D elec-
tron systems as triangular Wigner crystals with a lattice
parameter ao set by the electron density of the 2D elec-
tron systems, see Fig. 1. This clearly takes the picture of
the correlated electron liquids one step further towards
stronger correlation. We believe that the Wigner crys-
tals give rather a good description of the actual electron
systems on short length scales (at least up to a few lat-
tice parameters). The great advantage gained by using
this picture is that we can write down an exactly solv-
able Hamiltonian in which all quantities can be calcu-
lated &om first principles, and moreover we get results
in the thermodynamic limit. Due to the periodicity of
the Wigner crystal the collective oscillations, the mag-
netophonons and magnetoplasmons, can be calculated
rather easily.

As a first approximation the experimentally observed
Coulomb blockade can be explained as the difference in
Madelung energy between a lattice site (initial state) and
an interstitial site (final state) of the Wigner crystals, see
Fig. 1. This would move the sharp conductance peak one
sees for B = 0 out to a finite voltage. To get a broad-
ened conductance peak we must also take into account
the quantum fIuctuations in the dynamics of the Wigner
crystal. This is done by coupling to magnetophonons and
magnetoplasmons.

We have calculated the magnetophonon frequencies
classically within the harmonic approximation. Let u;
denote the displacement of the electron at the lattice
point R, and introduce its Fourier transform by

1 w~ iqR,ui = uq 6
N

crystal. Using classical mechanics we see that a solution
developing harmonically in time, uz(t) = use ' &i, must
satisfy the equation of motion

—u) u~ + iu)~~, u~ x z+ D(q)u~ = 0. (4)

must vanish. Here ~~~ and ~L,~ are the transverse and
longitudinal phonon &equencies of the Wigner crystal in
the absence of any magnetic field. The squares of these
&equencies are the eigenvalues of the dynamical matrix.
For small q we find that ~z~ ~q~, while the longi-
tudinal phonons, being 2D plasmons, exhibit the long-
wavelength dispersion relation ~L,~ g~q~, as can be
seen from Eq. (A3).

In a magnetic field the transverse and longitudinal
modes get mixed: when a magnetophonon or magneto-
plasmon propagates through the Wigner crystal each in-
dividual electron moves along an elliptic path, see Fig.
2. The longitudinal phonons develop into magnetoplas-
mons. This mode has a gap equal to the cyclotron energy

The transverse phonons become magnetophonons.
This mode is gapless, also with a magnetic field present.
Therefore, the low-energy dynamics of a Wigner crys-
tal is determined by the magnetophonons. In the long-
wavelength limit the magnetophonon &equency behaves
as

&c

Another remarkable property of the magnetophonons is
that their &equencies, in the limit of a strong magnetic
field (i.e. , when u, )) uu), are independent of the electron

Here D(q) is the dynamical matrix (from now on we de-
note matrices with a caret) which we define and evaluate
in Appendix A. To get nontrivial solutions to the equa-
tion of motion the determinant

2 2
(g)T —(d 'E(dg(dq

2 2—2CaJ~(dq (d L

where N is the total number of electrons in the Wigner Free
electron
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FIG. 1. Schematic picture of a tunneling event in our
model. An electron starts from a lattice position in one of
the triangular Wigner crystals (for clarity these have been
depicted in a top view) and ends up in an interstitial position
on the other side of the barrier. The surrounding electrons
experience a sudden change in the potential and as a result
relaxation processeses take place in the electron systems on
both sides of the barrier. In our model the energy released in

these relaxation processes is carried away mainly in the form
of magnetophonons.

FIG. 2. Qualitative illustration of magnetophonon and

magnetoplasmon waves. The electrons move classically along

elliptic paths as the diferent waves propagate. The magne-

tophonon is mostly a transverse excitation. Here the electrons
rotate in the opposite direction compared with a free electron
in a magnetic Geld. When a magnetoplasmon propagates the
electrons rotate in the same direction as a free electron. The
magnetoplasmon is mainly longitudinal, but we have exagger-
ated the eccentricity of the magnetoplasmon ellipses in this

6gure.
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mass. The motion of a magnetophonon is determined by
requiring that the Lorentz force and the electrostatic,
restoring forces balance each other. Since the restoring
forces are proportional to the second derivative of the
Coulomb potential, a dimensional analysis shows that the
magnetophonon &equencies behave as

2.5

0.01m

ao —270 4

1
a30B

In Fig. 3, we give the full dispersion relation of the mag-
netophonons along the edge of the irreducible Brillouin
zone in a few typical cases in order to illustrate the points
above.

Cote and MacDonald have calculated the magne-
tophonon frequencies of a Wigner crystal going be-
yond the harmonic approximation. They used a time-
dependent Hartree-Fock approximation and could cap-
ture quantum-mechanical eKects. Their calculation only
assumes that the electron density of the ground state is
periodic, but the electrons are &ee to move itinerantly
between diferent unit cells. We 6nd that even though
the dispersion relations found by us, and in Ref. 17, dif-
fer somewhat in details, the qualitative diff'erences are
not very large, at least not for moderate 6lling factors.
We conclude that for our present purposes it is sufBcient
to treat the magnetophonons within the harmonic ap-
proximation.

It is more difBcult to say how well the magnetophonons
approximate the collective modes of the real experimen-
tal system. We think it is reasonable to say that the
calculation in Ref. 17 should give results that describe
the short-wavelength modes, also in an electron liquid,

fairly well. From the comparison in the paragraph above

we see that our calculation also should give reasonable
results in that wavelength regime. It is less clear what

happens to the long-wavelength magnetophonons when

going from a crystal to a correlated liquid ground state.
An electron liquid in a strong magnetic 6eld can sup-

I

0.5

0

FIG. 3. The magnetophonon dispersion relation along the
edges of the irreducible Brillouin zone (inset). The upper
curve is for a magnetic Geld of 8 T, while the two lower curves
are for 13 T. The thick curve has been calculated using an elec-
tron mass that is 100 times too small, to show that electron
inertia is of practically no importance to the magnetophonon
frequencies.

port long-wavelength transverse oscillations because the
Lorentz force couples longitudinal and transverse degrees
of freedom. This means that some collective mode remi-
niscent of the magnetophonons should persist in the liq-
uid state.

