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Electron tunneling between quantum Hall systems on the same two-dimensional plane separated by a
narrow barrier is studied. We show that in the limit where the inelastic scattering time is much longer
than the tunneling time, which can be achieved in practice, electrons can tunnel back and forth through
the barrier continuously, leading to an oscillating current in the absence of external drives. The oscilla-

tory behavior is dictated by a tunneling gap in the energy spectrum. We shall discuss ways to generate
oscillating currents and the phenomenon of natural dephasing between the tunneling currents of edge
states. The noise spectra of these junctions are also studied. They contain singularities reflecting the ex-

istence of tunneling gaps as well as the inherent oscillation in the system.

I. OSCILLATORY TUNNELING IN
QUANTUM HALL SYSTEMS

In this paper we study electron tunneling between
quantum Hall (QH} systems separated by thin barriers.
Examples of these systems are shown in Figs. 1 —6. The
thinness of the barrier allows an electron to tunnel
through it many times before being scattered away by in-
elastic efFects. Oscillatory tunneling of this kind will
occur if the inelastic scattering time ~;„is much longer
than the tunneling time ~z,

+in +++T

The existence of oscillatory tunneling can be seen even
in the semiclassical (SC}limit, where electron wave pack-
ets move in circular orbits with cyclotron frequency co, .
When the barrier is infinite, electrons will undergo a se-
quence of "reflected circular orbits" as shown in Fig. 1.
In the absence of other scattering mechanism, electrons
having collided with the barrier once must collide with it
again within the cyclotron period. As a result, they are

forever captured by the barrier (see Fig. 6). When the
barrier is reduced from infinity to a finite value, the cap-
tured electrons on one side of the barrier (say, I. ) can
tunnel to the other side (R ). Once tunneled, this electron
will collide repeatedly with the barrier and eventually
tunnel back to I.. When Eq. (1) is satisfied, this back and
forth tunneling process can proceed without interruption,
giving rise to an oscillating current in the absence of
external drives.

While the SC picture captures the correct physics, it
only tells half the story. In a quantum-mechanical treat-
ment, we shall see that different edge states tunnel with
difFerent frequencies. Thus, even in the absence of inelas-
tic scattering, the tunneling current of different edge
states will naturally dephase with each other. As a result,
the total tunneling current will decrease in time. Howev-
er, we show later than despite dephasing effects, there are
ways to generate lasting current oscillations (thereby
refiecting the oscillatory tunneling near the barrier)
without the aid of an ac drive.

The crucial question is whether Eq. (1) can be

FIG. 1. A quantum Hall junction with a circular barrier.
The trajectory of a semiclassical electron is indicated by arrows.
Once tunneled across the barrier, the electron will repeat a simi-
lar reflected circular motion on the other side and eventually
tunnel back.

FIG. 2. Schematic representation of the quantum-mechanical
edge states near the barrier. The dotted lines labeled a and b
denote two neighboring edge states, which in general have
different tunneling rates across the barrier. As the flux P
through the hole at the center increases, the edge states will
move outward, thereby increasing their tunneling rates. State b
will evolve to a when /=2m.
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FIG. 3. A rectangular version of the QH junction in Fig. l.
The dashed lines mean that the system is periodic in y with

period L.

FIG. 4. A quantum Hall weak link. The thick black lines

represent hard walls, i.e., infinite potentials. As we shall see, os-

cillatory tunneling of the electrons across the weak link pro-
duces a singularity in the noise of the tunneling current.

—V
H

FIG. 5. A junction similar to Fig. 4 except that both R and L
are multiply connected geometries. The current oscillation
across the junction will generate an oscillation of Hall voltage
across each ring.

