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We have studied the problem of coherent and sequential tunneling through a double-barrier
structure, assisted by light considered to be present all over the structure, i.e., emitter, well, and
collector as in the experimental evidence. By means of a canonical transformation and in the
framework of the time-dependent perturbation theory, we have calculated the transmission coefficient
and the electronic resonant current. Our calculations have been compared with experimental results
and turn out to be in good agreement. Also, the effect on the coherent tunneling of a magnetic 6eld
parallel to the current in the presence of light has been considered.

I. INTRODUCTION

Resonant tunneling through double-barrier structures
(DBS's) has been one of the most active fields in research
in solid-state physics, both kom theoretical and exper-
imental standpoints. The main reason is that resonant
tunneling has been considered to have a great potential
applicability in electronic devices. In the same way, the
interaction of an external time-dependent potential with
resonant structures is considered to have very interesting
applications, for instance, the use of DBS's as detectors
and generators of microwave radiation. In this paper we
are going to study the efFect of a photon field on both co-
herent and sequential tunneling current through a DBS.

The work of Sollner et al. ,
2 is the experimental starting

point for studies on the efFect of time-dependent poten-
tials in resonant tunneling through semiconductor mi-
crostructures: they studied the influence of electromag-
netic radiation on the resonant tunneling current. Re-
cently Chitta et c/. have studied the far infrared re-
sponse of double-barrier resonant tunneling structures.
Theoretical work on tunneling devices under the influ-
ence of a time-dependent potential has a long history.
Tien and Gordon4 studied the effect that microwave ra-
diation has on superconducting tunneling devices. Sev-
eral authors have investigated the effect that external
ac potentials have in different problems. Jonson, Apell
and Penn, and Johansson and Wendin have studied
the sequential contribution to the tunneling through a
DBS under an applied electromagnetic field, using mod-
els based on the transfer Hamiltonian formalism. In all
those models above, the coupling between electrons and
the electromagnetic field is considered to take place in
just a part of the structure; in most of them in the well,
and in the case of Apell and Penn in the emitter and
collector, but in none of them affecting the whole struc-
ture.

In this paper we have calculated how the transmission
coeKcient and the current for electrons in a DBS are
changed due to the presence of light in the whole struc-
ture. In order to do that we have developed a quantum
mechanical formalism to find an expression for the elec-
tronic state dressed by photons and we have calculated
the resonant tunneling current under the influence of an
external electromagnetic field. This quantum mechani-
cal formalism based on a canonical transformation and
in the time-dependent perturbation theory has been ap-
plied to coherent and sequential tunneling processes, and
the results we have obtained are in good agreement with
the available experiments. The case of coherent resonant
tunneling assisted by light in the presence of a magnetic
field parallel to the current has also been studied.

This paper is organized as follows. In Sec. II, we
discuss and develop the theoretical formalism. In Secs.
III A and IIIB, we apply that formalism to coherent and
sequential tunneling, respectively. In Sec. IV, our re-
sults for both types of tunneling for different frequencies,
external electromagnetic fields, and magnetic fields are
presented and compared with experimental results. We
summarize our conclusions in Sec. V.

II. ELECTRONIC STRUCTURE OF THE
SYSTEM WITH LIGHT

The quantum mechanical Hamiltonian for an electron
in the presence of an electromagnetic field represented by
a plane electromagnetic wave of wave vector k, parallel
to the x direction and polarized in the z direction E =
(0, 0, F) (see Fig. 1), can be written as

Hq« ——(1/2m*) [P + eA(R, t)j + V(R) + hmata. (1)

In our problem we apply an external bias, such that the
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lkv double-barrier potential and the external applied bias;
therefore the eigenstates of Ho, 4'0(k), are the tunnel-
ing states for bare electrons. H h is the photon field
Hamiltonian whithout coupling with electrons and WD
and TV~D describe the coupling between electrons and
photons in the total Hamiltonian. We separate the cou-
pling term into the "diagonal" (6) and the "off-diagonal"