Finally, we must include an interaction between the
tunneling electron and the magnetophonons in our mo-
del. Our calculation of these electron-magnetophonon
matrix elements is similar to the calculation of electron-
phonon matrix elements in ordinary solids. Thus, the
Coulomb interaction between the added, or removed,
tunneling electron and the Wigner-crystal electrons is ex-
panded to linear order in the displacements u, . Further
details are given in Appendix B.

The above considerations lead us to use the following
model Hamiltonian:

H = Hp+ H~ + H~ —— er, + ) (M~rao+ M'la ) c~cL, + eg+ ) (M~gao+ M'~a ) cRcg+ ) has~a ao

+TLRcRcL + TLRcLcR

In writing down this Hamiltonian we focus our attention
to an area 2vrl, . This area holds exactly one electron
state in the lowest Landau level in each of the quan-
tum wells. The operator cL~R~ destroys an electron in
the left (right) well, and eL, i~i is the corresponding site
energy. This energy depends on how the surrounding
Wigner crystal is arranged. We can think of eL~R~ as
the Madelung energy of an electron in either a lattice
position or an interstitial position of the Wigner crys-
tal. The matrix element M~L~R~ gives the interaction
between magnetophonon mode o. and the tunneling elec-
tron when it is in the left (right) quantum well. The
symbol o. is a composite index denoting both what wave

vector a magnetophonon has and in which quantum well

it propagates. The magnetophonon frequencies u are

I

found in the calculation described above; however, to get
the second-quantized form of the Hamiltonian it is nec-
essary to perform a canonical transformation which we

describe in Appendix B.
The last two terms (H& and HT ) allow an electron to

tunnel between the quantum wells. We have calculated
the tunneling matrix element TLR following the method
of Bardeen. In terms of the quantum well width I, the
barrier height Vg, and width d, we get

h2 cos2 (kI /2) ~e
TL R—

mg I/2+ sin(kL)/(2k) + cos (kI/2)/r ' (8)

where k = /2m'E/52 and K = Q[2ms(Vg —E)j/hz.
Here E denotes the eigenenergy of the lowest bound state
in a quantum well. It is found from the equation
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k
tan(kI /2) =

In our calculations we set the electron effective masses
in the barrier and the wells equal to each other, mp ——

m' = 0.067m, . Thus, the Hamiltonian (7) contains no
adjustable parameters.

The separation of the 2D electron systems into a small
area in which electrons are treated as fermions and are
allowed to tunnel between the wells, and a large area in
which the electron dynamics can be treated in terms of
bosonic degrees of &eedom, is of course purely formal.
Tunneling events take place over the entire area of the
sample; when we calculate the total tunnel current we
must sum over the total sample area. The physical im-
plication of the formal separation is that tunneling events
at different places of the sample can be treated as inde-
pendent of each other. To support this statement we note
that in the experiment the tunnel current was typically
3 nA, which corresponds to one tunneling event every 50
ps. On the other hand, the period of oscillation of a typi-
cal collective excitation of the Wigner crystals is about 4
ps (corresponding to an energy of 1 meV). More impor-
tantly, the magnetophonons decay through emission of
lattice acoustic phonons; the phase velocity of the. mag-
netophonons is larger than the speed of sound in GaAs
(5200 m/s) practically everywhere in the Wigner-crystal
Brillouin zone. A &ee electron in GaAs is thermalized
by acoustic phonons on a time scale shorter than 1 ns.
While the rate of acoustic-phonon emission by a magne-
tophonon in a Wigner crystal most likely is modified com-
pared with the &ee-electron case, 1 ns should be a rea-
sonable estimate of the thermalization time scale. Thus,
at each time the Wigner crystal has magnetophonon ex-
citations originating &om not more than 100 tunneling
events. This corresponds to an energy of 1 eV, and is
negligible since the experimental system contained 10
electrons in each well.

Let us in this context also point out that it is justified
to treat the electron tunneling as an instantaneous event.
This simplifies the treatment considerably, but we note
that theories in which tunneling electrons interact with
other degrees of &eedom with response times compara-
ble to the tunneling time have been developed. ' We
calculate the time it takes for an electron to traverse an
inverted 250-meV barrier which is 175 A thick (instanton
approximation) to be = 15 fs. Thus, the parameter val-
ues of the experiment give a tunneling time that is more
than two orders of magnitude shorter than the typical
period of a magnetophonon oscillation.

We end this section by discussing an important feature
of the model. The electron-magnetophonon interaction
in Eq. (7) only changes the state of the magnetophonon
system, while the electron stays in the same state as be-
fore the interaction, i.e., it does not recoil. Consequently
the different; magnetophonon emissions are independent
of each other since earlier events do not affect the elec-
tron. The model is, therefore, called an independent-
boson model, and it is exactly solvable. Independent-
boson models have often been used to describe relax-
ation processes in solid-state physics. The x-ray edge

problem ' (the interaction between a heavy core hole
and an electron gas) is the best known case, but quite a
number of other examples exist: effects of quantum fluc-
tuations on the ordinary Coulomb blockade, ' electron
energy loss spectroscopy, and LO phonon scattering in
resonant tunneling to mention a few. We think it is
reasonable to use the independent-boson model in the
present calculation. While the electron by no means is
an infinitely heavy object, in a strong magnetic field it
can be described as a fairly localized wave packet, which
behaves as a rather rigid object. It should, therefore, be
justified to neglect recoil efFects.

III. THE TUNNEL CURRENT

A. Formalism

The barrier through which the electron tunnels is
rather thick. It, therefore, sufBces to calculate the tun-
nel current to lowest order in the tunneling terms HT+

and HT of the Hamiltonian. The Fermi golden rule gives
immediately

2' e
—e, /k g T

I(V) = e—) )(f~HT+~i)) b(s; —sy + eV)
i,f

—l(flHT li) I'~(s' —sf —«) (10)

I(V) = —„, ct e*' '~"(H~(t)HT+(0))
—OO

—-" '~"(H+(t)H (0)) .

The equivalence between Eq. (10) and Eq. (].1) is easily
seen if one inserts HT (t) = e'~o ~"H+e '~o ~" into Fq
(11).

