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The optical conductivity, o'(u), of the two-dimensional one-band Hubbard model is calculated
at finite temperature using exact diagonalization techniques on finite clusters. The in-plane dc
resistivity, p b, is also evaluated. We find that at large U/t and temperature T, p & is approximately
linear with temperature. We also observed that o'(u) displays charge excitations, a midinfrared

(MIR) band, and a Drude peak. The combination of the Drude peak and the MIR oscillator strengths
leads to a conductivity that decays slower than I/u at energies smaller than the insulator gap near
half filling.

Experimentally, it has been observed that the in-plane
dc resistivity p p of the hole-doped high-temperature su-
perconductors is linear with temperature when the hole-

doping fraction is optimal, i.e., when the critical temper-
ature (T,) is maximum. This simple phenomenological
law is still one of the most puzzling features of the normal
state of the cuprates. A possible explanation of this be-
havior using the Bloch-Griineisen formula (which is based
on electron-phonon scattering) seems unlikely, 2 and thus
mechanisms based on scattering by spin fluctuations have
been proposed. The ac conductivity, o(ur), also presents
interesting features. A midinfrared band (MIR) has been
observed inside the charge-transfer gap of the insulating
parent compound. s In addition, at small frequency (rela-
tive to the gap) o(ur) decays as I/u, instead of the more
standard Drude behavior I/u2. This effect can be phe-
nomenologically described by an energy-dependent life-
time 7 (&u) u i. Several theoretical mechanisms have
been proposed to explain these features. Most are based
on simple mean-field solutions of electronic Hubbard or
t-J-like models, but the validity of these approximate de-
scriptions is unclear. An alternative approach involves di-
rect numerical analysis of these models. Recently, there
has been considerable progress in this approach and sev-
eral studies of o(u) on finite clusters using exact diag-
onalization techniques (at zero temperature) have been
reported and compared to analytical approaches. The
presence of the MIR band has been explained as due to
the considerable spectral weight located in the incoher-
ent part of the hole spectral function, and the anomalous
I/ur decay was attributed to a combination of oscillator
strength between the MIR band and the zero &equency
Drude peak at zero frequency in the metallic regime.

In this paper we report a numerical study of the two-
dimensional (2D) one-band Hubbard model at finite
temperature using the exact diagonalization approach on
small clusters. Little work has been carried out previ-
ously at nonzero temperature using this technique, since

the full set of eigenvalues and eigenvectors of the finite
cluster is needed to determine thermal properties. This
substantially increases the memory and CPU require-
ments relative to zero-temperature properties. Here we

evaluate both o(~) and p s and attempt a rough com-

parison of our results with experiments. The calculation
of transport properties of a weakly dissipative system in

the context of many-body problems generally follows the
Kubo formulation, which relates the conductivity to a
current-current correlation function. This approach has
been widely used in the context of Hubbard-like models
to describe strongly correlated systems. The real part of
the conductivity at finite temperature is given by

1 —e-L'
o(u)) =7r ) e ~ "[(n~j )m)~'

YL )m

xb((a+ E„—E ),

where ~n) is an eigenstate of the Hubbard Hamiltonian
with eigenvalue E„,Z is the partition function, P the
inverse of the temperature, and j the current operator
in the z direction. The rest of the notation is standard,
and details can be found in textbooks.

The diagonalization of the Hubbard model was car-
ried out on small square clusters. In each subspace cor-
responding to a given set of quantum numbers (momen-
tum, z component of the total spin and parity under spin
reversal) we computed all the eigenvalues and eigenvec-
tors in two steps. First, the matrix was reduced to a
tridiagonal form using the Householder algorithm. We
then diagonalized the resulting matrix using a standard
Qi algorithm. Since in general we have to deal with
complex hermitian matrices, we developed hermitian ver-