(7) contributions because we are going to be interested
in problems where a quasilocalized state is connected by
the electromagnetic Beld with a continuum of extended
states. Therefore WgD can be treated in first-order time-
dependent perturbation theory. For problems in which
two or more quasilocalized states should be connected by
the light, the method could not be applied in the same
way, requiring some generalization. Therefore the total
Hamiltonian can be written as

Hg~g ——H~(t) + WOD(t),

FIG. 1. Particle represented by a plane wave moving along
the z direction crossing a DBS in the presence of an electro-
magnetic field polarized in the z direction.

electrostatic and barrier potential depends only on the z
direction, so we take the potential V(R) as V(z). In the
Coulomb gauge ~ A = 0 and (I) becomes

where H~(t) = H, + H h+ W~(t).
The Hamiltonian HD can be solved exactly by con-

sidering a canonical transformation. ' It allows one to
obtain the exact electronic wave function dressed by pho-
tons: @D(k) = Ut@'o(k), where %0(k) is the electronic
double-barrier eigenstate with no photon field present
in the sample. Once we have obtained the eigenstates
for HD, we apply time-dependent perturbation theory in
order to treat the 6'~D term. The operator U for the
canonical transformation is given by U = e', and s can
be written as

n
(P,)e&tcg (ate' —ae '

)m'hm (2eVm)
Hq q

——P /2m* + (e/m') P . A(R, t)

+(e /2m") A (R, t) + V(z) + hmata. (2)
M ctc (ate'"' —ae ' ')
hu ""

In our case the vector potential operator A(R, t)
A, (x, t). In general, A (R, t) is negligible compared to
the (e/m*)P A(R, t) term; therefore we can write in
second quantization for the total Hamiltonian

M I
H~ = ct„cg eg — + hurata,

hm)
(IO)

The Hamiltonian under this transformation becomes

Hq, ~
——H, + H h + W~ (t) + WOD(t),

where

o - tH = ) fgc&cg,

Hh ——hma a,

WD(t) = ) [(e/m')(kIPz[k)ctcg(h/2eVzv)'~

x(ae ' '+ ate' ')],

WoD(t) = ) ) [(e/m*)(k'IP~lk)cg'c
a'ga

x (h/2eVm) ~ (ae ' + a e' )].

(4)

where at = at —
& c&cg and a = a —

& c&cg. In the
transformed Hamiltonian HD the electrons and photons
are not coupled any more and the electronic eigenvalues

are shifted by 6 =
&

which is negligible with respect
to the free-electron eigenvalues. Finally we can write
the exact eigenstate for HD in terms of the electric field
intensity F:

@D(k) = exp (P, ) sin(uyt) 4'o(k)

= @,(k) ) J„(P&)e '" ',

Here A, (2:, t) = (h/2eVm)~~ c,(ae * + ate' ), m be-
ing the photon frequency, the wave vector of the electro-
magnetic field has been neglected, and the term e
is already included in the state vector Ik). H, is the
independent, electronic Hamiltonian and includes the

where Py = eF(P, )

At this point, and in order to obtain the total wave
function where nondiagonal terms (k' g k) are included,
we consider time-dependent perturbation theory up to
first order. For that purpose we calculate the total wave
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function time-dependent coefficients, which are given by
t

C& (t) = lim (1/ih)(@D(k')IW(k)l@D(k))e 'dt,

(i2)

where

W(k) = (eE/m'va) ) (k IP, lk)ct, cl, cos(1ot).

Since we consider 6rst-order time-dependent perturba-
tion theory, we keep only the Jo Bessel function terms
because if we took the Jq terms or terms of higher or-
der in the Bessel functions, that would mean considering
second- or higher-order processes giving a very small con-
tribution to the total wave function. Due to that we will
see below that only one-photon absorption and emission
processes are considered in our formalism. From (11),
(12), and (13) we have

(1) eFL-
47i A QJ P kI gk

Jo(p„)Jo(pl, )(k IP, lk)/k'

x e' ~'~+ ' PP + imb(1ol, I, + m) + e' ~'~ ' PP
gaol'I +~ )

+ imb(m„„—1o) d1o„. (14)