Thus, to calculate the current we need to evaluate
the correlation functions I +(t) = (HT (t)HT (0)) and
I+ (t) = (KT (t)HT (0)). The Hamiltonian Hp is an ex-
actly solvable independent-boson model, so this evalua-
tion can be done in many different ways, see Ref. 27. Here
we will use an exponential resummation (linked cluster
expansion). Let us concentrate on one of the correlation
functions

I—+(t) ~T ~2(e'Iron/"ct ' o ~"c c ) (12)

where ~i) and ~f) are the initial and final states and s;
and sy are their respective eigenenergies (of Hp) Z, fi-
nally, is the partition function. In practice we restrict
the thermal averaging to the magnetophonon degrees of
freedom, higher electronic states are frozen out at the
temperatures we consider. The first term gives the for-
ward current (from left to right), while the second term
gives the backward current. The b functions can be trans-
formed into time integrals; this yields
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We proceed by noticing that the operator Ho can be re-

placed by two difFerent specific expressions at the two

places where it appears,

+(t) = ~TL [ (
' ' /"ct cRe 'H&t/"c cL).

and

Hf =&R+) ~ a a +) (M Ra +M'Rat).

These initial and final Hamiltonians, which describe the
system before and after the tunneling event, are

H; =el, +) flu ata +) (M l,a +M'Lat),

(14a)

(14b)

We proceed by inserting e 'H' t/ "e'H' t/" = 1 into Eq. (13)
which yields

I—+(ts )T (2I iH;t/s t iH;t/s —iH;t/fi iHtt—/s
R L

No electron operators appear neither in H; nor in Hy, so the electron contribution to the correlation function is only
the product of the number of available electrons in the left well times the number of empty states in the right well,
v(1 —v). This means that we assume that the two Wigner crystals are mutually completely uncorrelated. Since some
correlations most likely exist, the factor (1 —v) should be replaced by a larger number (still smaller than 1, though),
but as we do not have a good way of estimating this number we keep (1 —v) in our equations. We are left with the
magnetophonon contribution (e'H't/"e 'Htt/"), which is equal to the time-development operator in the interaction
representation of H, due to the perturbation Hy —H, . Thus,

t
I (t)+= e(l —e)]Tee] (e' ' t"e ' e t") =e(1 —e)]Trp] (Texp —— dt V(t )''

o

where

and T is a time-ordering operator. It turns out that the expectation value appearing in Eq. (16) can be calculated
exactly by an exponential resummation collecting the first two cumulants. 2 This yields the final result for the
correlation function

I-+(t) = (H~ (t)H~+(0)) = v(1 —v)]TLR]2C(t), (18)

where

M —M
C(t) = e't" ' '"+ "t't" exp (

—) ' ((t + pt )(t —e ' ') + ttt (t —e' ')]
(fuu )2

(19)

/]Mal (R) /

+L(R) ) (2o)

The polaron shifts simply tell how much energy the
Wigner crystals can gain by relaxing to the new ground
state when subject to the external perturbation implied
by the electron-magnetophonon interaction. In the fol-
lowing, we will just set the exponential prefactor in Eq.
(19) equal to unity. This means that we assume the po-
laron shift cancels the difFerence between the lattice po-
sition and interstitial Madelung energies. Physically this
means that the Wigner crystals can relax completely af-
ter a tunneling event. The calculations of Madelung ener-

Here N denotes the thermal occupation of magne-
tophonon mode n, N = [exp(hu /kHT) —1] . We
have also introduced the "polaron shifts" AL~R~, which
are defined by

gies that we have made indicate that this approximation
is accurate, and it means that the threshold voltage for
tunneling is zero.

If instead tunneling from right to left is considered, we
find an identical expression for the correlation function
(HT (t)H& (0)). Thus, by performing the integrals in Eq.
(11) we get the following final result for the tunnel cur-
rent,

I(V) = —v(1 —v) ~TL,R~ [C(eV/h) —C(—eV/5)].
C

To get this expression we have summed over the entire
area S of the sample, assuming that the tunneling events
at difFerent places are independent of each other.

Before we are done, we must evaluate the Fourier trans-
form C((d). Since C(t) is a complicated function of time,
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it is dificult to do this by means of direct integration.
We will instead use the integral-equation method due to
Minnhagen. Let us first look at the case of zero temper-
ature. Then % = 0, and it is easy to see that [remember
that the first exponential in (19) is unity]

C(&u) = 0 for tu ( 0. (22)

OO

C(a)) = l.
p 27K

(2S)

To derive an integral equation for C(a)) we calculate the
time-derivative C'(t),

Moreover, C(t = 0) = 1, which gives the normalization
condition

~max dQ
a)C b, (a)) = — g (O) K(O)C b, (ld + O),

2x
(30)

d(d
C(~) = C, (ur')C b, (a) —a)').

p 2K

while C b, (a)) = 0 for w ) 0, and j d&uC~b, (u)/2ir = 1.
Note that we have introduced a cutoff b in the frequency
integrals to deal with the fact that N(O) diverges as 1/O.
This can be viewed as taking a principal value. It does
not affect the Bnal results as long as one uses the same,
small b in both the integral equations. At this point,
as a consequence of Eq. (27), we find C(~) through a
frequency convolution,

Fourier transforming this equation we obtain

(24)
B. Results

4 max gQ
urC(a)) = g(O) C((u —O),

p 2'

where we have introduced

,(O) =2-)- ~ -"„,„-'~'~(O-..), (26)

C(t) = C (t)C (t) (27)

where

M —M
C, (t) =exp( —)

a

x [(1+% )(1 —e ' ')]), (28a)

and

M —M
C e.(t) = exp (

—), N (1 —e' -')).

We now find that C, (u) satisfies

(28b)

&max dQ
srC, (~) = g(O) [1+N(O)]C, (a) —O), (29)

2K

along with the conditions C, (a)) = 0 for u ( 0, and

Jo dhuC, (u)/2m = l. In Eq. (29), N(O) is the
thermal occupation of a harmonic oscillator, N(O)
[exp(hQ/k~T) —1] . The expressions determining
C b, (u)) are

and ~
„

is the maximum magnetophonon frequency.
Now it is easy to calculate C(u) from Eq. (25) numeri-

cally. We calculate C(a)) for increasing frequencies, and
to do this we only need to know C(a)) at lower frequen-

cies, where it has already been calculated.
At a Bnite temperature the integral-equation method

still works provided that it is divided into two steps. First
we notice that C(t) can be factorized into an emission and
an absorption part,

The basic results of this section are presented in Fig.
4, where we have plotted the tunnel current as a func-
tion of bias voltage for a number of difFerent magnetic
Belds. All parameter values, regarding electron density,
barrier height and thickness, quantum well width, etc. ,
used in the calculation have been taken from the exper-
iment of Eisenstein, Pfeiffer, and West; for comparison
we also display a plot of their results in Fig. 4(b). The
qualitative behavior of the theoretical I-V curves is the
same as in the experiment. For small voltages the cur-
rent is strongly suppressed; it then has a relatively broad
peak centered around 8—10 meV. The peak voltages that
we Bnd agree rather well with those found experimen-
tally. Experimentally the peak voltage was 6—7 meV,
thus about 20'70 less than we get here.

