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Relation between persistent current and band structure
of finite-width mesoscopic rings
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The energy bands of a Snite-width mesoscopic multichannel ring are calculated using the transfer-
matrix method. Two approaches are developed, the diagonal approximation and the multichannel
model. We apply these results to the calculation of the persistent current in mesoscopic rings
enclosing the magnetic aux C in the ballistic regime. It is shown that the interchannel coupling in
a finite-width mesoscopic ring produces a halving of the fundainental period h/e of the persistent
current Iz" (4).

I. INTRODUCTION

During the past decade the intense research on meso-
scopic systems has led to the discovery of interesting
physical phenomena. Among them there are Aharonov-
Bohm (AB) oscillations of the conductivity as well as
various mesoscopic fluctuation effects. There is increas-
ing interest in the question of persistent currents induced
in a mesoscopic ring by an AB flux. The intriguing
question of the persistent current was discussed first in
connection with the flux quantization in superconduct-
ing rings. The work of Biittiker et al. on persistent
currents in strictly one-dimensional normal-metal rings
initiated a renewal of interest in the persistent-current
topic. The origin of the persistent current is the re-
lation between the static magnetic flux 4 threading the
ring and the boundary conditions for the single-particle
wave function. The potential acting on an electron mov-

ing along the strictly one-dimensional ring has a period
equal to the circumference L. The energy spectrum of
such a ring has the band sructure characteristics of a
one-dimensional periodic lattice E„(k), where different
values of the applied lux correspond to different values of
k = —ko4/Op (kp = 2n/L, the flux qua'ntum Oo ——h/e).
Hence, the electron eigenenergies E„(4)of a strictly one-

dimensional ring are periodic functions of 4 with period
4'o. E„(4)= E„(4+Co). Anelectroninthe state E„(4)
carries a current I = —dE„(4)/d4. The total current
in the system, given by the sum over all occupied states
up to the Fermi energy weighted by the appropriate oc-
cupation probability, is finite.

As is known, there are two possible methods of exper-
imental investigation of the persistent currents in meso-

scopic rings: the study (i) of a single ring or (ii) of a
large number of independent rings. Such persistent cur-
rents have been detected by Levy et al. by using 10
mesoscopic copper rings in an experiment, of the latter
type. They observed an oscillatory response; however,
the fundamental period was not h/e, but half of a flux

quantum h/(2e). This result is believed to be due to
the large number of loops in the sample according to
the ensemble averaging. 20 It is shown that, for a
finite persistent current in the disconnected mesoscopic
rings studied in Ref. 15, the number of electrons is con-
served (canonical ensemble) while the chemical poten-
tial exhibits mesoscopic Huctuations. 2i Further, the pe-
riodicity of the persistent current is 4 /o2 instead of 4o.
But averaging on the disorder at fixed chemical poten-
tial (grand canonical ensemble) yields a vanishingly small
persistent current periodic in 40. The inclusion of the
electron-electron interaction gives also a finite ensemble
average of the persistent current with periodicity 4'p/2.
Up to now it is still controversial whether the experiment
can be quantitatively explained within a model of non-
interacting electrons in a random potential (disorder), or
whether the electron-electron interaction is important.

Recently, Chandrasekhar et aL. have reported the ob-
servation of the persistent current in a single gold loop
and Mailly et al. in a single GaAs-Gai Al As loop.
As distinct &om the above-mentioned papers, our study
is stimulated by an experiment in one mesoscopic semi-
conductor ring in the ballistic regime, which has recently
been accomplished. Because of a small number of im-

purities in the ring, there is no necessity for any ensemble
averaging. Nevertheless, it will be shown that the halv-

ing of the fundamental period of the persistent current
in a single ring of a finite width may occur due to the
interchannel coupling.