In the calculation of this integral the principal part term
results to be negligible compared to the b term. If we

carry out that integral taking the above into account we
can obtain for the coefficients

C('(),
)
——( i eFL/4fPm—)Jo(Ps, (,) )Jo (P1„)

X (k1 ( 1) IPz lko)/k1 (

Therefore, denoting by ko the wave vector of the initial
electron we can write for the total wave function

III. LIGHT-ASSISTED TUNNELING
THROUGH A DBS

A. Coherent tunneling

Now we use the above electronic structure to analyze
the problem of coherent resonant tunneling in a DBS
assisted by light. Before turning on the light we are go-
ing to calculate, applying the transfer matrix technique,
the transmission coefficient for a double barrier. First
of all we write in this framework the wave function in
the emitter and collector regions for an electron [@,0(k, )
and @ 0(k, ), respectively] crossing the double barrier (see
Fig. 1):

e(t) = a[eD(ko) + C1 (t)egg(k1)

+C",)(t)~ (k- )]. (i6)

The normalization constant n = 1/[1 + IC1 (t) I

+IC( 1)(t)l ]1~ in Eq. (16) guarantees current conser-
vation; in other words, in the presence of a barrier the
addition of transmision and reBection probabilities will
give 1, as discussed below. 4'~(ko) is the "dressed" ref-
erence state, @D(k1) and 4'~(k 1) are the two coupled
"dressed" states due to one-photon absorption and emis-

sion processes, and C1( () 1)(t) are the corresponding coef-

ficients for 4(t) coming from the one-photon absorption
(emission) processes (ur1 1 ——w1„6 tu).

4',0 ——1/v L(e' "+ re '"")e' *e' ""e

g j./g ~k, z ik z ~k„y —~mph

(17)

(18)

where k, and k, are the electronic wave vector per-
pendicular components in the emitter and collector, re-
spectively. The incident and transmitted currents are
J; = ""' and Jq —— "."~Itis, respectively, so that the

transmission coefficient is To ——~&ltl2, where the factor
C

ltl is calculated by means of the transfer matrix for-
malism, i.e., imposing the boundary continuity of wave
function and current at the barrier interfaces. 1r

If now we turn on the light, our state is transformed
into the electron-photon wave function 4'(t) (16). From
that we calculate the new incident and transmitted cur-
rents, and after some algebra the transmission coefficient
in the presence of light becomes

& = &0!(1+k1/kolCl" I'+ k-1/kolC'l I') + T1IC1"I'/(ko/k1 + ICl"I'+ k-1/k1IC"1 I')

+T,IC ',
I /(ko/k 1+ k1/k 1IC, I

+ IC, I ).
A similar expression can be obtained for the re8ection coefficient

R = Ro/(1+ k1/kolC1 I
+ k —1/kolC 1I ) + R1IC1 I /(ko/k1+ IC1 I + k 1/k1IC 1I )

+R—1IC 1 I /(ko/k —1 + 1/k 1 IC1 I' + IC-1 I')
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where Ro, Rq, and R q (To, Tq, and T q) are the stan-
dard coherent double-barrier reHection (transmission) co-
efficients, evaluated at the reference energy, at one pho-
ton above and one photon below the reference energy,
respectively. This expression for the reQection coeffi-
cient verifies the current conservation ]T~ + ~R~ = 1;
it means that the probability for an electron to tunnel
with no photon absorption or emission is smaller than
the corresponding with no light present in the sample.
This is due to the 6nite probability associated with emis-
sion and absorption processes; it is a consequence of the
unitarity, and comes directly &om the normalization
of the total electronic wave function where one-photon
absorption and emission processes are considered. As
the electromagnetic field intensity increases, the inelas-
tic processes are more probable, and therefore the elastic
or direct tunneling has a smaller probability than for low
field intensities. In order to analyze the dc current, which
is the only one observed in experiments, we have made
a time average so that no interference terms appear. Fi-
nally the total electronic current can be written as

tt= 2 3 E — E+V

f being the Fermi function, E„ the parallel part of the
electronic energy, and Vy the external dc applied bias.