The calculated magnitudes of the tunnel currents are
also in reasonable agreement with the experiment. Im-

proving the accuracy would at least require a more so-

phisticated calculation of the tunneling matrix element.
Our calculated currents differ from the experimental ones
in that the theoretical peak currents increase with in-

creasing magnetic Beld. Most of this increase is caused
by the prefactor (1—v) in the expression for the current,
and the peak current variation with magnetic Beld can
be reduced if correlations between the Wigner crystals
are taken into account [see the discussion following Eq.
(»)].

In Fig. 5, we display I-V curves for a number of dif-
ferent lattice parameters (different electron densities). 2

The peak voltage varies with ao roughly as Vp, ~k 1/ao.
This is to be expected since the peak originates from
the Coulomb interaction between electrons. Moreover, it
is at least in a qualitative agreement with experimental
observations made when varying the electron density in
one of the quantum wells. Within our theory, the 1/ao
behavior can be found from a rather simple dimensional
analysis as follows. The center of mass of the I-V spec-
trum, which approximately equals the peak position, is

given by the polaron shift. Here we assume that Al. ——0
(in all numerical calculations we have set the electron-
magnetophonon matrix elements equal to zero in the ini-

tial state), so we concentrate on analyzing b, R, see Eq.
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(20). An electron-magnetophonon matrix element is [see

Eq. (823)] the scalar product of the zero-point motion
amplitude, here denoted by u„,, of the lattice electrons
and a derivative of the Coulomb potential. The second
of these factors scales as I/ao2. To get an estimate of the
zero-point motion, we must keep in mind that the poten-
tial energy makes up for practically aB of the zero-point

energy of a magnetophonon. This gives us

16
I

8—
C

:..540 A
~ ~

hen 1

2 2
~ ~ Tl userol (32)

0 10
Voltage (mV)

20

(a) FIG. 5. Calculated tunnel current as a function of voltage
for three diferent lattice parameters as indicated next to the
curves. The magnetic 6eld was 8 T. The peak voltage varies
as I/ao, and the peak width varies as 1/(cod).

As discussed earlier [see Eq. (6)] u 1/azsB, and uT2,

I/ae because it is a measure of the restoring forces. This
means that the square of the zero-point motion amplitude
of an electron due to the magnetophonons behaves as

0
0 &0 15

Voltage (mV) )u„„)- I/WB. (33)
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6

4

(b)
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5
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~ aa ~
~ ~ ~ ~ ~

& ~ + ~ OyyO'+
~ ~ oa ~

The number of terms appearing in Eq. (20) is of course
independent of ao and B. We, therefore, conclude that
the polaron shift scales as

[(I/~B)(1/.:)]'
1 B

in agreement with the above observation.
We also see that, as the lattice parameter is increased,

the I-V curves become more and more sharply peaked.
Thus, the eKects of quantum Huctuations become less
important; the electron systems behave to an increasing
degree classically. Since the total energy lost to excita-
tion of magnetophonons scales as I/ao, while the energy
of a single magnetophonon varies as ao B ~, the total
number of excited magnetophonons, lV, behaves as

JV - aoB.

10 15 80
Voltage (mV)

P5 30
From a standard argument we know that the uncertainty
in the number of excited magnetophonons is
which yields a peak width I' scaling as

FIG. 4. Tunnel current as a function of voltage for dif-
ferent magnetic fields. (a) Theoretical results, the parame-
ter values used in the calculations have been taken directly
from the experiment (Ref. 2). The lattice parameter of the
Wagner crystals ue ——270 A corresponding to an electron den-
sity n 1.6 x 10 cm. The quantum well width was L=
200 A, the barrier thickness d = 175 A, and the total sample
area was S = 0.0625 mm . The barrier height was Vj,——250
meV. (b) Experimental results for a larger range of voltages
from Ref. 2 {used with permission). The temperature was
0.6 K and the magnetic Geld was varied from 8 T to 13.75
T in steps of 0.25 T. The curves are vertically onset for clar-
ity. Inset: Magnetic field dependence of onset (2bi) aud
peak (2Ez) voltages. The solid line is the Coulomb energy
e /4xe(a) while the dashed line is 0.4e /4mel, .

1 1

aosB g,2~B

The peak voltage in Fig. 4(a) increases with increasing
magnetic 6eld. This was also seen experimentally. The
egect is somewhat more pronounced in the experiment
[Fig. 4(b)]. In the leading-order dimensional analysis
above, the peak voltage did not show any magnetic-6eM
dependence. We have found that the calculated peak
voltage does not change much with B for magnetic 6elds
larger than 14 T when the other parameter values have
the values used in Fig. 4(a).

Turning our attention to the low-voltage behavior of
the I Vcharacteristics-, one can deduce &om Eq. (25)
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that, provided the function g(O) is constant up to a cer-
tain &equency, the current will show power-law behavior
I ~ Vs/(2 ) i up to the corresponding voltage. In our
case g is fairly constant over most of the range of mag-
netophonon &equencies. We typically 6nd approximate
power-law behavior for the current as a function of volt-
age up to a voltage corresponding to half the maxim»m
magnetophonon kequency. The exponent varies with the
magnetic 6eld; it is = 4.8 for B =8 T and 7.0 for B =13
T. Thus, changes of the magnetic field do not affect the
total integral of the function g(O) too much, since this is
the polaron shift

~max QQ
g(O),

Q 2'

but it changes the value of g(O) which determines the
power-law exponent. All the magnetophonon frequencies
scale as 1/B, so g(O) and the power-law exponent
increase approximately linearly with B.

