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Tunneling through rectangular quantum dots at high magnetic fields
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Transport in a quasi-one-dimensional wire containing a rectangular quantum dot in a strong
magnetic 6eld is studied numerically. As the width of the wire is varied, a rectangular dot on
the wire introduces peak or dip structures in the conductance. The charge-density distribution
and current-Bow pattern clearly show that the Landau-level coupling between the zero-dimensional

(OD) state and the extended state is the origin of these structures. At the resonant points, which
correspond to OD states in the dot, Landau-level coupling becomes essential and the propagation of
one Landau level is enhanced or blocked by the OD state of a diferent Landau level.

I. INTRODUCTION

Magnetotransport along edge states that are formed
in a high-mobility two-dimensional electron gas (2DEG)
is currently a subject of great experimental and theoret-
ical interest. Recently, quasi-zero-dimensional systems
have received considerable attention. Transport through
semiconductor quantum dots shows striking effects due
to the electron wave nature and its finite charge. Experi-
ments are now done on quantum dots where Coulomb in-
teractions, zero-dimensional (OD) states, and edge states
exist. Such experiments have encouraged theoretical
efforts analyzing some fundamental phenomena such as
Coulomb blockade in resonant tunneling, and Aharonov-
Bohm or &actional quantum Hall effects. In par-
ticular, physical insight has been gained by establishing
a connection between resonances (antiresonances) of the
open system on the one hand, and bound states on the
other, typically belonging to some closely related isolated
system 10—16

The discrete spectrum of dots, which has been ex-
plored by various spectroscopic techniques, causes such
transport efFects as Coulomb blockade and resonant
tunneling. 2 s A peak (dip) in the conductance of the dot
due to resonance (antiresonance) should be seen when
an electron state of the dot lines up with the Fermi
energy in the leads. Although many resonant and an-
tiresonant peaks have been observed in these structures,
the nature of these resonances has not been clearly un-
derstood. Some fundamental phenomena, such as the
Coulomb blockade, the Aharonov-Bohm effect, and the
&actional quantum Hall effect, have attracted significant
attention recently. However, existing theories do not ad-
dress the effects of the Landau-level (LL) coupling in
magnetotunneling through semiconductor quantum dots.
For magnetotransport along edge states, the LL coupling
in different regions of the device is essential in tunneling
processes. The purpose of this paper is to present a nu-
merical study of rectangular quantum dots at high mag-
netic fields, where OD state inBuence is significant for the
magnetotransport. The system that we will treat here
has also been realized in practice. It consists of a wire

in which a rectangular box is de6ned by two transverse
gate barriers. Recently Palacios et al. have studied the
Coulomb-blockade and Aharonov-Bohm effects in a simi-
lar system. However, we will focus on the infiuence of OD

states on magnetotransport. We show that a peak (or a
dip) in the conductance is due to the coupling between
the LL in the leads and a OD state belonging to one of
the Landau levels (LL's) in the dot when the energy of a
OD state in the dot coincides with the Fermi energy. The
conductance is well quantized when the Fermi energy in
the leads does not line up with the OD state in the dot.
The calculation is performed in the framework of a one-
electron Schrodinger model, neglecting electron-electron
interactions. We believe, however, that the LL coupling
between the dot and leads is essential for transport at
high magnetic Gelds; electron-electron interactions are
unlikely to alter the qualitative fact of the presence of
LL coupling in magnetotransport.

The outline of this paper is as follows. In Sec. II we

present the model and theoretical formulation. Section
III presents numerical results. In particular, it is shown
that the OD states in the dot give rise to peaks and dips
in the conductance. These peaks (dips) are associated
with resonant (antiresonant) tunneling. The final section
contains some concluding remarks.

II. THEORY

In this section we will present the theoretical method
we use to compute the magnetoconductance of a dot at-
tached to two leads. The mode-matching method is used
in this problem. In principle the formalism we discuss
here is elementary, but we prefer to present it for com-
pleteness and believe that it may be useful.