sions of the subroutines TRED2 and TALI of the Numerical
Recipes package. In principle, the total operation count
for both subroutines scales as N~, where NH is the
dimension of the matrix to be diagonalized. However,
since the innermost loops could be vectorized, we found
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that the coefficient of the NH was four orders of magni-
tude smaller than the coefficient of N&~ term on a Cray
YMP. The total CPU time required to diagonalize the
largest matrix with NH = 540 was approximately 23 sec
on a Cray YMP supercomputer and the total memory
required for the diagonalization of a N~ x NH xnatrix
was 2 x NH + 4 x N~ words. Both CPU time and mem-
ory requirements compare well with similar subroutines
in other packages such as IMSL or NAG. The calculation
of 0 (u) itself was considerably more CPU time consum-
ing than the diagonalization procedure. According to Eq.
(1), the total operation count in a subspace of dimension
NH and for a fixed temperature scales as N~4. However,
in the calculation of the matrix (n~j ~m) one can take
advantage of its sparse nature, thus efFectively reducing
the dependence from N&4 to N&~. Moreover, a set of mea-
surements at difFerent temperatures could be done with
almost the same CPU time as a single temperature by
appropriately rearranging the loops and vectorizing the
innermost one.

Although the technique applied here works equally well
for the Hubbard and t Jmod-els, we' have concentrated
only on the Hubbard model, which possesses excitations
across the gap that are important for comparison of 0 (w)
with experiments. These calculations were carried out
on small square clusters of eight and ten sites, similar
to those used previously in the study of the Heisen-
berg model and other systems. is 4 On finite systems it
is important to choose the boundary conditions to ap-
propriately minimize finite-size effects. In the present
study we decided to use antiperiodic boundary condi-
tions (APBC's). i In the eight-site cluster with APBC
the noninteracting limit U/t = 0 has four levels with en-

ergy —2t, and another four levels with energy +2t. In
the half-filled case, and with U/t & 0, two bands exist
separated by a gap, which grows as U/t increases. This
behavior is also expected for the Hubbard model in the
bulk limit. When holes are introduced, they are energeti-
cally favored to appear in the lower band. In contrast, the
same cluster with periodic boundary conditions (PBC's)
contains six levels of zero energy at U/t = 0, one state
with energy 2t and another—with energy +2t. The large
zero-energy degeneracy appears to produce large finite-
size artifacts in the PBC case at finite coupling, and for
this reason APBC's will be used in this paper.

The application of Eq. (1) to Hubbard-like models
involves some complications. One problem is that an
isolated, finite system, such as the clusters analyzed in
any computational study, cannot show resistive behav-
ior. Thus, the resistivity of a metallic ground state at
zero temperature must vanish, since a Drude-like weight
Db(w) appears at zero frequency in the conductivity. In
fact, Eq. (1) implies that a b function is always present at
zero frequency if any eigenstate of the Hamiltonian sat-
isfies ((n(j (m)( g 0 with E„=E . Therefore, electron-
electron interactions (Umklapp processes) are not suf-
ficient to produce dissipation, and the dc resistivity of
the Hubbard model is zero at all temperatures. On
finite systems with twisted BC's the calculation of the
Drude weight is carried out indirectly, using the two-
dimensional sum rule
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FIG. 1. The inverse of the Drude weight, D, obtained
numerically on an eight-site cluster with APBC, as a function
of temperature (D and T in units of the hopping parameter
t) The .results are shown for couplings ranging from strong
(U/t = 20) to weak coupling (U/t = 4). The filling fraction
is shown in the 6gure.

OO xe
d(uo(~) = (—T),
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where (T) is the thermal average of the kinetic energy op-
erator. Assuming the existence of a contribution Db(~)
at zero energy, we obtain

D (—T)
2me2 4N

OO

kuo ((u),xe

where both terms on the right-hand side (rhs) of Eq. (3)
can be calculated numerically. Following this procedure,
the inverse of the Drude weight D is plotted in Fig. 1
as a function of temperature for several couplings U/t,
and at a filling of six electrons on the eight-site cluster