We should also point out that, partly due to the mag-
netophonon density of states resulting from the q / dis-
persion, g exhibits a 0 /' singularity for very low &e-
quencies (less than a few percent of ur ). In practice,
however, this does not affect our results very much, but
the limiting behavior of the I Vcharact-eristics is a func-
tion that vanishes faster than any power law for small V.
In Appendix C, we analyze this in considerable detail.
He, Platzman, and Halperinii found, using the theory
presented in Ref. 12, the limiting behavior I ~ e
From a theoretical point of view their results should be
more reliable than ours for these low voltages. We can-
not expect the Wigner-crystal model to give a completely
correct description of the long-range correlations that are
involved iu the slow relaxation processes. The exper-
imental I-V characteristics did not show activated be-
havior at low voltages, which may be due to effects of
disorder

In connection with the above we wish to comment on
a rather remarkable findin of Eisenstein, Pfeiffer, and
West. Their measured I-V curves can be approximated
by I ~ e '/ to a very good accuracy &om 3Vpezp to
sV~,~. Thus, this happens for voltages that are large
enough that the limiting behavior found by He, Platz-
man, and Halperin i may not be applicable, and it
turns out that their theoretical value for the parameter
Vo is some seven times larger than what is found experi-
mentally. To see what kind of behavior our theory gives
on the low-voltage side of the current peak we have plot-
ted I on a logarithmic scale versus 1/V in Fig. 6. We
see that while we cannot reproduce exactly the same be-
havior as in the experiment, our "average" Vo does not
dier too much &om the experimental value.

When the temperature is raised the strong suppression
of the conductance at small bias gradually disappears.
This is caused by thermally excited magnetophonons that
can assist tunneling. We refer to Fig. 3 of our earlier
paper4 for an illustration of how the diHerential conduc-
tance develops with increasing temperature. The con-
ductance at zero voltage exhibits a thermally activated
behavior, (dI/dV)v o ~ e +"/+. This is illustrated in

102

ap'
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10-4
0 0.2 0.4 0.6
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FIG. 6. The current on a logarithmic scale vs 1/V. The
thick curve shows our calculated results for B =13 T, while
the straight line corresponds to an "activated" I-V curve,
I ~ e 0~ with Vo =15 mV. In the experiment (Ref. 29)
this kind of activated behavior was found over a wide range
of voltages, at B =13.5 T the measured Vp was 13.4 mV.
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FIG. 7. Determination of the activation temperature for
the zero-voltage differential conductance. The symbols are
calculated values, while the straight lines give exactly acti-
vated behavior (dI/dV)y=o ~ e ~~ . To plot these lines we
used T~ ——8 K for B =8 T, and TA ——13 K for B =13 T.

Fig. 7 for a few different values of the magnetic field. The
activation temperatures we find are in rather good agree-
ment with the experiment, and as in the experiment our
activation temperatures are approximately proportional
to the magnetic field.

In view of our results for the low-voltage I Vcharac--
teristics (the approximate power law) this activated be-
havior is a bit surprising. Roughly speaking, it should
not make any difference whether energy is supplied to
the system by an external voltage source or by increas-
ing the temperature. What appears to happen is that
over the temperature range covered in Fig. 7, the ma-
Jor contributions to (dI/dV)& o in Eq. (31) come from
frequencies where t, (u) e '/, i.e., the behavior
illustrated in Fig. 6. In Fig. 7 we indeed see a tendency
for the low-voltage conductance to decrease slower than
the activated behavior at the low-temperature end of the
diagram.
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IV. EFFECTS OF EXCITATIONS TO THE NEXT
LANDAU LEVEL

So far we have only considered the effects of mayne-
tophonon8, which was sufFicient to discuss the first peak
of the I-V curve. Experimentally, another current max-
imum was observed at a voltage that was about Ru, /e
higher than the voltage corresponding to the first peak,
see Fig. 4(b). This suggests that at such high voltages
transitions between Landau levels are important. In our
model, we can include these transitions in two different
ways: the tunneling electron can couple to the magneto-
plasmon modes of the Wigner crystal, and the tunneling
electron itself can be excited to the next Landau level.
Coupling to magnetoplasmons can be included by ex-
tending the sums in Sec. III to run over the magnetoplas-
mon modes as well, but allowing for the excitation of the
tunneling electron requires some changes in the formal-
ism. In the end, it turns out that coupling to magneto-
plasmons affects the results more than the single-particle
excitations, but for completeness we consider them both.
The new Hamiltonian, which includes both these effects,
can be written as H = HL, + HR + HT. The Hamilto-
nian for one quantum well is given by Ho + Hq, where
(note that what we denote as Hp + H] in this section
corresponds to Ho in the previous sections)

He ——) her ata +) e„ctc„,

I(V) = (e/h )[I +(eV/5) —I+ (—eV/h)),

where I +(t) = (H& (t)H&+(0)). The operators are in the
Heisenberg picture and their time development is gov-
erned by Hr, + HR I.n evaluating I +(t) we formally
regard Hq as a perturbation, and calculate I +(t) us-

ing the interaction picture. The time development of the
"perturbation" Hq is

H, (t) = ) ct ) A" (t)c

where A (t) is the effective boson (magnetophonon and
magnetoplasmon) operator

gnpttttq Mttptt i tttttxt ~ Mttttt —i »tt»q itpe(tt —ttt)t

(4i.)

For simplicity we set the electron-boson couplings before
the tunneling event to zero, since in the end this is what
we do in the numerical calculations. In the interaction
picture the time development of the operators is governed
by Ho, and we find, after some rearrangements,

I—+ (t) g et(&t, » —&R ) t/&

nrs

x T„„T,„cI,cL,„cR„cR„cR,cR,t

Hg ——) ) (M" a +M" a )c„c
a f ptptt

HT' = ) Tr R cr CRptt + H.c., (39)

where we ~ave explicitly shown also the quantum well
index.