The quantum wire considered here has in6nite length
in the x direction and is confined in the region —W/2 (
y ( W/2 by hard walls in the y direction. In Fig. 1

such a quantum wire is shown, including two square po-
tential barriers each of length d and height V = Vg. A
quantum box is defined by means of two barriers crossing
the wire of width W separated by a distance I in which
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We will, however, choose an expansion method. Thus we
obtain the eigenvalues k and the functions 4+ (y) in the
following way. The wave functions 4+ (y) are expanded
by an orthonormal set of the N eigenstates P 's of the re-
duced Hamiltonian for B = 0 with expansion coef5cients
~m~

FIG. l. Schematic diagram of a rectangular dot in an elec-
tron waveguide. The electrons are con6ned between the two
horizontal lines and experience a barrierlike potential in the
regions marked V = Vg. The potential elsewhere is sero. The
regions I-V are used in the expansion of @rave functions that
are to be matched across the boundaries represented by the
dashed lines.

(6)

~h~~e P (y) = (2/W)'~'sin ~ (y+ 2) . Substitut-
ing Eq. (6) into Eq. (4), multiplying by P, (y), and inte-
grating from —W/2 to W/2, we obtain

V = 0. The system consists of five regions as shown in
Fig. 1. The regions I—V are used in the expansion of wave
functions that are to be matched across the boundaries
represented by the dashed lines.

The Schrodinger equation describing electrons in this
structure is where

-
y
l2 E

)
ttl—,pk /m) «c =0,

(P+ eA)
&(* )+V( )&(* ) =(E —V)0( )

t 0, [y) & w/2

i
oo, iyi & W/2,

where m' is the efFective mass and A is the vector poten-
tial. The magnetic field is directed along the z direction.
We choose the Landau gauge

~~ ( w)
(j(y[m) = — dyy sin —

( y+ —
)W iv(2 W ( 2)

m~ ( w)
x sin

I
y+—

W q 2)
The problem now is to find k . We do that by using the
following trick. s Let c~ = k a . Equation (7) can now
be recast as

A = ( By, 0, 0),—

where B is the magnetic fiux density. Thus Eq. (1) may
be solved in the separable form s

erik, eO+ (y)

where k is the x-directed wave vector and e'+ (y) satis-
fies the equation

with

(f O 1 ~ (t' a
)

k (( a l)
Es T) Ec Ec) '

(&), = l, (jlylm) ~

2 .

(8)

+ k 4+ (y) — —p k,)
4+ (y) = 0 . (4)

Here l is the magnetic length defined by l~ = 5/eB, and
k2 = 2m'(E —V) /52. For a given energy (E = Ey) and
magnetic field B we obtain three kinds of modes, z ' i the
propagating mode whose wave number is real, the oscilla-
tory damped mode whose wave number is complex, and
the evanescent mode whose wave number is purely imag-
inary. If we turn off the magnetic field completely, wave
number k is either purely real or purely imaginary, cor-
responding to parabolic dispersion relations of subbands
below or above the chosen energy, respectively.

To find the wave functions 4 +
(y) of the magnetoelec-

tric states, we have to solve Eq. (4) subject to the bound-
ary conditions

4+ (y = —W/2) = 4+ (y = W/2) = 0 .

For nonzero B the 4+ (y) are each a combination of
Kummer functions and are not orthogonal. The prop-
erties of the functions O+ (y) can be found in Ref. 31.

Solving Eq. (8) we obtain 2N eigenvalues
(6k~, kks, .. . , kk ) for any given energy E and find the
corresponding eigenvectors which give the wave functions
4+ (y). Each value of n corresponds to a magnetoelectric
subband.

For an electron injected from the left into the nth
mode, the incident and refiecting modes must be taken
into account, and one has

@„(x,y) = e*". 4+(y)+) B„e'" 4 (y), (10)

where the coefficients B„givethe probability ampli-
tudes for reiection, and k' may be real, complex, or
purely imaginary. 2~ Similarly, the wave function in re-
gion V is given by a sum of outgoing modes, i.e.,

4„(x,y) = ) C„e*"-4+ (y),

where C gives the transmission probability. In regions
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II, III, and IV, there are no restrictions and all the solu-
tions must be taken into account. So the solution looks
like this:

@,K( ) ) ~K —aA: xc —
( )+~K ak x@+ ( )

propagating states

& (* y) = ).j (* y) /" (17)

where E =II, III, and IV, and B„andC are expan-
sion coefficients which depend on the incident wave.