achieved. We shall argue below that this is possible at
least for the case of integer filling. There are two sources
of inelastic scattering: Coulomb interaction between elec-
trons on the same side of the barrier ("intraregion" in-
teraction) and that on the different sides ("inter-region"
interaction). Let us first consider noninteracting elec-
trons and the limit of infinite barrier. The systems R and
I. on both sides of the barrier are now disconnected, re-
ducing to two semi-infinite systems terminated by a hard
wall. The Landau levels of such systems are well known,
i.e., they bend upward as the barrier is approached, ' see
Fig. 7. In the presence of intraregion interaction (but
without inter-region interaction), and when the system
has integer filling, the edge electrons will behave like a
normal Fermi liquid. The lifetime ~;„ofthe quasiparti-
cles will the tend to infinity at the Fermi surface, and mill
dominate over any tunneling time ~z introduced by finite
barriers. In other words, Eq. (l) can always be satisfied
near the Fermi surface when the system has integer
filling, and that electron tunneling near the Fermi surface
can be modeled by that of noninteracting systems. (Esti-
mates of the tunneling time are given at the end of the pa-
per. ) As we have seen in Fig. 7, the Landau levels of R
and L intersect because they all bend upward near the
barrier. In the presence of tunneling, these intersections
will turn into gaps (see Fig. 8). As we shall see, the
unusual features of these junctions are determined by
these gaps.

What is more subtle is the effect of inter-region interac-
tions. While it is obvious that the tunneling gap can
sufficiently withstand weak inter-region interactions, the
situation is less clear for large inter-region interactions.
However, as we will show later, it is possible to map our
problem to a solvable model in one dimension (massive
Thirring inodel). The exact solution of this model shows
that the tunneling gap exists for arbitrary inter-region in-
teraction. Although we have not yet been able to calcu-
late the current responses for arbitrary inter-region in-
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FIG. 6. In the absence of external electric fields, a semiclassi-
cal electron will be forever captured by the barrier once its tra-
jectory is intercepted by it.

FIG. 7. The spectrum of the rectangular QH system in Fig.
3 in the infinite barrier limit (Refs. 1 and 2). Because of transla-
tional invariance in y, the spectrum can be labeled by the y
momentum k and the Landau level index n. The width of the
barrier is 2a. Its boundaries are denoted in dimensionless units
( —a/l, a/l), where l is the magnetic length. The spectra of L
and R, e„kand e„I, are represented by solid and dashed curves.
They rise near the barrier (i.e., ~k ~

~0) and intersect each other.
See also Sec. II for a detailed discussion.
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teraction, the survival of the tunneling gap suggests that
the tunneling characteristics of the noninteracting sys-
tems may also survive.

Before proceeding, we stress that the phenomena dis-
cussed here requires thin barriers. The junction used in
many current experiments are produced by gate voltages
and are much smoother than the barriers we consider
here. Since magnetic length in a 10-T field is about 80 A,
and the 100-A-wide channels are feasible in current tech-
nology, the construction of these junctions is possible (see
also Sec. VII for estimates of relevant parameters).

The rest of the paper is organized as follows. In Sec.
II, we discuss the energy spectra in the vicinity of the
barrier for a variety of external conditions. In Sec. III,
we derive the efFective Hamiltonian for the tunnel junc-
tion as well as the expression of tunneling current. In
Sec. IV, we suggest ways to generate oscillatory tunneling
currents, and discuss the phenomenon of natural dephas-
ing. In Sec. V, we discuss the noise spectrum of the junc-
tion, which reflects directly the existence of tunneling
gaps and the inherent natural oscillations of the system.
In Sec. VI, we discuss the effect of inter-region Coulomb
interaction. In Sec. VII, we give numerical estimates of
various parameters.

II. THE ENERGY SPECTRUM NEAR THE BARRIER

We have argued in Sec. I that when Eq. (1) is satisfied,
tunneling between QH systems with fully filled Landau
levels can be modeled by that of noninteracting electrons.
Although we have mentioned the general behavior of the
spectrum in Sec. I, we shall give a detailed description
here as we shall need it later. For simplicity, we shall
focus on the setup in Fig. 3. The system is periodic in y,
11(x,y)=11)(x,y+L). The Hamiltonian in the Landau
gauge is

H= p„+ p — Bx + V(x), —1 2 1 e
2m " 2m " c

(2)
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FIG. 8. The intersections of the spectra in Fig. 7 turn into
gaps as the infinite barrier becomes finite. The spectrum of the
entire system wi11 be denoted as E„q.They are continuous
curves that reduce to e„),and e„"k as one approaches the bulk,
i.e., as k ((—l ' and k ))l ', where l is the magnetic length.