We proceed as in Sec. III and write the current as
the Fourier transform of the correlation function be-
tween forward and backward tunneling. The Hamilto-
Dian HL, + HR still falls in the category of exactly solv-
able independent-boson models, and we can repeat much
of the previous analysis. It is useful to introduce a matrix
notation so that

The subscript o. denotes, in addition to the wave vector
and quantum well, also whether the bosonic excitation
is a magnetophonon or a magnetoplasmon (cf. Appendix
B), and the subscript n is the Landau level index of the
tunneling electron (0 or 1). For compactness we have
suppressed the quantum well index of the electron oper-
ators, and furthermore we have defined (M" )* = M"
The tunneling Hamiltonian is generalized to

t
x Texp —i ) A (t') )o )

(42)

The "internal" electron operators that arise &om the
expansion of the time evolution operator appear in

pairs like cR cR, which only give a factor of unity
and, therefore, do not contribute to the result. Con-
sequently, products of the operators Hq(t) have been
replaced by matrix products of entirely bosonic opera-
tors. We can evaluate the remaining expectation values

of fermion operators, which give (L~c&„cI.„~I) = vL,„andt

(&Ic~.c~.cRpc~p~+) (l ~Rp ~Rp + ~pp~Rp) ~

we again assumed that the electron systems in the two
wells are mutually uncorrelated. To avoid notational dif-
ficulties we limit the discussion &om here on to diagonal
tunneling matrices TI,R, the general case can be ana-
lyzed along the same lines. Physically, the off-diagonal

elements of TI,R are quite small due to the orthogonal-
ity of the in-plane wave functions. We have now reduced
the expression (42) to a purely bosonic form. Following
Mahan, we find that the perturbation theory can be
summed exactly to all orders using an exponential re-
summation, which yields

l (t) = Tt(expjt(ee —ex)t/ttIpe(t —px)I2'exl

The current-voltage characteristics are again given by
x exp —$ tt(t», t)
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Here 8 and ij are diagonal matrices of the form (sr,)„
sr,„b„m,(vl, )„m = vr, „b„m,and I is the unit matrix.
The efFect of inter-well correlations would be to increase
the (I —vR) factor, as discussed in the previous section.
We have furthermore defined P(a, t) as a 2x2 matrix of
double-time integrals,

t t

p(~, t) = — ct, ct, (TA (t, )A (t,)).
0 0

(44)

We proceed by evaluating the double-time integrals to ob-
tain the functions P(a, t). The component P& ) is given
by

plass)(rr, t) = M~os)M (1+N )(1 —e ' ')+N (1 —e' ) —i(u t
4P

M~ ')M ' + M~'0)M (1 —e '~ + ')1 1+N
2n' . (~ +~ )'

N 2N
, (i —e'~ -- .)') +i, ,~.t —i

((d~ —Qfe) llJ~ ll)e K~ + 4)e
(45)

The off-diagonal components can also be calculated
straightforwardly, and we obtain somewhat more com-
plicated expressions than (45). We have ignored thermal
effects on the fermion system, which is justified at tem-
peratures kRT ((~, when thermal transitions between
Landau levels are suppressed. Consequently, the occupa-
tion numbers N are small for magnetoplasmons, and
magnetoplasmon absorption processes are quite insignif-
icant. An interesting feature of the result (45) is that the
second term on the last line gives rise to a temperature-
dependent polaron shift, due to the temperature depen-
dence of the magnetophonon and magnetoplasmon occu-
pation numbers N . However, this effect is very small

due to the smallness of the ofr diagonal couphngs M(")
and M~ ), and is, therefore, not likely to be measurable.

To obtain the current as a function of the applied
voltage we must calculate the matrix Fourier transform
of exp[—P P(a, t)]. Unfortunately, we cannot use the
integral-equation approach since the various matrices do
not commute, which makes it difficult to evaluate the
necessary time derivative. Thus, in our numerical calcu-

12

lations we have just kept the contribution from $~0 ) (a, t)
in Eq. (43). Moreover, when evaluating the expression in
Eq. (45) we have only kept the intra-Landau level matrix

elements M . We have found that the effects of the off-(Oo)

diagonal, inter-Landau level matrix elements are smaller
in comparison. Consequently, in the numerical work we
have included higher Landau level effects only through
coupling to magnetoplasmons, as we have deemed this to
be the most important contribution.

The results of the calculations are presented in Fig.
8. The I Vcharacte-ristics display two peaks, the first
of these is, as before, associated with magnetophonon
shakeup, while the other one originates from a combi-
nation of magnetophonon shakeup and the emission of
one magnetoplasmon. The two peaks are separated by
a voltage corresponding to the cyclotron energy. This is
basically in agreement with the experiment [Fig. 4(b)],
even though the two peaks of the experimental I-V char-
acteristics were a little closer together. This difference

may, for example, be due to changes in the electron ef-

fective mass caused by the strong magnetic field. As for
the relative amplitudes of the two peaks, our theory is
not in very good agreement with the experiment. The
second peak is too weak relative to the first one. In our
calculation, the relative suppression of the second peak
is primarily caused by the larger frequency denominators
entering the function g(O) when dealing with magneto-
plasmons. The discrepancy between theory and experi-
ment in terms of relative peak strengths indicates that
quantum-mechanical effects not included in our theory
play a quite important role in the interactions causing
transitions between Landau levels.

10 20 30
Voltage (mV)

40 V. DISCUSSION

FIG. 8. Calculated tunnel current vrhen the coupling to
magnetoplasmons is taken into account. The magnitude of
the magnetic field is indicated next to the curves, the rest of
the parameter values are the same as in Fig. 4. The voltage
difFerence between the taro peaks roughly corresponds to the
cyclotron energy.

The most important question to ask when evaluating
our theory is "How well can a Wigner crystal describe
the real electron liquid?" As we have argued in Sec. II
we think that the Wigner crystals give a rather good
description of the short-range order of the real systems.
These short-range interactions determine the primary en-
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ergy scale in the problem, the amount of energy it takes
to move an electron &om one quantum well to the other.
This sets the peak voltage, which our theory can predict
rather well.

It is much more dificult to say how well the model de-
scribes the long-wavelength collective modes of the real
system. A crucial feature of the model is that it sup-
ports collective modes of arbitrarily low &equencies. To
get a suppression of the current at low voltages it is essen-
tial that the function g(O) is nonzero all the way down
to 0 =0. In our model, this is achieved by the long-
wavelength magnetophonons. In the real system the slow
relaxation processes probably involve strongly damped
oscillations. 2 Thus, we believe that the Wigner-crystal
model is qualitatively correct in the long-wavelength limit
in the sense that it contains a large number of low-energy
excitations. The nature of these excitations is, however,
most likely somewhat difFerent in the real system.

The theory based on Wigner crystals works well in ex-
plaining the main features of the I-V characteristics. If,
on the other hand, the experimental technique is fur-
ther refined so that detailed information about the long-
wavelength excitations of the 2D systems can be ex-
tracted we cannot expect our theory to give quantita-
tively correct predictions in that regime.