II. THE MODEL

We consider a finite-width mesoscopic ring in the x-y
plane of inner radius Ri and outer radius R2 threaded
axially by an AB flux of radius R~~ ( Rq through the
hole of the ring. It is assumed that the electrons are con-
fined in a zero-thickness x-y plane along the z direction.
The single-particle Hamiltonian of the electron in the x-y
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plane outside the AB Bux reads1,('B' 1 B)
2m,

~
gBr2 r Br)

+Vc (r, y) + Vs (r, &p),

r B
+ eA~(r)r Bp Jl

This set of equations (K = 1, 2, . . .) determines the eigen-
functions Qx„-(p) = Qx.„-(r„-(4'),p) corresponding to
the eigenvalues e„-(4),n = 1, 2, . . ., from which we obtain
the energy bands E„(4-)

III. PERSISTENT CURRENT
where m, is the effective conduction-band-edge mass and
A~(r) = BRJ 8/(2r) is the y component of the vec-
tor potential outside the AB fiux 4 = BzR&2n The
confining potential Vc(r, y) in the x-y plane is taken
as zero in the region Ri & r & R2 and infinite other-
wise, and the impurity potential Vg(r, (p) is responsible
for elastic scattering. Because the Hamiltonian does not
depend on the spin operator, we can restrict the wave
function to being a scalar function describing the or-
bital motion. In the AB case it is suitable to work in
a gauge for the vector potential in which the magnetic
field does not appear in the Harniltonian, but enters the
wave function via the fiux-modified periodicity condi-
tion 4'(r, (p + 2z) = exp(i2z4/@0)4(r, y). Hence, the
eigenstates and energies of the finite-width ring are pe-
riodic in 4 with period 40. The wave function is rep-
resented by the expansion 4'(r, rp) = P~ Q~(rp)y~(r),
where hx (r)) is the set of radial wave functions that
are the eigenfunctions of Bessel's differential equation.
The radial boundary conditions of vanishing yx(r) at
the radii R1 and R2 result in the relation

J„(rRi)N„(+R2) —J„(zR2)N„(mRi) = 0,

The current density is defined as a variational deriva-
tive

h(H)

j„(x)= —2zr@"(x)
' 0 (x).

BH(x, 4)
4

Starting with the current density given in Eq. (5), the
azimuthal current may be defined as

2m' Rg

I~ = — dp dr j~(x).2x p R
(6)

where (H)—:(@[H
~
4) denotes the mean value of H.

If the mesoscopic ring is threaded by the AB Hux
4', the corresponding vector potential has only a y
component which is azimuthally symmetric: A(x)
A~(r)e~, A~(r) = 4/(2mr). In this case we obtain from
Eq. (4)

where J„(x) is the Bessel function of the first kind and
N (x) is the Neumann function. On the one hand, this
equation determines for each given v (v & 0) the discrete
infinite set of roots (r~(v))x i, where K = 1, 2, . . .. On
the other hand, for each given e & e~(0) Eq. (2) de-

termines a set of K ~,„real values (v~(e))~ "i", which
describe open channels, and an infinite set of complex
values (vx(~))P x +i, corresponding to the virtual

channels. In the following, K is the radial quantum num-

ber denoting both open and virtual channels. The virtual
channels assure a continuous reconstruction of the energy
bands [and hence the continuity of the persistent current
of Eq. (7) below] immediately under the thresholds of the
open channels: e & e~(0), e~(0)—e && ex (0)—ex i(0).
The analytical result e~(0) —Kvr/(Rq —Ri) follows from

Eq. (2) under the condition tcRi, +Rz &) 1 for v = 0.
From this relation the number of open channels at a
given energy E is K ~,„(E) & (R2 —Ri)/2m, E/(mh)
For a narrow-width ring, where the condition (R2-
Ri) « (R2 + Ri)/2 is fulfilled, the analytic dependence

vx(e) = gz2 —r2~(0)(R2+Ri)/2 is valid. With the use
of the orthonormalization of the radial wave functions
(see the Appendix) f&'(dr/r)ya (r)y~ (r) = ha.~, the
azimuthal wave function is the eigenfunction of

