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Enhanced conductance near zero voltage bias in mesoscopic
superconductor-semiconductor junctions
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We have studied the conductance enhancement near zero voltage bias of double-barrier Nb-p++Si-
E junctions, where we chose for the counterelectrode E either Nb, Al, or W. The experiments show
a large correction, AG —0.1G~, on the classical superconductor in—sulator no—rmal-metal (SIN)
conductance. We present measurements of the temperature, magnetic-field, and voltage dependence,
and we interpret the observed results within the available theoretical models for coherent Andreev
re8ection, as provided by several authors.

I. INTRODUCTION

Superconductor-semiconductor devices have become a
topic of intensive research in recent years. They pro-
vide excellent systems to study transport phenomena in
superconductor —normal-conductor (SN) structures. Due
to the superconducting energy gap 6, nonlinear efFects in
the conductance are already present at very low voltages.
One of the most interesting phenomena that may occur
at the interface between a superconductor and a normal
metal is Andreev reflection. An electron, with an en-

ergy E ( 6, can only penetrate the superconductor by
finding a matched electron, thus leaving a hole which is
(retro)reflected into the normal metal.

Blonder et al. 2 (BTK) describe transport across a SIN
interface in terms of Andreev and normal reflection, for
arbitrary transparencies I' of the interface. In SIN, the I
stands for a barrier at the interface, either due to an
actual tunnel barrier, a Schottky barrier, or a Fermi-
velocity mismatch between the two materials. The bar-
rier strength is expressed with a dimensionless parameter
Z =

H/hvar,

where H is the strength of the b-function po-
tential barrier at the interface. Octavio et al. s (OTBK)
used this model to give an explanation for the subhar-
monic gap structures (SGS) in SNS junctions, in terms
of multiple Andreev reflections, as originally proposed
by Klapwijk et al. This OTBK model, with some sim-
plifications made by Flensberg et al. , also explains the
occurrence of a current deficit or an excess current at
higher voltages, depending on the barrier strength.

For double-barrier SNS structures it is crucial to take
into account phase coherent transport, especially for the
description of the Josephson eKect. Kastalsky et al.
reported experimental results that clearly indicate that
phase coherence is also important for single SN junc-
tions, in particular at low energies. They found an en-
hancement of the conductance of Nb-In Gaq As con-
tacts for low voltages, smaller than the superconducting
energy gap Awb, at temperatures well below the super-
conducting transition temperature T of Nb. The en-
hancement was of the order of G~, the normal state con-

ductance, which is well beyond the small modifications
usually given by quantum corrections to the conductance,
e.g. , due to weak localization. 7 They interpreted this ef-
fect by assuming a finite pair current across the SIN inter-
face, using a superconducting proximity model proposed
by Geshkenbein and Sokol, based on the time-dependent
Ginzburg-Landau theory for gapless superconductors.

An alternative model to explain the large conductance
enhancement in terms of phase coherent electronic trans-
port was given by van Wees et at. ,

s and Beenakker, ~o

Marmorkos et al. , and Beenakker et al. A disor-
dered normal region, with elastic mean free path E, is
brought into contact with a superconductor, with a bar-
rier present at the interface. The transparency of the
barrier is taken to be much smaller than unity. In these
models it is explicitly assumed that the pair potential in
the normal metal A~ ——0. Because the normal region
is assumed to be shorter than the phase breaking length