where m is an integer and u„k(x ) is an eigenfunction of

Hk(x)=fico, [——,'I c)„+Vk(x)],
2

Vk(x )—:—,
' ——kl + V(x )/fico, ,

X

J

with energy E„„H.ere, 1 =&1)ic/eB is the magnetic
length and co, =(eB/mc) is the cyclotron frequency.
Equation (2) can be written as

H = g Hk =—g g E„ka„+ka„k, (4)
k k n=0

where a„kis the annihilation operator of |I„k.The ex-
istence of oscillatory tunneling near the barrier can be
seen from the fact that Vk(x) reduces to a degenerate
double well as k ~0. It is well known that when an elec-
tron is placed in one side of the double well, it will tunnel
back and forth between the wells with a frequency given
by the excitation energy from the ground state to the first
excited state.

Although both u„k(x,y) and E„kcan be obtained by
analytic methods, they can be easily understood in the
limit of high barriers. When Vo= 00, L and R become
two disconnected semi-infinite systems, H ~HL +H~,

L +Hl —g g En kCn, ken, k
k=O n=O

HR X X ~ kdnkdnkn
k=O n=O

where e„kand e„kare the Landau levels of L and R in
the limit V0=00. c„kand d„k are the corresponding

7

Leigenstates. The behavior of the Landau levels e„kand

e„kas a function of k have been studied by a number of
authors'i (see also Figs. 7 and 8). In the bulk of L,
Ik (& —1, e„k=(n+1/2)fico, . e„kbegins to deviate ap-
preciably from its bulk value about a magnetic length
away from the wall, lk ( —1. The entire curve increases
monotonically (to infinity) as k increases, passing through
(2n +3/2)fico, at the barrier (i.e., when lk = —ci /I ). 2„„
has an identical behavior in the reverse k direction.
When Vo is reduced from infinity to a finite value, the in-
tersections of the spectra of L and R will turn into "tun-
neling" gaps. The two sets of energy curves [e k I and
tE k I now turn into a single set IE„k], which we shall
refer to as the n-th Landau level of the entire system.
Each curve E„kis a smooth function in k. It reduces to
e„kand e„kfor Ik ((—1 and Ik &&1.

The qualitative features of the wave functions u„kcan
be determined from the effective potential Vk(x ) (see Fig.
9). If P„k(x) and P„"k(x) are the eigenstates of L and R
in the infinite barrier limit [hence P„k(x)=0for x )0,
and )ft"„k(x) =0 for x (0], then for high (but finite) bar-
riers, we have (see Fig. 9).

u0(1), k [4'0,k(x )+( )40, k(x )I/+2
for —1 ((Ik « 1, (6)

where B is the external magnetic field, and V(x ) = V, &0
or 0 for ix i

& or & a (see Fig. 7). The eigenstates are of
the form P„k(x,y ) =L 'i e'")'u„k(x), k =(2irm )/L,

Q01)) k(x )=$01,) k(x ) for lk « —1

~0(1),k(x ) +(I'011),k(x )

(7)

(8)
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V(x)

k4 «-1 kS --1 lkk /&g kS -1 kZ»1 particle to the left and to the right of the barrier as

tt(t(t)= J d x()+( x, y;t) (()xy;t),

N„(t)=f dxf+(x, y;t)g(x, y;t)
0

the current in x is then I(t)=eNL = eN—„.Using the
fact that

t ~
I x
I I

(x) J|,k
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t ~
I
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fi(x,y, t)=g[L '~ e'"~u„k(x)]a„ke
n, k

we can write

I(t)= g Ik(r)

u (x)
O,k

n
I ~

I
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FIG. 9. A schematic representation of the wave functions of
the ground state uo k(x ) and first excited state u»(x ) of the en-

tire system L+R in Fig. 8.
Xg„(k)a„ka ke

ifE„k—E k Jt/A

0g„(k)= u„k(x)u k(x)dx .

(10)

In the absence of voltage bias between I. and R, it can
be seen from Fig. 8 that the lowest tunneling gap of L
and R (which occurs at k =0}lie above the first "bulk"
Landau level, i.e., ( 3 )duo, . The location of the tunneling

gap, however, can be easily changed by applying a volt-

age bias (see Fig. 10). Note that in the presence of a volt-
age bias V, K is still diagonal in k and is still given by Eq.
(5}except that the spectrum E„kand the eigenstates a„k
now functions of V.

