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We have solved the problem of dynamical localization in a one-dimensional system with an impurity
under the action of a dc field along the single-band tight-binding model. By fixing the impurity potential,
we show that characteristic field values can make two on-site energies coincide, enhancing in this way
the hopping of carriers between the two sites. The distance between the degenerate sites decreases with
increasing field intensity. So for high-field values the sites can be nearest neighbors producing strong os-
cillations. On the other hand, for weak-field values the two degenerate sites are far apart from each oth-
er and, as a result, there is an almost complete localization at the impurity site. We propose a model
which allows us to determine the impurity level in a superlattice.

INTRODUCTION

In this work we have solved the dynamical localization
problem of diffusion of a carrier in a linear chain with a
point impurity under the action of a dc electric field. The
particle is initially in a well-localized state at the impurity
site. We evaluate the time evolution of the probability
propagator on each lattice site and the mean-square dis-
placement.

The application of a dc electric field on a particle sub-
ject to a periodic potential would cause the appearance of
an oscillatory movement of the particle, which can be
well understood in a semiclassical picture that gives the
time evolution of the quasimomentum. According to this
simple approach, every time the zone boundary is
reached there is an umklapp process that reverts the
motion, i.e., we have Bloch oscillations of period
T=1%G /eE, where G is a reciprocal-lattice vector.

Bloch oscillations! in the time domain are the counter-
part of the Wannier-Stark ladder? in the energy (frequen-
cy) domain. But their detection in bulk samples is almost
impossible, due to the fact that in bulk the time scatter-
ing of a wave packet is much shorter than the Bloch
period of oscillation. This situation was overcome with
the use of superlattices (SL’s), which have long periods
that make possible the application of not so strong fields,
a prediction made by Esaki and Tsu.> These authors pro-
posed the use of SL’s to generate a source of electromag-
netic radiation in the terahertz range. Mendez and Bas-
tard* have recently written an interesting paper regarding
this phenomenon of Bloch oscillations and Wannier-
Stark ladders.

The superposition of the electric field (responsible for
Bloch oscillations) and the presence of an impurity at a
site in an otherwise perfect crystal gives place, as we shall
show below, to different regimes depending on the magni-
tude of the characteristic quantities in the problem.

We will consider the treatment of this problem for the
case of SL’s that can be considered as one-dimensional
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(1D) systems. It is of great interest to investigate the way
a particle diffuses in such a system when acted upon by
an electric field E applied along its grown axis and inject-
ed at an impurity site. It is well known that in a perfect
lattice and in the field-free case an initially localized state
will diffuse through the lattice according to the following
law for the propagator:

P,(t;E=0)=|j,2Vt/A)|*, m
and for the mean-square displacement one gets
(nBZE=0)=2Vt/B)?, )

where n is the lattice site, J,, is the Bessel function of or-
der n, and 2V is the half-bandwidth.

When a dc field is applied to the perfect crystal, the ini-
tially localized carrier will continue to be close to the
starting point in the lattice.®”!! In this case the relevant
results are

P,(t)={J,[(4V /eEa)sin(eEat /#)]}? , 3)
(n%)=[8V?/(eEa)*]sin’(eEat /24) , )

so that, in the perfect crystal, we recover the Bloch pre-
diction, i.e., the particle performs an oscillatory motion
with the characteristic frequency o, =eEa /#. Such os-
cillations should result in emission of electromagnetic ra-
diation in the terahertz range for superlattices with
periods of order a =100 A and electric fields as high as
10° V/cm. Such radiation emission was detected in a
series of experimental works recently done.'? ™14

THE MODEL AND THE MATHEMATICAL
PROCEDURE

In this work we focus on the problem of the influence
of an impurity of strength g, at the origin in an otherwise
perfect 1D crystal. We have solved the time-dependent
Schrddinger equation along the tight-binding single-band
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FIG. 1. We show the propagator probability as a function of time and lattice site for the following values: electric field intensity
E=5.0X10* V/cm and impurity energy £,= —0.05 eV. We also show the mean-square displacement as a function of time. We can
see clearly a strong oscillation between impurity site and its first neighbor to the left [see Eq. (10)].
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FIG. 2. The same as Fig. 1 for E=5.0X10* V/cm and ;= —0.10 V.
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model, where we have the following set of differential
equations for the Wannier propagator amplitudes:

sy =V 1+ Sy )= Cafbpo—eEanf, ,  (9)
with the initial condition

Sa(0)=6,, . (6)

For the case of a finite lattice of size N, the

Schrodinger equation (5) written in matrix form is the fol-
lowing:

9
ii—f=Mf ,
"

where M is the N X N dynamical matrix and the vector f
is formed from the on-site amplitudes. The solution of
the Schrodinger equation (7) can be written in the form

f(t)=exp(—iMt /#)f(0) .