8~, coherent backscattering of electrons and holes causes
multiple coherent Andreev reflections. A crucial aspect
in these models is the phase conjugation at E = EF and
B = 0 in the Andreev reHection process, which is shown
to result in an increase of the conductance at low bias.
The magnitude of this eKect can be calculated to be of or-
der unity, much larger than corrections due to weak
localization, which are of the order kFS. In the paper
by Marmorkos et al. the limit where the barrier has a
transparency I' close to 1 is also considered. In this case
the opposite eB'ect occurs; the conductance at low bias is
reduced due to enhanced weak localization. This eKect is

again of the order k~8. Numerical studies on mesoscopic,
superconductor —normal-metal structures have also been
performed by Takane and Ebisawa. ' A similar model,
using the quasiclassical Green s functions for nonequilib-
rium superconductors, is given by Zaitsev and Volkov

al 16,17

In this paper, we present a systematic experimental
study of Nb-p++Si —normal-metal junctions. We var-
ied both the junction length L and the material of the
normal-metal counterelectrode, in order to understand
the observed deviations from the classical BTK model.
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II. EXPERIMENTAL SETUP AND GENERAL
RESULTS

To study coherent backscattering in superconductor—
normal-metal junctions, we need a system where the nor-
mal metal is both disordered, with elastic mean free path
8, and has a length L shorter than the phase breaking
length E~:

50 or 500 nm
Si

membrane

Counter electrode

SiN II
3 4

We used metallic p++Si as the normal metal, and Nb as
the superconductor. Our samples are based on Si mem-
branes. They are fabricated using a selective, anisotropic
etchant, which stops at the high boron concentration
(8 x 10is cm s) defined by ion implantation. is Differ-
ent membrane thicknesses can be defined using diferent
B-implantation profiles. At the Nb-Si interface a bar-
rier is present. This barrier has two causes: a Schottky
barrier, which has a very thin and nonuniform depletion
layer due to the high doping level, and a barrier as a
result of Fermi-velocity mismatch in the two materials.
At the high doping levels used in this system, the stan-
dard Schottky barrier theory is no longer valid, because
the calculated depletion length becomes comparable to
the separation of the B acceptor ions, so the contin-
uum model breaks down. The barrier strength obtained
&om experiment, Z 2, is very close to the theoretical
minimum as calculated &om Fermi-velocity mismatch,Z;„=g(1 —r)2/4r 1.3, where r is the ratio of the
Fermi velocities in the two materials. Following the anal-
ysis of van HuÃelen et al. , the elastic mean &ee path
is estimated at I 5 nm, where we used for the bulk re-
sistivity at 4.2 K a value of p = (7.7 6 1.0) x 10 4 Oem.
For a schematic picture of the samples, and of the sample
geometry, see Fig. 1. From previous experiments by van
HuÃelen et al. ' we learned that the inelastic mean &ee
path for electrons in the Si obeys E; » L(= 50 nm), as
is clear &om the high orders of multiple Andreev reQec-
tions. In a first approximation we can assume that the
phase coherence length S~

We used three diferent samples, whose properties are
listed in Table I, together with some experimental re-
sults. The first type (sample A) are 500 nm thick Si
membranes with Nb electrodes on both sides. Following
the Kupriyanov-Lukichev theory, 2i we expect the super-
current in these junctions to be negligibly small. Typical
curves are given in Fig. 2. A sharp peak near V = 0 in
the differential conductance is observed. This is not a
precursor of a supercurrent, since it does not exhibit a
Fraunhofer digraction pattern in the magnetic-field de-
pendence (not shown), and instead of developing into
a true supercurrent, it saturates at temperatures below
100 mK (see the inset of Fig. 2). In some samples, a small
feature can be seen at V 0.28 mV, as indicated by the
arrows in Fig. 2. In most samples it is absent, and it is
therefore believed to be an artifact, of unknown origin.

The conductance enhancement due to coherent
backscattering is expected to be maximal for S~ && L,
and, because it is uncertain whether E~ ) 500 nm, we
also studied thin (50 nm) membranes. For the supercon-

O

0
V
V
S4

(b)

ducting top electrode we still used Nb, but we replaced
the Nb of the bottom electrode by either Al (sample B),
or W (sample C). Although Al becomes superconducting
below T, = 1.18 K, sample B did not show a supercur-
rent, presumably due to somewhat higher barriers at the
Nb-Si and the Si-Al interfaces. These higher barriers are

TABLE I. Basic sample properties.