((n) = 0.75). D is proportional to the dc resistiv-
ity, once a finite width is given to b(td) to mimic dissi-
pative processes not included in the Hamiltonian. It is
interesting to note that for T & t and strong coupling,
D i is approximately linear with temperature. This is
in agreement with the predictions of Rice and Zhangis
for the large U/t limit. On reducing the Hubbard cou-
pling U/t, we find that D acquires curvature in T, and
in the weak coupling region D i Tz This behav. -
ior is consistent with the quadratic temperature depen-
dence of the resistivity expected for a Ferxni liquid. Now
we will consider how our results can be compared with
experiment, at least at a qualitative level. First, note
that for t = 0.4 eV a temperature of 1t corresponds to ap-
proxixnately 4600 K, which is much higher than the max-
imum experimental temperature for p ~ of —800 K and
higher than the melting temperature of the cuprates. In
principle we should reduce the temperature in our cluster
calculations for this comparison. Unfortunately, at ex-
perixnentally relevant texnperatures the finite-size effects
on the cluster are greatly increased, so that erratic behav-
ior of the Drude weight as a function of (n) and U/t is ob-
served. We estimate that for temperatures sxnaller than
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t/4 1200 K our finite-cluster results are not represen-
tative of the bulk limit (this same limiting temperature
of t/4 is suffered by quantum Monte Carlo techniques
at 6nite hole density and by high-temperature expansion
series. For details see Ref. 4). It is thus more convenient
to extrapolate the experimental results to higher tem-
peratures, since the slope dp s/dT is accurately known
experimentally. The physics leading to melting of the
cuprates is unrelated to the electronic behavior in the
Cu02 planes we want to explore, and thus this assump-
tion is reasonable. We believe that in the absence of the
processes that lead to melting, p s would continue being
linear even at temperatures as high as t/4.

The slopes dp s/dT (at the optimal doping concen-
tration) are very similar among the difFerent cuprates,
and range from dp s/dT 1 @Oem / K for Bi2Sr2CuOs
(Bi2201) to dp s/dT 0.5 @Oem / K for YBa2Cu307
(Y123) with a T of 90 K. The extrapolated experimental
results are shown in Fig. 2 (dotted lines). The theoret-
ical predictions obtained from the present cluster calcu-
lations are also shown in this figure (open squares and
triangles), and were obtained by plotting D i times a
parameter with units of @Oem, which sets the relative
scale between our calculations and experiment. (Physi-
cally this parameter contains information about scatter-
ing processes not incorporated in the Hubbard model, so
the overall normalization of our predictions is not deter-
mined and has been taken from experiment. To simplify
the calculation we have assumed that this parameter is
temperature independent. ) Given this freedom to fix the
overall normalization, a reasonable agreement is observed
between theoretical predictions and extrapolated experi-
mental results for p g over the range of temperatures for
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FIG. 2. The dc in-plane resistivity p z as a function of
temperature. The dotted lines correspond to experimental
results for Bi2201 and Y123, extrapolated to high tempera-
tures comparable to the hopping parameter [t is taken to be
0.4 eV ( 4600 K)]. The squares aud triangles are numeri-
cal results obtained on the eight-site cluster with APBC for
U/t = 20 aud Slliug fraction (n) = 0.75. D was multiplied
by a constant with units of inverse time to set the scale. The
value of this constant was chosen independently for the two
compounds. p q in units of @Oem.

which we consider the cluster results reliable. This en-
couraging result suggests that the simple one-band Hub-
bard model may describe some normal-state properties
of the cuprates. There is a slight upward curvature in
the results, which is not surprising, since the experimen-
tally measured p s is linear with temperature only at one
particular density. i4 The filling fraction we have used,

(n) = 0.75, may correspond to the slightly "overdoped"
regime of the cuprates.