The theory we have presented is in many ways a classi-
cal one. We expect it to work best for small filling factors.
At what filling fraction does our theory start to break
down? An obvious upper limit is v=1 at which quantum
effects not included in this theory must in8uence the re-
sults. In fact, one could argue that the theory should be
modified for all filling fractions larger than 1/2. In the
limit of a very strong magnetic field the lowest Landau
level should exhibit particle-hole symmetry, i.e., a filing
factor v should be equivalent to a filling factor (1 —v) at
the same magnetic field However. , we have not used such
a symmetry here. The reason for this is twofold. First, it
seems to us that imposing a quantum-mechanical sym-
metry on our, to a large extent, classical model would
make up for a rather uncontrolled mixture of classical
and quantum concepts. What we do now is more consis-
tent. Moreover, in their experiment Eisenstein, Pfeiffer,
and West2 saw a reduction of the Coulomb blockade ef-
fect, in accord with the 1/ao behavior we found above,
when reducing the electron density at a constant mag-
netic field.

The effects of the magnetic Geld were less pronounced
in the experiments of Ashoori et aL than in the ones by
Eisenstein, Pfeiffer, and West. The major difference is
that the differential conductance does not show a pseu-
dogap in Ref. 1. One possible explanation of this is of
course the lower electron mobility of the samples used in
these experiments. Such an interpretation is supported
by the calculation by Yang and MacDonald. Another
reason may be that Ashoori et aL studied tunneling be-
tween a 2D and a 3D system. Screening effects in the 3D
system could reduce the coupling between the tunneling
electron and the low-energy long-wavelength excitations,
so that the x-ray edge behavior and the pseudogap are
lost.

We conclude by discussing possible improvements of

the calculation within the Wigner-crystal model. In this
calculation we have neglected all interactions between
electrons in different quantum wells. If such interactions
were included we expect the peak voltage to decrease due
to the interaction between the Wigner crystal to which
the electron tunnels, and the hole left behind on the other
side. We have calculated this hole contribution to the
Madelung energy of the final state and found that it ex-
plains rather well the difference of —2 meV between the
peak voltage we calculate and the one that was mea-
sured. To take this into account in the full calculation
one should include the hole contribution when calculat-
ing the electron-magnetophonon matrix elements. At the
same time, for consistency, the Wigner crystals should
be allowed to interact mutually. This would modify the
collective modes: acoustic and optical magnetophonons
would appear.

VI. SUMMARY

We have calculated the tunnel current between two
two-dimensional electron systems in a strong perpendic-
ular magnetic field. These 2D systems are strongly cor-
related since only the lowest Landau level is partially
filled with electrons. Therefore, we have modeled them
as Wigner crystals. When an electron tunnels &om one
Wigner crystal to the other, energy is released in the form
of collective excitations, magnetophonons, and magneto-
plasmons. It turns out that a large number of low-energy
magnetophonons are created in a typical tunneling event.
This is analogous to what happens when a core hole sud-
denly is created in an electron gas, and leads to a strongly
suppressed tunnel current at low voltages. This pseudo-
gap is followed by a peak in the tunnel current.

Our calculated I-V curves agree well with recent ex-
perimental results. The peak voltage is approximately
the same in both experiment and theory, and the low-

voltage conductance shows the same kind of suppression
in both. When the temperature is raised, the measured
low-voltage conductance exhibits an activated behavior,
with an activation temperature of the order of 10 K. Also
here our theoretical results are in rather close agreement
with the experiment. Finally, we have included effects of
excitations to the next Landau level in our theory. This
gives rise to a second peak in the I-V characteristics at
a voltage hu, /e above the first peak. This is in qualita-
tive agreement with the experiment; however, the second
peak was relatively stronger in the experiment than we
find in our calculation.
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APPENDIX A: THE DYNAMICAL MATRIX written as a Gaussian integral

In this appendix, we give a rapidly converging expres-
sion for the dynamical matrix. These calculations involve
the Coulomb interaction and to evaluate the lattice suxns

we use the Ewald transformation in two dimensions.
This builds on two facts. First, the 1jr potential at a
point x due to an electron at a lattice point R; can be

1 2 —g ix—K;)~
fx —R;) ~x (A1)

Second, a suxn of Gaussians over the direct lattice can
be expressed as a sum over the reciprocal lattice. More
precisely

X Iq+ Gl2
e ~x—R; (

-iq.R; —iq x l~ +
i —iG.x

Sp'g
I

4'g
(A2)

where G is a reciprocal lattice vector and Sp is the area of the unit cell of the direct lattice.
The dynamical matrix D(q) is the Fourier transform of the force constants that one obtains when expanding the

potential energy of the Wigner crystal to second order in the electron displacements away from equilibrium. A rapidly

converging expression for D(q) is found by using Eqs. (Al) and (A2), short-range interactions (large g) are summed

over the direct lattice, while long-range interactions (small ri) are summed over the reciprocal lattice. This yields the

final expression for the elements of the dynamical matrix (the indices o. and P denote directions, i.e., z or y)

D p(q) = 82 23 ) (2&'&-&p'&3i2(&'IR'I') —b-p&~&2(&'IR'I')l l1 —cos(q R')]
R;$p

()q+ G)2) ()G(21+, ): (q~+t"~)(qP+G'P)4-1/2 I 4, ij
—&~&PI'-~)21 4, I

4z em' Sp

e' 2nq qp

4 ~ ' S. Iql 0 4&' )
(A3)

The Misra functions P (z) appearing in this equation
are defined by

H = ) [ iM7; y—eA(r;)]

P (z)= t e "dt,
1

) u;f p(R;, R, )up, .
i,j,a,P

(B1)

and can be related to the complementary error function
erfc(x). The parameter ( separates small and large g
values. In the numerical calculations we used ( = 1.6/a . p

APPENDIX B:MAGNETOPHONON AND
MAGNETOPLASMON QUANTIZATION

In this appendix, we quantize the magnetophonons
and calculate explicit expressions for the electron-
magnetophonon matrix elements. We must go through
the following procedure in order to get a Hermitian
electron-magnetophonon interaction, i.e., essentially find
a way of expressing the electron displacements u; as real
quantities. This is not easily done starting from the
classical xnagnetophonons and magnetoplasmons, since
the Wigner-crystal electrons rotate in the same direction
both when a g and a —g xnode of the same kind propa-
gates (cf. Fig. 2).