Let us consider now as 4(x) an eigenstate of H,
H4'„-(x) = E„-4'„-(x), where H is, for instance, in the
present problem given by Eq. (1). Using Eq. (5) in
Eq. (6), we find the azimuthal current in the final form,

(„-) BE„-(C )
ac

It is important to note that this equation relates the en-
ergy bands E„-(4) of a general ring (finite width and
height) to the azimuthal current (single-band current),
defined in Eq. (6). Hence, Eq. (7) generalizes the
well-known relation between the one-dimensional persis-
tent current I„and the bands E„(4) of a strictly one-
dimensional ring to any mesoscopic ring of finite width
and height.

For the numerical calculation we specify our model by
using the impurity potential Vg(r, (p) = P, i V, /r, b(r-
r, )b(y —rp, ) and bring Eq. (3) to the form

d2
+ vk(~) Q~(V)

p

= ) .). ~~ ( .) (v —v.)Q~ (v ) ( )
K'=1 s=1

d2„,+ 4(~) Q~(v ) with I'x~'~, (r, ) = (2m, /Vh )ya(r, )y~ (r, ). The az-
imuthal wave function fulfills the boundary conditions

Qz(V. + 0) = Qz((p. —o) and dQ~(V)/dV I = .+0-
, = g~, r~~, (r.)Q(s)

2m+ ) .Q~ (V) «rX~(r)Vs(r, V )X~ (r) (3).
~=1 Rg
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j et us start with the impurity-&ee narrow-width ring.
In this case, if (R2 —Rq) « (R, + R, )/2 is valid in the
absence of impurities, the radial and azimuthal motions
are independent and the simple analytical result follows

h2 sr2K2 [m + (4/4p)]2
2m, (R —R, )2 (R, + R )2/4

Here the general band index n turns into a pair (K, m),
where K = 1,2, . . . indicates the level of the size-
quantized radial motion, while m = 0, +1,k2, . . . num-
bers the bands corresponding to the azimuthal mo-
tion. This is the generalization of the well-known result
E (4) = (52/2m, )([m+ (4'/Co)]/Rj2 for the impurity-
f'ree strictly one-dimensional ring. The persistent current
corresponding to the above-described energy,

I( ) (@)
h~ m+ (4/Cp)

m, Cp (Rg + R2)'/4' (10)

is linear in 4 and independent of the size-quantization
index K: the radial motion, as long as it is independent
of the azimuthal motion, does not contribute to the for-
mation of the persistent currents.

There are in principle two difFerent possibilities for

solving Eq. (8) in the presence of impurities, briefly de-
veloped below.

IV. DIAGONAL APPROXIMATION

Accounting for the mutual inQuence of the radial and
azimuthal motions in the presence of impurities in the
Gnite-width ring, one may use the diagonal approxima-
tion I'aa-, oc hlclc, i.e., neglect the coupling between
difFerent channels. This can be done at least for the
weak-scattering case and will be validated below &om
the point of view of more exact approaches.

According to Eq. (8), there are Ns impurities in the
ring. Then the azimuthal wave function has in the region

y, 1 & p «p, the form Q~(p) = Aa exp(ivlcy) +(8)

8& exp( —ivrc&p). Using the boundary conditions for

Qa(y), we obtain on the basis of the transfer-matrix
method

f g(»+~) ) ( g(~) )
(N~+y) = K (V 1& ~ ) PNs ) l

&+a J

with Ta ((pl) ~ i pcs) Ta (pNs)
Ta (y2)Tlc (y1). Here the 2 x 2 transfer matrix is given
by

T~ (~.) =(s) 1 —il'~(')~ (r, )/(2vic)

( tI Ic~(r )/(2vsc) exp(2&vK p )

—il'a a.(r, )/(2vIc) exp( —2ivlcy, ) ~

1 + &I KK (rs )/(2vK)
(12)