We can now consider the problem of adding a mag-
netic 6eld B parallel to the current direction, i.e. , the z
direction. In the Landau gauge A~ = ( yB, 0, 0). —The
effect of this magnetic 6eld is to change the parallel part
of the density of states, and. due to that instead of a con-
tinuum of states we now have a Landau level ladder. The
Hamiltonian for an electron in the presence of an electro-
magnetic 6eld in the configuration considered above and
a magnetic field parallel to the current can be described
in second quantization as

J = (2/2~ )(e/h) B
N gF

x)
{n+1/2) hm

dE[f(E) f(E+ Vy)]T(E n)

(24)

n being the Landau level index, N the maximum occu-
pied Landau level index, and T(E, n) the transmission
coefficient when the photon field is present in the sample
(19).

B. Sequential tunneling

S4I I
P, = (2vr/h)(2vr/L')'

2m*'L[w2 + (1/ng) + (1/ng)]

xT,b(k„—k')b(E, —E~„) (25)

In order to study the sequential tunneling, we have de-
veloped a model that calculates separately the current
for the first and second barriers, Ji and J2. These cur-
rents are related to the Fermi level in the well E or, in
other words, to the amount of electronic charge stored
in the well. In this model we adjust the Fermi level self-
consistently till the currents through the first and the
second barriers become equal. The values calculated in
this way for the current and the Fermi level in the well are
indeed the actual current which crosses the whole dou-
ble barrier sequentially and the Fermi level corresponding
to the actual amount of charge stored in the well. This
model takes into account macroscopically the possible
scattering processes within the well.

In order to calculate Ji and J2 without light, we use
the transfer Hamiltonian method. We calculate for the
first barrier the probability Pq for the electron to cross
from the emitter to the well,

Ht t,
——H, y H h + W~(t) + WoD(t). (22)

H &, W~(t), and WOD(t) are exactly the same as the
ones described in the general formalism, but H, has been
transformed due to the presence of the magnetic field and
can be written now in second quantization as

H. = ) e,c,c. + hw, (a~a~ + 1/2), (23)

where B is the magnetic field intensity, m, is the cy-
clotron frequency (w, = eB/m'), a& and a~ are the cre-
ation and annihilation operators for the Landau states,
and e is the perpendicular part of the electronic energy.
With no magnetic field present in the sample the paral-
lel component for the electronic wave vector is conserved
during the photoassisted tunneling process. Now, as the
magnetic field is switched on, it is the Landau level index
that is conserved. The alignment of the Landau levels in
the emitter and in the well with the same index gives a
jurnp in the electronic current, giving eventually a saw-
tooth profile for the I-V characteristic depending on the
magnetic field intensity. The expression for the current
can then be written as

where T, is the transmission coefficient for a sin-
gle barrier; k, (k„') and k (k„) are the perpen-
dicular (parallel) component for the electronic wave
vector in the emitter and well, respectively; Fq„
is the well state energy referred to the conduction
band bottom [Eq„——ER —Vy(wq + w2/2)/wq (where
ER is the well state energy referred to the well

2m'(Vo —SR+A (ur1+mq) /2mt)
A~ ) Ag

'; mi, u)2, and u)3 are the first

barrier, well, and second barrier widths, and mq is the to-
tal width for the whole structure. It is important to stress
the presence of the 6(E, —E& ) term in the Pq expres-
sion. It implies that only for those emitter states which
resonate with the well state will it be possible to cross
the emitter barrier to the well and therefore contribute
to the current. With this probability Pi, we can calcu-
late the current Ji that, after integrating in the energy,
is given by

k T,
J~ ——(e/27rh)

' (EJ; —Et„—E~),
w2+ 1ng+ 1ng

(26)



50 COHERENT AND SEQUENTIAL PHOTOASSISTED TUNNELING. . . 4585

S4k k

2m'2L[ip2 + (I/as) + (I/ag)]

xT,b(k„' —k„)h (E, —Ei„)

tU TS
J2 —(e/2z h) E, (28)

where k is the perpendicular component for the elec-
tronic wave vector in the well.