When the spins of the electrons are taken into account,
the spectrum of I. and R in the infinite barrier limit con-
sists of two sets of Landau levels diff'ering from each oth-
er by the Zeeman energy. Since V(x) does not flip spina,
the intersections of the opposite spin Landau levels will
not turn into gaps when Vo becomes finite.

To conclude this section, we derive the expression for
the current in the x direction. If we define the number of

En,)

g„(k)=0 for llkl &1. (12)

For this reason, we can from now on focus on the range
llkl & 1 in Eq. (10).

Limiting to the lowest two Landau levels Eq. (10) be-
comes

k

k [@l,k ~o,k ]g1,o(k ) '

For 1lkl &1, Eq. (6) implies

g, o(k)= —,
' J dx[lPok(x)l —i/oak(x)l ]

0
X 0k X

With Eq. (15) and Eq. (12},we have

(13)

(14)

(15)

Note that only terms with num contribute to the
current as g„(k) reduces to the overlap of two orthogo-
nal states in L or R in the Vo = ao limit,

Tk =(Ei,o Eo,o)~2—=~o~2 «r l lkl « I

=0 for llkl & 1 .

(16)

III. EFFECI'IVE TUNNELING HAMILTONIAN
AND THE TUNNELING CURRENT

In this section and the next two, we shall focus on the
tunneling between the lowest Landau level of L and R.
For simplicity, we shall also consider the case of zero
bias. The results derived here can be generalized easily to
other Landau levels and to nonzero bias. The Hamiltoni-
an of the entire system, Eq. (4), now reduces to

g(@o,k o, kao, k++1,k 1,kal, k} '
k

(18)

FIG. 10. The spectrum of the entire system in the presence of
a voltage bias. The lowest tunneling gap is now moved below
the first bulk Landau level.

As discussed in Sec. I, only those k's in the range l
l
k

l

& 1

contribute to the current Eq. (10). Within this range,
Ep k and E, k are close to &p k and ep k except at k =0,
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(i.e., the intersection of eo k and eo k ), where a gap ho is
opened up (see also Figs. 8 and 11). For later discussions
we define

El, k Epk Ek ~o=Ek =p=E1o Ep p

R
eL, k ER, k

—
ep, k EO k ——Ek y (20}

L(R),k o, k +0k~ 0k [El,k +Eo,k eo, k &o, k ] ~

(21)

The tunneling phenomenon contained in Eq. (18}is more
transparent if H is written in the form of a tunneling
Hamiltonian. Defining energies eL „,eR R, and tunneling
matrix element Tk as

k Y~+Ek ~k ~

Eq. (18) can be written as

H=Ho+HT g (eL, kcL, kcL, k+ER, kcR, kcR k )
+ +

k

—g (TkcL+kcR, k+H. c.),
k

where

(22)

(23)

CL

CR

ap
~k ~ ~k01

V Q

Q V
(24)

1 &k
Qk= 1+

1/2
1 ~k

k (25)

R,k

The phases of CL „andCR „havebeen chosen so that uk,
vk, and Tk are all real. [The relation between Tk defined
in Eq. (22} and that in Eq. (13) will be clear shortly. ]
Equation (25) also implies that

Tk Qk VkEk (26)

Although, strictly speaking, /k%0, it can be taken as
zero as it is much smaller than eo'k '. As a result, eL k,

AeR k, CL k, and CR k are well approximated by ez k, eo k,
co k, and do k [see Eq. (5)], even though they are not ex-
actly the same. Ho in Eq. (23) can therefore be interpret-
ed as the Hamiltonian of I. and R in the infinite barrier
limit, and HT describes the tunneling between them.
There is another point worth noting. In the conventional
tunneling Hamiltonian, the tunneling term Hr is usually
written as gk k.(Tk k.cL+kcR k +H.c), whereas in Eq. (23)
k is conserved during tunneling processes. This is entire-
ly a consequence of the symmetry of the systems in Figs.
2 and 3.