Now matching the wave function and its normal deriva-
tive at every boundary in a procedure similar to that
reported previouslys2 leads to an infinite set of linear
equations for the expansion coefficients. This infinite
set of equations is solved numerically using a trunca-
tion procedure, keeping a finite number of modes, large
enough to achieve a desired convergence or accuracy.
We check numerical convergence by how well unitar-
ity at the dot is obeyed. The relationship should be

(T„+8„)= 1, where T„ is the transmission
from incident mode n to final mode m and R„ is the
re8ection. Typically, one has to include all the subbands
below Fermi energy Ez, the subbands above that energy
with complex wave numbers, and several subbands with
purely imaginary wave numbers. For the results pre-
sented in this paper, we use 12 transverse modes, and
see unitarity violated in the fourth decimal place. With
these expansion coefficients at hand we can easily evalu-
ate the transmission probability, charge-density distribu-
tion, and current distribution. For propagating modes n
and m the transmission &om mode n in region I to mode
m in region V is given by

V~ y 2T„= C„
where v; is the velocity in the x direction of the ith mode
in region I or V and is de6ned as

Note that the contribution of each propagating mode
to the total current density is weighted by the corre-
sponding group velocity so that each mode at the Fermi
energy carries a unit Bux. The probability density is
given by

In the following, we will assume an effective mass m' =
0.067mo, which is appropriate for the Al Gai As/GaAs
interface.

III. NUMERICAL RESULTS

In Figs. 2(a) and 2(b), we show the conductance 1 as a
function of the channel width W for two different values

of the dot length L The h. eight of the barriers is 2 meV
and the width of them 80 nm (we restrict ourselves here
to the symmetrical case of equal barriers). The Fermi
energy is 6 meV and two LL's are occupied at 8 = 2 T.
The first LL has enough kinetic energy to overcome the
barriers, but the second one cannot. A series of periodic
dips is observed in the conductance profile in addition to
the well-known conductance quantization. For large val-

ues of L, the distance between two dips becomes short.
We now discuss the origin of this behavior. The perio-
dicity of the series of conductance dips shown in
Figs. 2(a) and 2(b) can be understood by the LL coupling
between the OD state and the extended state. To un-

h - ',. eB
V; = dy@+ (y) k' — y CI+(y) . {14) I I I I I I I I I

I
I I I I I ~ I ~ I

I
I I I I I I I I I I I I I I ~ I I I I

I
I I I I I I I

~ ~

h
Im [4 (x, y) V4" (x, y)]

+ All (xy)l' . (16)

The total current density at the Fermi energy is cal-
culated by vectorially adding the contributions &om all

The linear-response conductance of the system is cal-
culated &om the Landauer-Biittiker formula

M

G= „)T„
n, m=1

where M is the number of propagating modes in region
I or V.

In linear-response transport at low temperatures, only
electrons at the Fermi level carry a net current. The
two-dimensional electron current density j (x, y) of the
mth mode is calculated directly &om the wave function

(x, y) of electrons in that mode through the relation
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FIG. 2. Conductance as a function of the width TV for the
structure with Vq ——2 meV, d = 80 nm, B = 2 T, and E = 6
meV. (a) and (b) refer to L = 200 nm and 300 nm, respec-
tive}y. The arrow indicates the width R' corresponding to the
charge-density distribution shown in Fig. 4(b).
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F1G. 3. Energy levels of a rectangular dot with in6nite
walls as a function of y-directed width R'„in a parameter
range where two LL's are present. The magnetic Beld is H = 2
T and the x-directed width is W = 300 nm. The horizontal
line at 6 meV indicates the Fermi energy. [These numerical
values correspond to the calculation in Fig. 2(b).] The armw
indicates the case corresponding to the charge-density distri-
bution shown in Fig. 4(a).