Repeating the arguments we have made to study the
effect of the light on coherent tunneling, it is straight-
forward to extend that formalism to the sequential tun-

where E~ and E are the Fermi level energies in the
emitter and in the well, respectively. For the second bar-
rier, we apply exactly the same formalism and we obtain
for the probability of crossing &om the well to the collec-
tor, P2, and for the current through the second barrier
J2

neling case. Before switching on the light the electrons
have just one way to get into the well state &om the
emitter: &om an emitter state which is resonant with
the well state, i.e., having the b(E, —Ei„) term in the
integral. Now, when we switch on the light, the electrons
have three different ways to tunnel through the emitter
barrier to the well. The first one is a direct way and
it corresponds to an emitter state which resonates with
the well state; the transmission takes place without light
absorption or emission. The second one is through an
absorption process from an emitter state which is found
at one photon energy below the resonant well state. And
finally the third way is through an emission process &om
an emitter state which is found at one photon energy
above the resonant well state. For those reasons above
we will have in the Ji expression the sum of three terms;
in each one appears a difFerent b function. The direct
term has in its expression a b[E, —Ei„], the absorption
term a h[E, —(Ei„—hip)], and finally the emission term
a b[E, —(Ei„+hip)]. So the final expression we have for
the current Jq is

Ep kJi ——(e/2n'5) dE, ~2+ (I/as) + (I/a~)

x b[E, —Ei„] (,) ", + b[E, —(E,„—hip)]
1+ ki/kolCi", ol'+ k-i/koIC"i, ol' kp/ki+ ICi",ol'+ k-i/kiIC"i, ol'

+b[E. —(E,„+firn)] dEp.
kp/k i + ki/k ilC, 'o I'+ IC ', pl' E

(29)

If we perform this integral, we can finally obtain for Jq

k„,iT, ,p[Ey —(Ei„+hw) —E ]
~2+ ( /a»i) + ( /a~ i)

( / )
k pT, p(Ey —Ei„—E~) 1

io2+ (I/a&, o) + (I/«P) 1+ki/kolC, pl + k i/ko]C i ol

k,-,T, ,o[Ez —(E,„—Sip) —E ]

io2+ (1/as i) + (1/ag i) k, /kp+ ICI & I2+ k 2/kolC

ki/ko+ ICi",i I'k2/ko+ IC"i,il'

where, as above, the subscript 0 means the reference state
energy that in our case is the resonant mell state energy.
The subscripts 1 and —1 mean one photon energy above
and below, respectively, etc.

For the second barrier we do not have the constraint
of crossing to a specific discrete state, but what we have
now is a continuum of states in the collector. The ex-
pression we have for the current through the second bar-
rier in the presence of light is formally equal to the Jq
expression, i.e., it is formed for the sum of three contri-
butions, each one at diferent energy. At this point we

apply the same procedure as in the case where there is
no light present, i.e., we calculate the Fermi level in the
well self-consistently till both currents for the first and
second barriers become equal. The values obtained in

this way are the actual photoassisted sequential current
and Fermi level in the well.

IV. RESULTS

%e have performed a calculation for a GaAs-
Ga Alq As DBS with mell and barrier thicknesses of
50 A, in order to analyze the experimental information. s

The electromagnetic field is polarized along the sam-
ple growth direction (Fig. 1), and the carrier density
n = 10 cm . First of all we have calculated the total
transmission coeKcient for coherent tunneling for a field
intensity I" = 4 x 10s V/m and energy hip = 13.6 meV
and for different external bias [Vy = 0.0, 0.1, and 0.14



4586 J. INARREA, G. PLATERO, AND C. TEJEDOR 50

V, Figs. 2(a), 2(b), and 2(c)]. The main features ob-
served in the transmission coefBcient as a function of the
total energy are two satellite peaks coming from the one-
photon absorption and emission processes (higher-order
processes are neglected in our model as has been dis-
cussed above). As the bias increases, due to the asymme-
try in the sample, the satellites become asymmetric too,
and for high bias only the satellite coming from the one-
photon emission process shows up. In Fig. 3(a) we have
plotted the coherent resonant tunneling current density
as a function of the external bias in the presence of the
electromagnetic field. The efFect of the light on the cur-
rent density can be observed in Fig. 3(b), where the cal-
culated current difr'erence between the case where there
is light present in the sample and the case where there is
not light present is drawn. One observes a main struc-
ture in the region corresponding to the current density
threshold, the appearence of a shoulder for bias roughly
at the center of the current peak, and a smaller structure
associated with the current cutofF.