Next, we turn to the tunneling current. Defining the
number of particles to the left and to the right as
NL =gkcL+kcL k and N„=gkcR+kcR k, the current in x is
then I(t)=eNL = eNR, or expli—citly,

I(t)=—g [TkcLk(t)cR k(t) —H. c. ] .
k

(27)

FIG. 11. Both (a) and (b) show the spectrum near the lowest
tunneling gap in the region Ik & 1. (a) is a schematic representa-
tion of the initial state ~%} discussed in Sec. IV when both I.
and R have identical chemical potentials p. Occupied {unoccu-
pied) states are indicated by solid (empty) circles. The spacing in
k is 2~/L. The states cL, k and e& k are linear combinations of
ao k and a, k. As the boundary condition in y changes (corre-
sponding threading a flux 8/2m through the hole in Fig. 2), all k
states move to the right, i.e., 4 and 3 towards 3 and 2, l' and 2'
towards 2' and 3', etc. (b) shows the location of the k states in
(a) after half a flux is passed through the hole, i.e, k ~k+m/L.
This results in an excess edge electron on top of the Fermi sur-
face in L.

ie + iEk t/hI(t)=—g Tk(ai kao ke +H c ). . .
k

(28)

Using Eq. (25) again, we can rewrite

eI(t ) =—g [Vk(t )(CR kc„k CL+kCL k)—
k

+elk(t)(cL+kcR k+H. c.)],
where vk and qk are defined as

Using Eq. (25) and the fact that a+, ~ „(t )
0(1) k

=a+&~ ke +"",we can write Eq. (27}as
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v»(t )=2(T»u»u» ) sin(E»t /fi),
IEk t!A p

—IEk t/A
'ti»(t) iT»(e u»+e

(30)

iHot/t] iHot/R-Jt=—e ' Ae
(31)

In the conventional treatment, Eq. (31), higher-order
terins corresponding to multitunneling processes are ig-
nored. In contrast, the time dependences in Eqs.
(27)-(29) are generated by the full Hamiltonian H, which
amounts to extending the perturbation series Eq. (31) to
infinite order. (Note that the infinite series is necessary to
generate a gap in the spectrum. )

The reason that the perturbative result Eq. (31) is ap-
plicable for most systems is because multitunneling pro-
cesses are usually subpressed by quantum diffusion even
in the absence of inelastic scattering. In the usual case,
tunneling takes place between electronic states that are
extended over the bulk of the sample (L or R ). Once
tunneled across, the electron leaves the barrier on the
time scale of quantum difFusion. The time to travel a dis-
tance comparable to the barrier width a/vR, which is
usually much shorter than the tunneling time. As a re-
sult, the tunneling current can be accounted for by first
order perturbation theory. However, for the junctions we
consider, tunneling takes place between edge states which
are localized near the barrier. The electron has no where
to go after tunneling but to tunnel back. The continuous
back and forth tunneling renders the conventional
scheme Eq. (31}inadequate.

A simple model. Near the intersection point, one can
linearize the infinite barrier spectrum e» such that

Pk =vyflk (32)

where vF is the Fermi velocity which is of the order of
Ico, . %hen the tunneling is weak, 60«Ace„the region
in k space where Ek differs significantly from ek is
l

~
k

~

& b,0 /fico, We can th. erefore model E» as

Ek —~o+&k . (33)

Comparing Eqs. (28) and (26) with Eq. (13), one notes
that these two definitions of Tk are consistent if go, in

Eq. (13) is identified as u»u» in Eq. (26}. For Eq. (25},one
can also see that the asymptotic form Eq. (16} is also
satisfied by both definitions.

The expressions Eqs. (28) and (29) represent the major
difference between oscillatory tunneling and the usual
type of electron tunneling (such as those in normal and
Josephson junctions}, where first-order perturbation
theory in Hz provides an adequate description of the tun-
neling current,

I]t)—t(0)= —J [1(tttt~]t , ]]dt'