In the harmonic approximation the Hamiltonian for
the signer crystal in a magnetic field B = Bz, described
by a vector potential A in the symmetric gauge, can be
written as

Here f p(R;, Ri) are the force constants of the Wigner
crystal. The force constants are only a function of the dif-
ference between R; and Rz, and their Fourier transform
is the dynamical matrix. We have omitted the constant
in the expression for the potential energy. The electron
coordinates r; are given by r; = R;+u;. Since the vector
potential is a linear function of the coordinates, we can
write

A(r;) = A(R;) + A(u;). (B2)

We divide the Hamiltonian into two parts H = Ho+ HB,
and deine

p; = —i%7; + eA(R, ).

By writing

all dynamic efFects of the magnetic field are contained
in H~. The Haxniltonian Ho can be diagonalized in a

Hp = ) p; + — ) u;f p(R;, R, )up~ , (B4).
2 i,j,a,P
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standard way. We introduce the Fourier transforms of
the electron momenta and displacements,

) p —iqR;
N

c
SuT

2 2
2 ~c ~I. ~r

4 caPT fd L,

2
hCcPc ~L, ~T

4 4PT 47L,

c
Scd L,

(815)

and

(86)

The Hamiltonian (811) can be diagonalized by a
canonical transformation. io We define (for each q) new

operators a through

so that Ko can be written as
aa = ) &apbp vapb

7
(816)

Ho ) Pq 'P —q+ ) Qq D p(q)Q
q

'
q, -P

(87)

The inverse of this is

b7 = ua7@a + 'Ua7+a' (817)

Next we diagonalize the dynamical matrix to Gnd the
eigenfrequencies uTq and uz, q and the corresponding
eigenvectors eTq and eL,q. By introducing phonon cre-
ation and annihilation operators for the Wigner crystal
in the absence of a magnetic Geld through

The Hamiltonian now takes the form

H=) ) hcu ata . (818)

1 2
bwq —— gm*wvqqz q pq) eT~, (B8)

2h /7B 4JZ'q

etc. , we get, neglecting the zero-point energy,

q a

The transformation coefficients u ~ (not to be confused
with the electron displacements) and v ~ must satisfy the
conditions

Ho ——) (hurT qbTqbT q + hei qbLqbLq).
q

(89)

At this point, we can express the A p terms and A2

terms in H~ in terms of the creation and annihilation
operators. If we restrict our attention to the wave vectors
in one-half the Brillouin zone, and introduce the notation

and

).[u-~up, —v-~vp, l
= ~-p

7

) [u&wvpw v~zup&] 0'

(819)

(820)

bz = bTq) b2 = bLq) b3 = bT' q) b4 = bz q) (810)

we Gnd that the full Hamiltonian takes the general form

H = ) i ) L~gbtbg+ —) tK~ab~tbj+Ic~gb~4]).
q '78 '78

We determine these coefficients by evaluating [a,H] =
Ru a from Eqs. (816) and (Bll). In matrix notation
this yields,

(811) Ru —L' +K*(bur yL) K u = 0, (821)

The prime on the sum over wave vectors indicates that it
should be restricted to one-half the Brillouin zone. The
4 x 4 matrices I and K have the block structure

and

v = —(M+L) Ku. (822)

BI, 0
0 Bl,

0

Bz
Bz

0

2
~c ~T+~I.

4 4PT 47L,

~c ~r+~L,—2 4 4PT ca7L,

h

The blocks Bl. and B~ are given by

(812)

(813)

In these equations ~ denotes a diagonal 4 x 4 matrix with
the new eigenvalues u as matrix elements. These &e-
quencies are determined by the fact that in order to get
nontrivial solutions the determinant of the matrix multi-
plying u in Eq. (821) must vanish. Not surprisingly, one
Gnds that two of the eigen&equencies are identical to the
classical magnetophonon frequency, while the other two
equal the classical magnetoplasmon frequency.

The whole point in performing the canonical transfor-
mation above is that we now can write down explicit ex-
pressions for the electron-magnetophonon (and electron-
magnetoplasmon) matrix elements. The interaction en-
ergy between an added electron at a point x and the
electrons of the signer crystal is
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ez ). 1

To 6nd the matrix elements M, we expand this expres-

sion to linear order in the displacements u;, and drop the
Madelung energy contribution which is independent of
the displacements. By using Eqs. (B6), (BS), and (B17)
we can write the electron-magnetophonon interaction on
the form used in the main text

where

H) p
——

e

4~e . - '
I» —R;I') u;. ' =) ) M ~a ~+M' at (B23)

e2 h,
M ~= (eT ci Sg) (ual + a3) + (er a ' a) (un2 + na4)

4z e/Nm' 2~T q &L,q

(ez S ~)(u' + ', )+ (ez S )(u' +v' ) . (B24)

In this expression S~ denotes the lattice sum

x R
I» —R Is'

It can be transformed into a rapidly converging sum using the methods discussed in Appendix A,

( —R') 4 (('I —R I') — )2
'

q G ( c) /'Iq —GI (B26)

APPENDIX C: LOYV-VOLTACE BEHAVIOR

To determine the current-voltage characteristics of the
system, we must find the Fourier transform C(u). This
can be done using the integral equation approach intro-
duced by Minnhagen. 24 We analyze the integral equation

dO
u)C((u) = P (ur —0) C(A),

0 271
(C1)

which is the low frequency limit of Eq. (25), if we identify
PA with the low frequency behavior of g(O). In the end
we will primarily be interested in the case o. = —1/3. To
determine the low &equency behavior we use an ansatz
of the form C(u) = &use", where r & 0 and s & 0. By
introducing the new variable x = [(0/ur)' —1] we can
write the integral equation as

When calculating the matrix element due to the removal
of an electron from a Wigner crystal, » = 0, and the
interaction with the electron at R; = 0 should not be
included. This cancels the term R, = 0 in the sum above.

Since r & 0 and s & 0, for low enough frequencies ur' is
large and the exponential dies off very rapidly for z ) 0.
Consequently, the main contribution comes from small z,
and we can expand the binomials to second lowest order
in x. By identifying the leading powers of ur we find for
0)a& —1

a+1'
[Pl'( +1)/(2~)]'~( +",

1++2
2++1

Thus, for a = —1/3 we have

g( ) —2[PF(2/3)/(2~)] / ~ (C4)

In comparison, the value a = —1/2 would give rise to
an activated behavior C(~) = ~ ize i ~( ). ' Note
that the case a = 0 requires special handling, and can be
shown to yield C(u ) = ~i'~(' )-'.

d~[1 (1 + &)i/ ) (1 + &) ~ 1 ru's-
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