Sample

Counterelectrode
T.,s (K)
L (nm)

Contact
area (y,m )

R.i (0pm')
R,2 (Qy, m')

low voltage conductance
peak

&G/t=lv=o (%%uo)

width (mV)
lowest (g —1$b
conductance ~

Gw/G[v=o'

Nb
9.2
500

12
5
5

10
0.1
0.34

5

A1

1.18
50

100
300
300

10
0.3

985 N 10
1.7

W
0.015

50

36
540
1620

15
0.6

1.P6 &&
1P-'

1.5

R q q is defined as the contact resistance multiplied by the
contact area defined by lithography.

The value of dI/dV~v=o, without any conductance enhance-
ment, is extrapolated from the tunnel curve [this is (RNs")
from Ref. 12].
'The depth of the tunnel dip, where G~ is the normal state
conductance at V & D/e, and t (v —0 is the lowest conduc-
tance as extrapolated from the tunnel curve.

FIG. 1. Schematic picture of the junctions (a). A degen-
erately B-doped Si membrane (Na = 8 x 10 cm ), with
L = 500 nm and two superconducting Nb electrodes (sam-
ple A), or L = 50 nm and a normal-metal counterelectrode
of Al (sample B) or W (sample C). (b) shows the geometry
used in the model by van Wees et al. , a superconductor in
contact with a disordered normal conductor. For a detailed
explanation, see the text.
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FIG. 2. Differential conductance as a function of voltage,
for a thick membrane (500 nm), with two Nb electrodes, mea-
sured at 95 mK. The arrow points to a small conductance
peak at nonzero voltage, which appears in some samples. In
the inset the temperature dependence of the zero voltage bias
conductance is plotted, showing a saturation at low temper-
atures.

tance peak is not due to simple thermal smearing (convo-
lution with the Fermi function). This would both lower
and broaden the peak, whereas Fig. 4(a) only shows a
decrease in height. This phenomenon, which can also be
seen in Fig. 2, is not yet understood. The dependence on
magnetic field, shown in Fig 4(b), has the same behavior
as for the Al saxnple (B); both the zero voltage conduc-
tance peak height, and the tunnel dip width are reduced
with increasing magnetic field. The magnetic Geld that is
needed to destroy the conductance enhancement is some-
what larger than for sample B. This is also true for the
temperature and the voltage up to which the conduc-
tance enhancement is present. For this sample the Nb-Si
interface has a barrier comparable to that of sample B,
whereas the Si-W barrier is somewhat higher than the
Si-Al barrier. Therefore a larger portion of the voltage
drop occurs at this second barrier, and both the tunnel
dip and the conductance enhancement peak at low bias
will appear broader. In all samples A—C the measured

due to the fabrication, and they are also present in sam-
ple C. Due to the presence of these barriers, the normal
state resistance R~, at voltage V ) 6/e, is higher.

The differential conductance of sample B is shown in
Fig. 3, for difFerent temperatures (a) and for difFerent ap-
plied magnetic fields (b). Despite the lower conductance
as a result of the barriers, the conductance enhancement
at low voltage bias is of the same order as for sample
A. As can be seen from Fig. 3(a), there is a satura-
tion in the height of the conductance peak. When the
temperature is decreased Rom 170 mK to 70 mK, the
peak height is not increased further. Analogous to the
supercurrent in SNS junctions, the eKect is expected to
saturate when the coherence length ((T) = /AD/kT ex-
ceeds the junction length L. A further discusion will be
given ixi Sec. III. In the inset of Fig. 3(a) the full curve
up to voltages well above ANb/e is given, for the lowest
temperature measured at. It shows standard SIN tunnel-
ing behavior, except for the small peak around V = 0.
From Fig. 3(b) one can see that not only the zero volt-
age conductance peak is suppressed, but also the width
of the tunnel dip is decreased with increasing magnetic
Geld, due to the H dependence of the superconducting
gap, of both the Nb and the Al. The abrupt change &om
100 to 120 mT is a result of exceeding the critical Geld of
the Al, which reduces the width of the tunnel dip from
A~b + A~) to A~b. The tunnel dip appears broader
than b,Nb/e = 1.5 meV because approximately half of
the voltage drop takes place at the Si-Al interface.