derstand why the conductance G exhibits periodic dips,
energy spectra of an electron system confined in a rect-
angular box with infinite walls are shown in Fig. 3. The
condensation of the OD states of the dot into degenerate
LL's is clearly evident in the figure. In the parameter
range we are concerned with, the spectrum consists of
two sets of LL's, which are composed of discrete non-
degenerate states because of the confinement potential.
The horizontal line at 6 meV in Fig. 3 indicates the Fermi
energy which corresponds to the value used in Figs. 2(a)
and 2(b). The electron alternately occupies a OD state in
the first LL and a state in the second LL as the width of
the wire is increased. When the electron state of the dot
in the second LL lines up with the Fermi energy in the
leads, a dip in the conductance of the dot due to antires-
onance can be seen in Figs. 2(a) and 2(b). The overlap
between electron wave functions belonging to the second
LL in the dot and the first LL in the leads, respectively, is
minimal. Figures 4{a) and 4(b) show the charge-density
distributions in a rectangular box with infinite walls at
a bound state belonging to the second LL (W„=109.3
nm, denoted by an arrow in Fig. 3) and in a quantum
box built up on a quantum wire by means of two finite
barriers at a conductance dip [W = 102 nm, denoted by
an arrow in Fig. 2(b)], respectively. The electron-density
distribution of Fig. 4(b) is qualitatively very similar to
that of an isolated dot shown in Fig. 4(a). We also found
this kind of similarity for other cases. Therefore the dip
structure in Figs. 2(a) and 2{b) is found to originate &om
complete backscattering through OD states of the dot in
the second LL. On the other hand, when a OD state of
the dot in the first LL lines up with the Fermi energy
in the leads, the first LL in the leads tunnels through
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FIG. 4. (a) The charge-density distribution of a rectangu-
lar dot with in6nite walls in the state that is 22nd lowest
in energy. R'„=109.3 nm, denoted by an arrow in Fig. 3.
(b) The charge-density distribution of the structure shown in

Fig. 1. W = 102 nm, denoted by an arrow in Fig. 2(b).

the dot coherently, with no efFect on the conductance in
Figs. 2(a) and 2(b). At a particular W, the OD state of
the dot lines up with the Fermi energy in the leads. There
are two possible couplings between the OD state in the
dot and a propagating LL in the leads. If the OD state of
the dot is in the first LL, it couples well to the first LL
in the leads and transport can occur by coherent tunnel-
ing through this state, that is, the transmission is 1, and
there is no efFect on the conductance. If the OD state of
the dot is in the second LL, however, the conductance
is suppressed since the coupling to this state is minimal.
A dip in conductance is thus expected whenever the OD

state of the dot belongs to the second LL.
Figure 5 presents the conductance as a function of the

width W for the values of B = 2 T, Vs ——3 meV, Ey = 8
meV, and L = 150 nm. There clearly appear three dif-
ferent regions (hereafter labeled as region A, region B,
and region C, respectively). Region A corresponds to
the case of having only one LL occupied in the leads and
dot with the kinetic energy of the edge state not high
enough for the electron to pass over the barriers. The
peaks in the conductance correspond to resonant tunnel-
ing through quasibound states in the dot. Coulomb ef-
fects play an important role in the quasi-one-dimensional
transport between two leads in region A since the number
of electrons confined in the dot is a mell-defined quantity
and corresponds to an integer number. It is beyond the
scope of the present model study to include Coulomb ef-
fects. Palacios ef aL have examined the in6uence of



4662 ZHEN-LI JI 50

25

2.0

Q)
CU

U f 5

O
G$

O 1 Q

0

0.5

Il, , i ~, , glg, , ai Ii) li ii I li i a ~al«», , l. . . , . . . ,
Q Q~ %J

10 30 50 70 90 110 130 15Q 170
W(nm}

FIG. 5. Conductance vs width R' for a Fermi energy of 8
meV in a magnetic Beld of 2 T. The length L of the box is 150
nm. The height of the barriers is 3 meV and the width d of
them 80 nm. The arrows indicate the width W' corresponding
to the charge-density distributions and current distributions
shown in Figs. 6(a)—6(d).

Coulomb interaction on the conductance of a similar sys-
tem, and show that the actual conductance up to six elec-
trons is essentially the single-particle transmission shifted
and broadened by charging efFects. In region 8 of Fig. 5
two LL's are occupied in the leads and dot, which is sim-
ilar to the cases in Figs. 2(a) and 2(b). A few narrow
dips are observed in the conductance in addition to the
steplike structure due to the first LL running free over
the barriers. The dips occur if the OD state of the second
LL in the dot lines up with the Fermi energy in the leads.