On the other hand, the boundary condition at y = 0
gives

2.8

2.6
(1Vs+1) ) (Az a2s(4~4' T (2(Ng+1)

( "z
k

"~ )
with

T (2-) -=i '"' '""'
0 exp($27l'va ) )

(13)

(14)

2.4

e 2.0

1.8

The two equations (11) and (13) result in the dispersion
relation

det e' ' Ta-(2vr) —Ta-(yq, . . . , yNs) = O. (15)

This equation, where in the transfer matrices v~
va(r) is a solution of Eq. (2), determines the energy
bands Ea ~ (4),n~ = 1,2, . . . for each channel K
1,2, . . .. So the general band index n turns in this ap-
proximation into the pair (K, na), where K is the num-
ber of the channel and n~ numbers the bands originating
kom this channel.

Assuming two impurities (s = 1,2) in the finite-width
mesoscopic ring, we obtain the dispersion relations in the
form

1.6

1.4

1 2

-0.50 -0.25
1

0.25 0.50

FIG. l. Energy spectrum Ez,„,(4) of a finite-width meso-
scopic ring (Rq ——50 nm, Rs =120 nm) without impurities
(thin solid lines) and with two impurities (heavy solid lines):
Vj ——V2 ——10 eVm, r q = r2 ——85 nm, p2 —yx = 4s'/3,
originating from the channel K = 1 in the diagonal approxi-
mation calculated from Eq. (16).
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20

self to a finite number M of channels K & M, i.e. , to
use (respectively for M = 2, 3, . . .) the two-, three-, . . .,
channel model. Using the boundary condition for QK (y),
we obtain for the M-channel model on the basis of the
transfer-matrix method

0
M

-10

( g(Ns+I)

B(m, +i)
1

~ ~ ~ = 7M(PI, . . . , Ar, )
+(w&+i)

M

~
&(Ns+I)

~

( g(I) )
B(x)

1
~ ~ ~

(1)

M )

(17)

-15

-20

-0.50 -0.25 0
c'/eo

0.25 0.50

with 7M(&PI~ ~ FNs)
7M (yNs) 7M (rp2)7M (yi), where 7M (y, ) is the
2M x 2M transfer matrix. The boundary condition at
y = 0 gives

FIG. 2. Persistent currents Iz'"' carried by the energy
bands 81,„,(4) of Fig. 1 over one period of the magnetic fiux,
calculated from Eq. (7). Parameters are the same as in Fig. 1.

( ~(Ns+I) )
B( '+')

1
~ ~ ~

~(Ng+1)
M

B(Ns+I) )

i2w(c /4o) 7
( g(I) )

B(1)
1

~ ~ ~

(~)
(18)

I (~) + I (2)
cos(2m vK) + sin(2m vK)

2VK

I (~) I (2)
{cos(2m vK)

( el—cos[2vK(y2 —
&pi —x)]) —cos

~

2s'
I

= 0, (16)
@o)

with

7M(2m) =
( TI(2s)

T2 (2s.)
o

TM(2m) )

independent of each other for all K = 1, 2, . . . , where
vK = vK(r) is a solution of Eq. (2).

We have chosen for numerical work material parame-
ters typical for mesoscopic semiconductor rings (GaAs,
m, = 0.06624mo). Figure 1 shows the energy spectrum
of a finite-width ring with two impurities originating from
the channel K = 1. For the sake of comparison, the en-
ergies are also exhibited for the finite-width ring with-
out impurities. It is seen that the presence of the im-
purities opens gaps at the points 4/@o ——0 and +0.5
of the intersection of the corresponding energy bands of
the impurity-&ee ring. We note that in the considered
case the energy bands resulting from the higher channels
K = 2, 3, . . . lie high above the energies plotted here,
e.g. , min(E2 I(C')) = 4.611 meV. The persistent currents
I&'"' carried by the levels Ei „,(4) of Fig. 1 are plot-
ted in Fig. 2. Due to the scattering of the electrons, the
persistent currents I& ' as a function of the magnetic
fiux vanish at the points 4/Oo ——0 and +0.5.