Figure 4 shows the differential conductance of sam-
ple C, Nb-Si-W, again for different temperatures (a) and
applied magnetic fields (b). Although from Fig. 4(a) a
saturation of the conductance enhancement is not clearly
visible, it cannot be excluded from the presented data.
Saturation could very well take place somewhere within
the temperature range of 195—100 mK. Another impor-
tant notion that can be extracted from this figure is that
the temperature dependence of the enhanced conduc-
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5
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D
O
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--- 60
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I
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FIG. 3. Differential conductance as function of voltage, for
a Nb-Si-Al junction, for various temperatures (a), and mag-
netic fields (b). The inset of (a) shows the overall conductance
curve for the lowest temperature. In this inset the small peak
at zero voltages can easily be identi6ed as a small deviation
from the normal tunnel curve. For this sample the contact
hole in the Si3N4 layer is 10 x 10 pm .
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at the SIN interface. If the electron is normal refiected,
there is a good chance it will hit the SIN interface again
after some path ep qh. The holes formed in both events
can interfere, where their phase difference is given by
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FIG. 4. DifFerential conductance as a function of voltage
for a Nb-Si-W junction, for various temperatures (a), and
magnetic fields (b). The inset of (a) shows the overall con-
ductance curve for the lowest temperature. For this sample
the contact hole in the Si3N4 layer is 6 x 6 pm .

correction of the zero voltage conductance (b,G/G~v o),
with respect to the BTK model, is of the order 10—15%,
which is a very large correction as compared to the small
corrections in weak localization.

III. COMPARISON TO THEORY

Van Wees et al. , and Beenakker and co-workers
describe the electronic transport in a disordered SIN
structure (disordered N) using a scattering matrix for-
malism. A superconductor is brought into contact with
a disordered semiconductor (E, f & I ), with a low trans-
parent barrier at the interface. The coherence length (
is the distance over which there is a correlation between
electrons and holes in the semiconductor, as a result of
Andreev reflections at the SIN interface. In general, this
coherence length ( = ((T) is temperature dependent.
There is no pair potential induced in the normal region
(E~ = 0), since it is assumed that electron-electron and
electron-phonon interactions in the normal metal are neg-
ligible. A further assumption of both models is that there
are no inelastic scattering or phase breaking processes
(L « E~) Figure l(b) sh.ows the path of an incoming
electron, which can be either normal or Andreev reflected

e
(RNs) = —I' if I'L/E « 1,2e2N L (3a)

(RNs) =
~

—+ I'
~

if I'L/E && 1,
h fL

2e2N (E (3b)

A is the area enclosed by the path ep &h and B is the
applied magnetic field. At E = E~ and B = 0 the inter-
ference will be constructive and independent of path, and
therefore result in an enhancement of the Andreev reflec-
tion probability. Coherent efFects will be reduced if the
average phase difFerence (b,p) is of the order of 2n. Us-

ing (Ei,~ih) = 0.35E/T„as the average path length, where
T„=E/L is the transmission probability of the middle