Let us now turn our attention to region C of Fig. 5 in
which two LL's are occupied. The first one has enough

kinetic energy to overcome the barrier freely, and the
second one has a kinetic energy of the edge state high
enough for the electron to tunnel through the dot via the
OD state. There is a series of nearly periodic peaks in
the conductance as a function of W. The origin of these

peak structures can be considered as resonant tunneling
through OD states belonging to the second LL. If the OD

state of the dot is in the second LL, it couples vrell to the
second LL in the leads. The second LL starts to propa-
gate by resonant tunneling through this state, resulting
in a resonant peak. When the energy of the incident elec-
tron takes the value corresponding to the energy of the
OD state of the first LL existing in the dot, the electron
of the second LL in the leads is perfectly reflected by
the dot, since there exists no coupling between the first
LL and the second LL. As a result, the number of LL's
contributing to the conductance is 1.

Having understood the behavior of conductance peaks
and dips, we now pay attention to the behavior of the
charge-density distributions and current distributions in
the system. In Figs. 6(a) and 6(b), we have plotted the
charge-density distribution and current distribution, re-

spectively, for a conductance peak (W = 96.9 nm, de-

noted by a solid arrow in Fig. 5). The current-Bow pat-
tern at the peak shows that there is no edge state along
the perimeter of the dot. As expected, in the case of res-
onant tunneling, the charge-density distribution and cur-
rent distribution clearly show that OD states have formed
and the bulk of the current circulates in the dot. In
Figs. 6(c) and 6(d), we show the charge-density distribu-
tion and current distribution for the case that the 6rst
LL has enough kinetic energy to overcome the barriers,
but the second one is perfectly refiected (W = 101.5 nm,
denoted by a dotted arrow also in Fig. 5). The charge
density piles up near an edge because of the Lorentz force
skewing the wave function towards that edge. The cur-
rent pattern in Fig. 6(d) shows that edge states have
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FIG. 6. The spatial distributions for the
cases denoted by the arrows in Fig. 5. (a) The
charge-density distribution associated with
the resonant tunneling via a OD state at
W = 96.9 nm, denoted by a solid arrow in

Fig. 5. (b) The current distribution associ-
ated with the charge-density distribution in

(a). (c) The charge-density distribution at
W = 101.5 nm, denoted by a dotted arrow
also in Fig. 5. (d) The current distribution
associated with the charge-density distribu-
tion in (c). The bulk of the forward current
is carried by edge states.
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formed and carry the bulk of the forward current. This
picture is repeated periodically as the width of the quan-
tum wire is swept.

IV. CONCLUDING REMARKS

In this paper, me have investigated lateral magnetotun-
neling through rectangular quantum dots. The conduc-
tance, charge-density distributions, and current distribu-
tions were calculated. We have shown that the prop-
agation of one LL is enhanced or blocked by the OD

state of different LL's in the dot, resulting in the appear-
ance of resonant peaks or antiresonant dips in conduc-
tance. The charge-density distributions and current-flow
patterns clearly show that LL coupling between the OD

state and the extended state is the origin of these peaks
and dips. We propose that recent experimental measure-
ments may be interpreted in these terms. ~o ~s ~s 2s We
recall that the calculations here are based on a very ide-
alized model potential. In reality, the potential barrier
in a semiconductor structure will not be a perfect step
function. However, smooth deviations in the shape of

the potential from that of a square barrier do not lead
to important changes in the conductance. In this one-
electron Schrodinger model Coulomb eEects have been
neglected. The Coulomb interaction has important im-
plications in weakly conducting regimes (conductance
G ( e2/h). The energy-level spectrum of a dot in a
high magnetic Geld can be affected by electron-electron
interactions. ' This could have inBuence on the struc-
ture of the dips and peaks in the conductance. An im-
proved theory would include Coulomb effects to account
for the accumulation of charge in the dot. Because the
coupling between the dot and leads is essential for the
transport and LL's have formed in the cases we discussed
here, such an improvement is unlikely to alter the basic
results.
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