IV. OSCILLATIONS OF THE TUNNELING CURRENT

From Eqs. (28) and (29}, we see that the tunneling
current is made up of different edge state components I»,
each of which oscillates at a different frequency
to» =E»/i]i'. In this section, we discuss ways to generate
natural current oscillations, and to discuss the dephasing
between different current components. For simplicity, let
both L and R have identical chemical potentials (i.e.,
It,L =p,R =]]t,), and that p is below the tunneling gap (see
Fig. 11). The corresponding Fermi vectors in L and R
are —kR and kR, respectively. The quantum state of the
system is then ~%)=g»&» CL+»g &» cR+ ~0). [That

we take the initial state as
~
4 ) instead of the true ground

state of the entire system ~40) =g~»~&» ao+» is because

the relaxation from ~%) to ~%0) requires inelastic pro-
cesses, which are inefFective when Eq. (1) is satisfied. ]
The tunneling current is

(I(t ) )=—g v»(t )((cR»cR» ) (cL»cL» ) ),
»

(35)

where the average is with respect to
~
4). It is clear that

~%) will not generate any current as the current com-
ponents in L and R cancel each other, v»(t)=v»(t),
hence

v»F+tt/L = v»p

e= ——2(Tuu)» sin(E» t/fi) .

For chemical potentials slightly below the tunneling gap,
IkF «1, Eq. (26) implies (Tuu)» =2E» (uv)» =E„.

F I' F F
We can then write Eq. (36) in a very simple form

(I(t))= e(E» /A') sin(E» —t/A') . (37)

If, instead of pushing a flux quantum through I., we in-
troduce a chemical potential difference between I.
and R at time t =0 [(]ML =pR }~(pL=p+eV/2,
pR =p —eV/2)]. The Fermi wave vectors in L and R are
then changed to k~+5kz and kz+—5k' (see Fig. 12),

(I(t) )=— g —g v (t)=0 .
k &kp k) kF

The simplest way to generate a single (of a small num-
ber of) oscillating current component is to move all the
edge states k to the right by a small amount, i.e., shifting
k to (k+8/L). This shift amounts to changing the
periodic boundary condition of the wave function to
i'(x,y )=e' f(x,y+L }. Returning to the cylindrical
geometry Fig. 2, this change of boundary condition cor-
responds to passing a fraction (8/2n ) of a flux quantum
through the center hole. When half of a flux quantum is
passed (8=m. ) we have in efFect added an electron on top
of the Fermi sea in L (see Fig. 11). The tunneling current
is, therefore,

In terms of this inodel, Eqs. (22) and (26) become
5k', =eV/(fiu~) . (38)

~o
~k 2 ~0~ ~k vk

k
(34) The quantum state in Eq. (35) now becomes

I+&=(g»», +s»,CL+»)(g, », +s»,CR,, )I]0&. The «r-
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rent at t )0 is then

(I(r)) = ——g v„(r),
[[k]

(39)

where [k] denotes the range of excited edge states
~k+kz~ 5k+. Each of the vt, term oscillates with fre-

quency E& /A. If the entire range [k ] lies in the linear re-
gion of the spectrutn, (hence E„=el,=fiv~k) (see Fig.
12},then the states at the opposite end of the interval will
be the 6rst ones to dephase with each other, as they have
a maximum frequency difference. This takes place at
time r~z'=A'/(E/ 5k~ ) =A'/(e V/2), referred to as the "in-

itial" dephasing time. As time increases, the coherence
of the states in [k ] reduces as more and more states at
different ends of the internal keep dephasing with each
other (see Fig. 12). When T-r'j'=Pi/[E/, (2m. /L )]
=L/[2~v~], referred to as the "final" dephasing time,
only one or two states in the vicinity of k~ remain
coherent.

During the dephasing period, zr' &t&rg', the sum-

mand in Eq. (39) is sufficiently smooth that the sum can
be approximated by the integral

—kF+5kF
(I(t) ) = —— I (2'.upvt, )

2K —kF 6kF

Ekt
Xsin dk . (40)

Expanding the integrand about kz, Eq. (40}becomes

(I(t))= —— (2Tuv)I, sin(E& t/fi)
e I.