The two equations (17) and (18) result in the dispersion
relation

det e' ( ~ ')7M(2m) —7M(yi, . . . , &pNs) = 0,

which implicitly binds the energy [via the functions
vK(tc) entering the matrices in Eqs. (17) and (18)] with
the magnetic fiux O'. Note that in the energy interval
where K ~, (E) ) M this scheme operates only with
the open channels, while for K ~,„(E)& M it takes into
consideration also M —K,~,„(E)virtual channels.

Assuming, for example, the two-channel model and two
impurities (s = 1,2) in the finite-width mesoscopic ring,
we obtain the dispersion relation in the form

C l
corn

~

2m'
~

=
z ~

Ax+Ay+ g(Aq —Ag)~+8)

(2o)

with

V. MULTICHANNEL MODEL

The diagonal approximation is good only if the sep-
aration between the energy bands of the same channel
is much smaller than that between the bands belonging
to diferent channels. In the opposite case intereA, annel
couphIIg (ICC) occurs between the different channels. In
this case a possibility to solve Eq. (8} is to restrict one-

AK = cos(2vrvK) + sin(2s vK)2'
sin[(2s. —rp2 + pi) vK],

DKK . (»)
2PK

2
1 (2) (y)DKK~ = ) IKK»I K«K~ S111[vK"(P2 pl)] i (22)

glK"=1
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8 = [I' + I'
] sin(2vrv ) sin(2vrv )

1 (g)2 (2)2

Vy V2

+2r,",'r,",' cos vy —v2 p2 —py sin 7l vy + v2 —cos vy + v2 (p2 —py sin x vy —v2

+D2$ I y2 sin 2vrv l sin 2' —y2 + y l v2 + I'
l2 sin 2mv2 sin 2m —y2 + y~ v~

+Dg2 I'~2 sin 2mv2 sin 2m —y2+ yq v~ + I'~z sin 2mvq sin 2m —y2+ yq v~

+DzqDqq sin[(2m —yq + &Pq)uq] sin[(2m —Pz + P&)vol) (23)

This equation describes two branches corresponding to
the + signs in Eq. (20) if the condition (Ai —Az) +
8 & 0 is satisfied. In its turn, for a given value
of the flux 4, each of these branches defines allowed

(I cos (2z@/@o) I
+ ) electron states E„-(4') if l(&i +

A2 6 Q(Ai —A2) + 8)/2I & 1; otherwise one obtains
forbidden electron states. Being considered as a function
of the aux 4, these forbidden states form gaps in the
energy spectrum.

The energy bands E„-(4) obtained within the frame-
work of the two-channel model for two different values
of the impurity potential are displayed in Fig. 3. The
ICC due to the presence of the impurities leads to a
hybride-type spectrum of the energy bands which have
extrema not only at 4/4'o ——0, +0.5, but at some val-
ues 0 ( I4/@pI ( 0.5 with gaps between neighbor ex-
trema. %ith increasing energy band number n, these
gaps grow, while the functions E„-(4') become smoother.

5.2

We emphasize that there are no crossings between the
bands n = 2 and n = 3, n = 3 and n = 4, n = 4 and
n = 5 in Figs. 3(a) and 3(b). There are narrow gaps
between the energy bands which are the manifestation
of the repulsion of levels of quantum chaotic systems. 24