region, and g(A2) 12E2 as the rins average area, we

can therefore defines the critical voltage eV, = zhv~/E
for which the enhanced conductance is suppressed. In
an actual sample the single loop schematically shown
in Fig. 1(b) can be extended to several loops, and, in
the particular case that T„=0.1, the critical voltage
V, is modified to V; 0.05V, . Substituting the spe-
cific parameters of our samples, eV;+ 2.9 meV, and
for the critical magnetic field B, = 0042$ /oE = 6.9 T.
Obviously those numbers are much larger than the ob-
served values. We therefore conclude that the average
path length ep tg and enclosed area A are larger by an
order of magnitude. Marmorkos et al. , who apply a
more adequate description of impurity scattering than
van Wees et al. , also give expressions for the critical
voltage and magnetic field. Again inserting the parame-
ters of the Si we get eV, = &hvFE/L = 0.29 meV and
B, = Po/LW = 20 mT, where we used a junction length
L of 50 nm, and a contact width W of 4 pm. The ex-
pression for the critical field B„however, is only valid for
W & L. Furthermore, we also need to take into account
the penetration of the magnetic Geld into the supercon-
ductor. Inserting L = 50 nm+ AL „g„——100 nm and
W = 400 nm, we find B, = 100 mT. This value for
W is still large compared to the length I, but the very
good agreement with experiment suggests that this value
is quite reasonable. If we try to compare this model to
sample A, Nb —Si (500 nm) —Nb, we find much smaller val-
ues for V, and B, than from the experiment. This implies
that the effective length L'+ for coherent efFects is not the
junction length L = 500 nm, but shorter. Comparing the
height of the effect, Marmorkos et al. get a correction on
the conductance GNs~v —o of the order unity. The ex-
periments show a correction of 10—15%, which is slightly
smaller.

Very recently Beenakker et al. presented calculations
on the (zero voltage bias) resistance for different lengths
L of the normal metal. The key result of their paper, for
the transmission probability I' « 1, is given by
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to be contrasted with the classical resistance (not taking
into account phase coherent Andreev refiection)

(3c)

OO

I = 'D(E)E(E)BE,
eRpf p

(4a)

17(E) = ry+r2+ 1
L '7

1 |9x
Mi(E) M2(E) & Mt(E, z)

E —eVI

(4b)

where N = A/(2A~) is the number of available modes.
As a result of phase coherence of electrons and holes
across the entire sample, the classical resistance RNs"
is, for I'I /I. )& 1, modified to (RNs) as given in Eq. (3b).
As an example we will apply this model to sample A,
Nb —p++Si (500 nm) —Nb. The advantage of sample A is
that is has two almost identical interfaces, so the RNS of
a single interface is simply the total resistance (at zero
bias) divided by 2. From Fig. 2 we get (for the lowest
temperature) (RNs) = 0.96 0, and an interpolation of
the tunnel curve gives RN~s" ——1.47 A. Using I /E = 100,
we get &om the ratio (RNs)/Rgs ' ——0.653 a value for
I' = 0.18. With Eqs. (3c) and (3b) we calculate, using
I = 0.18 and N=(contact area)/(2A p), RN's ' = 0.97 0
and (RNs) = 0.63 O. The contact area in these samples
is defined as 12 pm (see also Table I). These values are
very close to the experimental values, the small discrep-
ancy being mainly due to the uncertainty of the effective
contact area. According to this model the efFect would
be much stronger in the 50 nm samples, B and C, since
the ratio (RNs)/RNs" is reduced significantly when I,/4
is changed &om 100 to 10, and I' = 0.18 kept constant.
In Fig. 3 and Fig. 4 the effect is shown to be of the same
order as in sample A. A nonuniform interface, leading to
a smaller efFective contact area, could account for a re-
duction of the conductance enhancement. This is also in
agreement with the larger contact resistance in samples
B and C, (see Table I).

Calculations, using quasiclassical Green's functions for
nonequilibrium superconductors, are given by Volkov and
co-workers. is ir Although the theoretical approaches are
quite different, they yield qualitatively similar results. In
some cases it has been verified that the two approaches
also agree in detail (Marmorkos et al. ) Volkov et aL

model a double-barrier SININ' structure, for which the
current can be expressed as

~ ~ $ \ ~ \
f

~ ~ ~ $ ~3 ~ ~
/

~ ~ I ~ ~ ~ ~

2.5-

o 2

Q)
N

(g 1.5
E
O

—1:r1=5, r2=35—2: r1 =10, r2=30—3: r1=20, r2=20—4: r1=30, r2=10

0.5

0 0.5 1 1.5 2

V (mV)