2sin([EI, 5kzt]/R)
X +O(r ')+

EI, t/A

Initially (for t =0), Eq. (40) gives

(I(t))= — (L5—kz/2m)(2Tuv )z sin(EI, t/A),

(41)

(42)

which is the single electron current, Eq. (37), multiplied
by the number of electrons that participate in tunneling,
(L5kz/2n). The dephasing effect causes this current to
decrease as 1/t [see Eq. (41)]. At time t=~'j', most of

—k —6kF, F
k +6k

F F

+eU
2

FIG. 12. When a chemical potential
difference e V is imposed between R and L at
time t=0, the Fermi wave vectors in L and R
are changed to —kF+5kF and kF+5kF. The
range of k contributing to the tunneling
current is given by ~k+k~~ &5k+, which is
denoted as [k]. In {a},the range [k] lies in the
linear portion of the spectrum. The tunneling
current decays as t '. In (b}, [k] includes the
intersection point, the tunneling current de-
cays as t
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(I(t))=
0&k &SkF

Vk(t) . (43)

the terms in Eq. (39) have undergone many oscillations
except for a few terms near k =0. The magnitude of the
current is then reduced to that comparable to a single
electron, Eq. (37}.

Let us consider a different situation where initially
kF =0. The range [k] is then symmetric about k =0 (see
Fig. 12). The tunneling current, Eq. (39), becomes

The largest frequency difference among different k terms
is still eV/fi, whereas the minimum frequency difference
becomes

5~k=0 (E2 /L E0)/~

,'(A' —vF/b0)(2irIL ) /iii .

Therefore, we still have rz"=fil(eV), while the final de-

phasing time becomes id '=2ir/5cok 0 FO. I' io'p) t ) Tgp',

Eq. (43}can be written as

5kF
(I(t))= —— (2Tuv)k 0I dk sin([50+ —,'Ek' 0k ]tlfi)+0(. . . )

i' 2ir —skF

L5kF
[2b0sin(60tll)]+it%'b0/(eV) t C[Q(eV)2tlirfth0],

(44)

(45)

where C(x)= f0cos(u )du is the Fresnel integral which

approaches —,
' as x~00. In deriving Eq. (45), we have

made use of Eq. (38).
From Eq. (45), we can see that as the chemical poten-

tial p sweeps through the gap, the dephasing
processes slows down, changing from t ' to t
for large t. The final dephasing tiine
rg~'= %/5cok 0= (L /2irvF )( b01[fivF(2'/L ) ] ) is much
longer than that in the previous case, (L/2nvF }, as the
factor 50l[fivF(2m/L)] is t.ypically much larger than 1

(see also Sec. VII).

S(co)= — L I lTkl 5(co Ekl—fi)dk
F

'2 ~'

dEk ik E

(49)

for fico )E„(50)
=0 for fico(EF . (51}

(52)

Using the simple model at the end of Sec. III, Eqs. (50)
and (51) become

'2 2
e L~o

S(co)= for Rco&Ek
VF

V. NOISE SPECTRUM =0 otherwise . (53)

2

g I Tk I cos
k

Ekt
(46)

The oscillatory tunneling of the edge states can also be
detected through the noise spectrum, S(co)
=f" S(t)e'"'dt, S(t)=—,'([I(t),I(0)]+). When both
L and R have identical chemical potentials p, Eqs. (29)
and (30) imply that

'2

S(t}= — g' Re[rtk(t )i}k(0)]
k

Note that kF (hence, Ek ) depends on p. When p lies
F

outside the gap, kF(0, and S(co) shows a cusp at
co=Ek lfi. When p lies inside the gap, S(co) shows a

square root divergence at co =A,0/A. (See Fig. 13.)
The noise in the tunneling current will generate a simi-

lar noise spectrum Stt(co) in the Hall current IH. The
Hall current in L is IH =L '(elhi)gk(c}ek Idk)cL+kcL k,
and Szz is defined as SH(t)= —,'(, [5IH(t), 5']+ ), where
5IH =IH (,IH ). Using Eq. (2—4), it is straightforward to
work out this noise spectrum,

)[f(eL, k )f(eR, k )+f(eR, k )f(eL, k }]
k k

e
Stt(co) = L ~ c}ek

2m kF Bk

'2

(47)
X(ukvk } ir5(co Ek/fi), — (54)

(,x —I.)zk~ r
where f(x)=(e +1) ' is the Fermi function, T
is the temperature, and IM is the chemical potential. The
noise spectrum is

S(co)= — g'
l Tk l ir[5(co Ek/fi)+5(co+—Ek/A')] .

k

(48)