It should be possible to conclude that the level statistics
have to be different in the center and at the boundary of
the Brillouin zone (4'/4o ——0; 2) and inside the Brillouin
zone (0 ( 4/4o ( 2). The reason is that a nonvan-
ishing magnetic Qux breaks the time-reversal symmetry.
Systems with no time-reversal symmetry are described
by the Gaussian unitary ensemble, while systems with
this symmetry are described by the Gaussian orthogonal
ensemble. Because of the periodicity of the electronic
spectrum of the ring, time-reversal symmetry is present
at 4/Oo ——0 and 2. For a metallic ring with the diffu-
sive regime of the electron motion, such properties have
been demonstrated recently. This rearrangement of
the band structure, specific for the finite-width rings, pro-
duces substantial changes in the persistent currents as a

5.0

~ 4.98

4.8

4.7

-0.50 -0.25

5.2

5.1
5.0

g 4.9

4.8

4.7

-0.50 -0.25

0
C'/eo

0
4i/C o

0.25 0.50

0.25 0.50

40()
30.
20.
10

r

0
~ -10.

-20 .
-30 .

-0.50 -0.25

25
20
15
10

a 0

-10
-15
-20

0
C'/C'o

0.25 0.50

FIG. 3. The energy spectrum E- (C ) of a finite-width meso-
scopic ring (Rq=50 nm, Rs ——120 nm) itwthwo impurities:
rq ——r2 ——85 nm, yq —yi ——4s'/3, Vq = V2 = 10 eVm
(a), Vq ——Vq = 4 x 10 eVm (b), obtained by using the
two-channel model from Eq. (20). Thin lines correspond to
the diagonal approximation.

-0.50 -0.25 0
@/@o

0.25 0.50

FIG. 4. Persistent currents Iz carried by the energy
bands E„-(4') of Fig. 3 over one period of the magnetic Sux,
calculated from Eq. (7). Parameters are the same as in Fig. 3.
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function of the magnetic fiux shown in Fig. 4. Due to the
ICC in the finite-width rings, the Fourier expansion of
the persistent currents acquires a rich structure of har-
monics, where the second harmonic (40/2) is the most
pronounced. Thus, the halving of the fundamental period
4q in the spectrum of persistent currents in finite-width
mesoscopic rings may be attributed to the coupling of
the radial and azimuthal electron motions caused by the
impurity scattering within a purely quantum-mechanical
approach. The recent observation of the second harmonic
along with the fundamental frequency in the spectrum of
the persistent current in a single mesoscopic ring in the
ballistic regime confirms the results given in this paper.

the relation

R2
= (ez —ei) dr ry„, „,(r)y„, „,(r). (A2)

Rl

Let the parameter z be fixed: ~q ——~2 ——~. Then the
boundary problem [see Eq. (2)] gives a finite set of roots
vlc (tc), K = 1,2, . . . , K ~, (E). Choosing two of them as
vi ——v~(rc) and vz ——vs (~), one obtains from Eq. (A2)
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APPENDIX: ORTHONORMALITY OF THE
RADIAL WAVE FUNCTIONS

A general solution of Bessel's difFerential equation

(d2 1 d v21——
~
y(r) =0,

(drz r dr r2) (Al)

is y(r) = aJ„(lcr) + bN„(er) = y„„(r). Imposing the
boundary conditions relevant to a closed-ring problem,
we arrive at a set of algebraic equations for a and b This.
set has nontrivial solutions under the condition Eq. (2)
which relates v and e to each other at the given values
of Ri and R2. Taking Eq. (Al) for two different fixed
pairs (vi, lci) and (v2, ~z), we obtain straightforwardly

Rs

(„)„(r)y„(„)„(r) = 0.
Rl T

(A4)

Now the function y„» („)„(r) may be normalized with the
same weight:

"' dr ,—y„(„)„(r) = l. (A5)
Rl T

Thus, the orthonormality of the set of functions

fy„~&„&„(r)) exists on the ring Ri ( r ( R2 with the
weight 1/r.

xy„(„)„(r) = 0. (A3)

For nondegenerate bands when ere (e) g v~ (Ic) it
means the orthogonality of the functions y„„(„)„(r) and

y„,&„) „(r) with the weight 1/r:
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