The change in the tunneling current as a function of
the external bias comes mainly from the change in the
transmission coefBcient where two satellites appear cor-
responding to the one-photon absorption and one-photon
emission processes. The current is then obtained by in-

tegratingg

to all the available stat es with energies up to
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FIG. 3. (a) Coherent tunneling current density as a func-
tion of voltage for light-assisted tunneling (F = 4 x 10 V/m,
hio = 13.6 meV). (b) Current difference as a function of
voltage between coherent light-assisted tunneling and coher-
ent tunneling without light present (F = 4 x 10 V/m,
hto = 13.6 meV).
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FIG. 2. Logqo of coherent transmission coe%cient as a func-
tion of total energy (F = 4 x 10 V/m, hio = 13.6 meV). (a)
Bias voltage Vy = 0.0 V. (b) Vf —0 10 V. (c) Vy = 0.14 V.

the Fermi level. In Fig. 3(b) a main peak shows up
at an external bias smaller than the current threshold
bias for the case where no light is present in the sam-
ple. Physically this comes &om the fact that electrons in
the emitter close to the Fermi energy have a probability
to absorb a photon and to tunnel through the resonant
state. Therefore the current increases in the presence
of light and the threshold bias for the current is smaller
than that corresponding to the case where the sample
is not illuminated, and a positive peak appears in the
current difference . For higher voltages, as the resonant
level crosses the Fermi energy, there is also an additional
contribution to the current coming kom electrons ab-
sorbing a photon and tunneling nonresonantly through
the double barrier. Finally, the physical reason for the
structure appearing at the current cutofF bias (around
0.18 mV) comes from the emission processes once the
resonant state in the well crosses the bottom of the con-
duction band of the emitter. These features are in good
agreement with the experimental curve.

In order to compare with the experimental evidence we
have to analyze the sequential contribution to the tunnel-
ing current and compare it with the coherent one. There-
fore we have calculated the sequential tunneling current
density in the presence of light as well as the current
difFerence with and without the photon field [Figs. 4(a)
and 4(b), respectively]. One observes that the sequen-
tial current decreases at the bias corresponding to the
current cutofF more abruptly than the coherent one, and
that the current intensity is of the same order as the co-
herent one. More interesting is the fact that the current
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FIG. 4. (a) Sequential tunneling current density as a func-
tion of voltage for light-assisted tunneling (E = 4 x 10 V/m,
hzv = 13.6 meV). (b) Current difference as a function of
voltage between sequential light-assisted tunneling and se-
quential tunneling without light present (F = 4 x 10 V/m,
hm = 13.6 meV).

FIG. 5. (a) Coherent tuaneling current density as a func-

tion of voltage for light-assisted tunneling (E = 4 x 10 V/m,
hm = 4.2 meV). (b) Current difference as a function of
voltage between coherent light-assisted tunneling and coher-
ent tunneling without light present (F = 4 x 10 V/m and
fiuJ = 4.2 meV).

difFerence [Fig. 4(b)] for sequeatial tunneling is one or-
der of magnitude smaller than that correspoading to the
coherent process [Fig. 3(b)]; therefore we coaclude that
the experimental difference of currents corresponds to the
coherent tunneling process, which dominates the sequen-
tial one. We have also evaluated the coherent and sequen-
tial current densities for the same sample but considering
photons with lower energy hw = 4.2 meV (Figs. 5 and
6) in order to compare with the experimental results. s