Now let us analyze the ac conductivity. To allow a
comparison with experiment we follow Imryis and give
each b function of Eq. (1) a finite width, to account
for scattering through other processes not included in
the model, such as phonons and disorder. This width
~ should be larger than the mean interlevel spacing in
order to mimic a continuum of states. e i can be con-
sidered to be a phenomenological relaxation time intro-
duced to account for dissipative processes not included
in the Hamiltonian (whose temperature dependence will

be neglected in this first exploratory analysis). e is a
free parameter in our study (in addition to the electronic
density (n) and the coupling U/t of the Hubbard model)
and we adopt e = 0.33 for the following discussion. In
Fig. 3, 0 (ur) is shown for the eight-site cluster at several
densities and couplings. The Drude peaks at zero &e-

quency are incorporated in the plots. Figure 3(a) shows
the result for a temperature comparable to the antifer-
romagnetic exchange coupling J (T = 0.3125t), and for
illustration we use U/t = 20 to enlarge the gap in the
results. At half filling (eight electrons), most of the spec-
tral weight is located at u ) 5 (in t units), in other words
these are charge excitations, as expected. As the density

(n) is decreased, spectral weight is transferred from the
high-f'requency charge excitations to lower frequencies. A
Drude peak is formed, and considerable weight appears
within the insulating gap. (Tbis may be associated with
the MIR band observed in the cuprates as has been dis-
cussed extensively in the literature. 4) Figure 3(b) shows
the same cluster at T = 1.25t and coupling U/t = 8,
which may be more representative of the cuprates. 4 Qual-
itatively, the behavior is similar to that found at lower

temperatures and larger couplings, albeit with a smaller

gap. Little substructure is observed in the spectrum.
These results appear quite similar to the experimental
observations of Uchida et aL on La2 „Sr„Cu04(La214).
Results for other high-T, cuprates are very similar. Even
the appearance of what Uchida ef al. called an "isos-
bestic" point (a point where conductivities for different
densities cross) is reproduced in this figure. Finally, in
the very-high-temperature regime [T = 5t in Fig. 3(c)],
the gap is completely 61led at all d.ensities, although a
remnant of the upper Hubbard band can still be seen.
The MIR band and Drude peak have merged into a sin-

gle structure. In Fig. 3(d), we show 0(u) in the re-
gion 1 & u & 5 for U/t = 8 and T = 1.25t. For the
case of (n) = 0.5, 0 (~) can be accurately described by
a 1/u2 law, as expected for a conventional Fermi liquid.
In contrast, for (n) = 0.75, o (~) has a much slower de-

cay with u and can be fitted by the form (1/ur ), with
o. = 1.3 6 0.2. Both forms are included in this 6gure
for comparison. As can be seen in Fig. 3(b) for seven
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FIG. 3. (a) The real part of the optical
conductivity as a function of &equency at
different densities, for U/t = 20, e = 0.33,
and T = 0.3125t; (b) as in (a) for U/t = 8
and T = 1.25t; (c) as in (b) for T = 5t; (d)
o(u) at U/t = 8 and T = 1.25t in the in-
terval 1 & u & 5, together with fits to 1/u
((n) = 0.5) and 1/(u" ((n} = 0.25), indi-
cated by dotted lines. o(u) in arbitrary units,
~ in units of the hopping parameter t.
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electrons ((n) = 0.875), o(ur) has an even slower decay
with ~ for ~ less than = 3. This anomalous frequency
dependency of the conductivity has also been observed
experimentally in La214.s Moreover, a close correlation
between the temperature dependence of p g and the &e-
quency dependence of the scattering rate I/7 (u) (seen in
the frequency dependence of the conductivity) was ob-
served; I/v(u) ui s behavior in an overdoped sample
of La214 was recently reported, which is quite reminis-
cent of our power-law fi.t.

In s»mmary, we have reported a numerical exact-
diagonalization calculation of the optical conductivity
of the two-dimensional one-band Hubbard model. The
dc resistivity shows linear behavior in T for T & t and
large U/t, which presumably is also valid in the lower-
temperature range J & T & t. The ac conductivity was
also calculated, and we have presented results at sev-
eral temperatures. A MIR band is observed, together

with a Drude peak and charge excitations. The combi-
nation of the Drude and MIR oscillator strengths leads
to a conductivity near half filling that decays somewhat
more slowly than I/ur at2energies smaller than the insu-
lator gap.

Recently, we learned of an independent study by Jaklic
and Prelovsekir of the 2D t Jmodel a-t finite tempera-
ture using a difFerent n»clerical method. Their results
are qualitatively similar to our results for the Hubbard
model.
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