At T=O, we have gk~(L/2ir)(f + f k }. For
co) 0, we have

VF
SIL(co}=—' S(co) .8 (55)

The noise spectrum of the Hall current is proportional to
that of the tunneling current. While SH(co) may be
diScult to measure in geometries like Fig. 3, it is easy to
measure in the junctions shown in Fig. 5 by measuring

where we have used the fact that 2' k
=ok for unbiased

junctions. Using Eqs. (26}and (32), we have
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1,k 1,k
E

kFi k

C3 +g
F

O,k O,k

(c)

EO

FIG. 13. Noise spectra at di8'erent chemical
potentials: When p, is below or above the gap,
(a) and (c), only states in the range !k!)kr
contribute to the noise. The noise spectrum
has a cusp. When p is inside the gap, all states
contribute to the current. The noise spectrum
has a square root singularity.

Ek 4(o
F

the noise spectrum of the Hall voltage, which is simply
(fiie ) SH(co). Even though the junctions in Figs. 5 and 3
are not the same, the physics of oscillatory tunneling are
identical in both cases. The noise spectrum of the tunnel-
ing current in Fig. 5 should have a divergence as any self
oscillating system does, which should show up in the
noise spectrum of the Hall voltage.

VI. INTERACTIONS BETWEEN EDGE STATES
ON DIFFERENT SIDES OF THE BARRIER

the important condition Eq. (1) is generally satisfied and
that the tunneling phenomenon discussed here should be
observable for temperatures around 1 K.

In Table I, we have taken m =0.067m„where m, is
the mass of the electron. The barrier height has been tak-
en as 1 eV. The tunneling gap 50 is calculated by the
quasiclassical method, and is given by

fiQ iiie f-' Iield~Ao= e —a

So far, we have ignored interactions between edge
states on different sides of the barrier. When these in-
teractions are included, the effective Hamiltonian Eq.
(23) becomes

H=HQ+HT+H;„„&;„,=& 'y U(q)pL(q)pp( —q),
q

(56)
where

where 2m/0 is a period of the classical trajectory,
0=(—', )r0, . The momentum !p! is p=+2m(Vo E)—
=+2m Vo since E—iriro, and Vo))E. The dephasing
times labeled "linear" and "quadratic" refer to the cases
in Sec. VII where the range of [k ] states covers the linear
and quadratic part of the spectrum (Fig. 12). We see

PL(R)(q ) XK k+,L(R) k, L(R),
L/2

U(q)= e 's"(4a +y )
'~

dy,—L/2

TABLE I. Parameters in Sec. IV.

B=10 T
L=1 cm

and e is a dielectric constant. Equation (56) is precisely
the massive Thirring model and its spectrum can be
solved exactly by the Bethe ansatz. It is known from the
exact solution that there is always a gap in the spectrum
for all U. Since the singularities in the noise spectrum
and the minimum frequency of the oscillatory tunneling
current are due to the existence of the tunneling gap, we
expect that these features wi11 persist in the presence of
interaction effects.

VII. ESTIMATES OF THE KEY PARAMETERS

Numerical estimates for the parameters in Sec. IV are
given in Table I. We shall see from these estimates that

co, (sec ')
{eV)
(K)
It (A)
~o {eV)
5o (K)
5o/Am,
~T (sec)
AVf 277

5o L
linear r~s~' (sec)
quadratic rg'

2a=100 A

2.6x10"
1.7x 10-'

200
81

1.2x 10-'
1.4

7.1x 10-'
3.3 X 10

7.1x 10-'

4.7x 10-'
1.3 x 10

2a=60 A

2.6x10"
1.7x10-'

200
81

6.6x10-'
7.6

3.8x10-'
6.3x 10-"

1.3 X 10'

4.7x 10-'
7.1 x 10
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froin Table I that Eq. {1) can be satisfied when
v;„»10" sec. This can be easily achieved since typical
values of ~;„in the bulk semiconductor at high magnetic
field is already about 10 —10 sec around 1 K, and is
expected to be even longer for electron gas in heterojunc-
tions since the density of electron is reduced. Further-
more, since the tunneling gap is of the order of 1.4 K and
larger for the parameters we use, the oscillatory tunneling
should be observable for temperature around 1 K.
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