In this case the same behavior is observed as in the pre-
vious case when the coherent contribution is compared
with the sequential one: the coherent tunneling current
density is comparable in intensity with the sequential one
and the current difFerence (with aad without light present
in the sample) is one order of magnitude larger in the co-
herent process than in the sequential one; therefore the
latter is hidden by the coherent contribution and it is
this one which should be compared with the experiment.
The agreement for this case (lower frequency) is aot as
good as for the previous one: the current difference for
the coherent case [Fig. 5(b)] presents a peak for a bias
smaller than that corresponding to the threshold current
density without light. As in the previous case, this struc-
ture comes &om electrons close to the Fermi level which
absorb one photon. This peak, which is less intense than
in the previous case (fewer electrons with energies below
E+ than in the case with higher photon energy) and nar-
rower, is not observed experimentally; however, the main
features are well reproduced. In order to see how the rel-
ative intensity between coherent and sequential tunnel-
ing current densities changes as a function of the barrier
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FIG. 6. (a) Sequential tunneling current density as a func-
tion of voltage for light-assisted tunneling (F = 4 x 10 V/m,
hut = 4.2 meV). (b) Current difference as a function of volt-
age between sequential light-assisted tunneling and sequen-
tial tunneling without light present (E = 4 x 10 V/m and
hm = 4.2 meV).
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the current density is modified independently for each
Landau level. This can be observed in Figs. 9(b) and
9(c). In the case that the cyclotron frequency is twice
the photon frequency [Fig. 9(b)], the way the light af-
fects each Landau level separately is well resolved. In the
second case, where the cyclotron &equency is the same
as the photon frequency [Fig. 9(c)] the current difFerence
structures associated with each Landau level overlap but
remain decoupled from each other. This result does not
give any additional information to the photoassisted tun-
neling without magnetic field, because in this configura-
tion the magnetic Beld only afFects the planes parallel to
the interfaces, while the light affects the tunneling in the
current direction. Therefore the effects of the two fields
on the tunneling current are completely decoupled. More
interesting would be to consider an electromagnetic field
with a coinponent of the electric field in the interface
planes. In this case the efI'ect on the current due to the
magnetic field and the light will not be independent of
each other anymore and difFerent physical effects could
be expected. That is the task of a forthcoming paper.

V. CONCLUSIONS

We have studied the problem of coherent and sequen-
tial tunneling through a double-barrier structure assisted
by light, which is considered to be present all over the
structure, i.e., in the emitter, well, and collector, which
is a realistic description of the experiments. By means of
a canonical transformation and time-dependent pertur-
bation theory up to first order, we have calculated the
coherent transmission coefBcient and the electrical cur-
rent through the system for this specific problem, with
the result that the electromagnetic field couples states
of different energies due to one-photon absorption and
emission processes. The higher-order contributions to the
current (multiphoton absorption and emission processes)
are much weaker and their contribution can be neglected
in first approximation. As a result of that, two satellite

peaks appear in the transmission coeKcient at both sides
of the main resonant peak. Therefore, the total transmis-
sion coeKcient and the coherent tunneling current are
affected by the photon field and resultant features in the
current density are observed. In order to obtain the total
density current we have developed a model to analyze the
sequential tunneling current through a double barrier in
the presence of light. We have calculated the electronic
tunneling current through the Brst barrier, i.e., from the
emitter to the resonant state in the well in the presence of
light, and the current through the collector barrier com-
ing from the electrons in the well. Current conservation
is reached when both currents are equal and it determines
the Fermi level in the well, i.e., the charge stored in the
well. The sequential contribution to the current coming
out is of the same order as the coherent one. For the cur-
rent diHerence with and without electromagnetic field the
coherent part is one order of magnitude larger than the
sequential one for the samples considered in our calcula-
tion. Therefore it is the coherent current which should
be compared with the experiments, and both theory and
experiment turn out to be in good agreement. We have
also considered an external magnetic field applied in the
growth direction on the double-barrier structure and in
the presence of light. The analysis of the coherent tun-
neling current has been done for difFerent ratios between
the cyclotron and the photon frequencies.
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