2.5

FIG. 5. Calculated normalized differential conductance as
a function of applied voltage, according to the model by
Volkov et al. (Ref. 17). ri, 2

——Ri,q/R, where Ri,q is the
interface resistance and R the resistance of the bulk. For the
curves shown, 4 = 1.5 meV and T = 100 mK.

conductor S and the normal metal N. M2 ——v(z2) is de-
termined &om the density of states v at the NIN' bound-
ary (z = z2), where it is assumed that the density of
states in N' is constant. Mq(z) = v(z) + il(z) is depen-
dent on the two position-dependent densities of states in
N, v and g. v, and g, are taken for BCS superconduc-
tors, whereas v and g have to be determined numerically
(for details, see Ref. 17). Calculations for the low trans-
parency limit (ri, r2 &) 1), where the resistance of the
middle layer can be neglected, are shown in Fig. 5. This
limit is only valid for samples B and t, not for sample
A. As can be seen, there is a very good resemblance
to the differential conductance curves obtained &om the
experiment.

From previous measurements ' it was already rec-
ognized that the Nb-Si contact in our devices is highly
nonuniform. Van Huffelen et al. had to assume an effec-
tive area of only 2—3% of the defined area, in order to
get agreement between the calculated and measured nor-
mal state resistances. The ratios rq 2 are defi.ned as the
contact resistance Ri 2 over the resistance R of the mid-
dle region. For a uniform interface, the barrier resistance
is directly proportional to its transparency, leading to a
unique value for r~ 2, but, since our barriers are nonuni-
form, it is not straightforward what values to choose for
the ratios rq and rq. This hinders an exact Bt of the ex-
periment, since in the model a uniform barrier is assumed
at both interfaces.

'D(E) given in Eq. (4b) is the energy-dependent trans-
mission probability of the entire junction. In general,
the analytical expressions for 17(E) are very complicated;
however, in certain limits, it is possible to calculate 17(E)
numerically. In Eq. (4) ri 2 is defined as the barrier resis-
tance Rq 2 over the bulk resistance R, where the normal
state resistance R~ = Ri+R2+ R. Mi ——[vv, +rtrl, ](xi)
is a function of E, at the SIN boundary (x = xi), which
combines the normalized density of states in the super-

IV. CONCLUSIONS

%le have observed experimentally an enhancement of
the conductance of Nb-p++Si contacts, at low voltage
bias (eV « b,Nb) and temperatures well below the su-
perconducting transition temperature T, of Nb. Quali-
tatively we can explain our results by assuming multiple
Andreev reflections due to coherent backscattering, as
proposed by van Wees et al. A more quantitative com-
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parison can be made by using the model of Beenakkeri
and Marmorkos et aL, who apply a more adequate de-
scription of impurity scattering. Using this model, to-
gether with the specific parameters of our samples, val-
ues for V, and B, the critical voltage and magnetic 6eld
above which the efFect is diminished, are found to be
in good agreement with the experiment. Regarding the
amplitude of the corrections, Beenakker et al. calcu-
late the zero voltage bias resistance as function of the
transmission probability I' of the SN interface, for difFer-
ent lengths I of the normal region. These calculations
are in good comparison with sample A [Nb—Si (500 nm)—
Nb], but predict larger corrections for sample B [Nb—Si
(50 nm) —Al] and C [Nb—Si (50 nm) —W] than obtained
&om the experiment.

A di6'erent theoretical approach is used by Zaitsevi
and Volkov et ol.is ir for our specific system yielding sim-
ilar results.

Discrepancies between theory and experiment cannot
be resolved conclusively by the present experiment in
view of the inhomogeneity of the interface. It is therefore
essential to study the infiuence of the shape of the inter-
face barriers on the electronic properties of these systems.
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