0l

(8)

with the initial condition of Eq. (6).
Since M is time independent, we can write the solution
in the following form:

f(¢)=R'exp(—iDt /A)RF(0) , 9)
where D is diagonal form of the dynamical matrix
M=RDR . (10)
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We have diagonalized the dynamical matrix [Eq. (10)]
through a numerical procedure.

Once we have solved for the amplitude f,(z), we can
evaluate the mean-square displacement

(n)=3 Iful’n?,

n

(11

which allows us to have a clear view of the localization
problem.

This approach to the study of diffusion of an initially
localized state follows along the lines presented by Ander-
son,® namely, we can conclude that diffusion has oc-
curred if at #— c the Wannier amplitude on the given
site goes to zero. If, on the contrary, the amplitude at the
site remains finite while decreasing rapidly with distance,
we say we have a localized state. The difference between
unity and this finite value is a measure of the spreading of
the wave packet to the neighboring sites.

DISCUSSION OF THE RESULTS

We have considered a lattice of different sizes in order
to analyze the influence of the boundary. First, we would
like to point out that even very weak fields can almost
completely eliminate boundary effects. That is so because
the effect of the field is to produce oscillations around the
starting point, so that the carrier never gets a chance to
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FIG. 3. The same as Fig. 1 for E=5.0X10* V/cm and £,—0.15

eV. We notice the small amplitude for site 3, which becomes de-

generate with the impurity and see that the maximum in {n?) coincides with the maximum of P;(r).
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reach the sample boundaries. The stronger the field is,
the more pronounced the localization becomes.

In order to study the influence of the size of the lattice
on the solutions of Eq. (7), we have started with 121 sites
and then we have reduced the size up to 41 sites. We
could not notice any difference in the solutions as long as
the field intensity was not less than 10° V/cm.

In the case of superposition of field plus impurity po-
tential, we can distinguish different regimes. In order to
be more specific, we have chosen a lattice parameter
a=100 A such that, for fields of the order 10° V/cm, the
Bloch frequency comes to the terahertz regime. The total
miniband width 4V was taken to be 50 meV, and we have
normalized the characteristic energies in units of this
bandwidth, which are of the order of those quoted in the
work by Mendez, Agull6-Rueda, and Hong.!

Since the relevant quantities are the impurity potential
and the field intensity we would like to discuss the nature
of our solutions for (a) a given value of the field intensity
while varying the impurity potential and (b) fixing the im-
purity potential and considering different values of the
field.

Before presenting the results, we would like to antici-
pate them by stating that when the impurity potential g,
is such that it coincides with the on-site energy due to the
field on a particular site n, i.e.,

eEan =g, , (12)
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the packet oscillates resonantly between the impurity site
and the particular site n. When n is close to the impuri-
ty, we have a strong oscillation between both sites in the
lattice.

A. Fixed field intensity E =5.0X 10* V/cm

For this fixed value of the field intensity, we have con-
sidered different values of the impurity potential. By
varying €, different n values will satisfy Eq. (12). So, for
n=1 (eEa =¢;), we have strong oscillations taking place
between the impurity site and the first neighbor to the
left, as we can see clearly in Fig. 1. This is a quasiperiod-
ic movement of short quasiperiod, as can also be inferred
from the mean-square displacement, show in this figure.
For an impurity potential such that n =2 in Eq. (12), we
can see a similar trend for the particle oscillating between
site O and 2, but with decreasing amplitude at this latter
site (see Fig. 2). For a deeper impurity [n =3 in Eq. (12)],
the amplitude at the impurity is much bigger than at site
3 (see Fig. 3).

For still deeper impurities, the resonance occurs be-
tween the origin and a very distant site, which results in a
big probability of localization at the origin showing very
small values for the propagator for this distant site.

On the other hand, when the impurity is such that we
are far from resonance, the particle performs repeated
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FIG. 4. The same as Fig. 1 for E=5.0X10* V/cm and g,= —0.075 eV. By looking at the mean-square displacement we can see
the presence of several periods since in this case we are far from resonance.
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visits to the origin while making virtual transitions to
neighboring sites (see Fig. 4).

B. Fixed impurity potential

Now, we analyze the effect of varying the field intensity
for the following values of the impurity potential:
gg=—0.1 and —0.5 eV. We can distinguish between
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FIG. 5. (a) We show the propagators for sites 0 and 1 for the
case £=—0.1 eV and E=1.0X10° V/cm. Notice that both
sites are in resonance. (b) We show the propagators for sites 0
and 2 for the case £,=—0.1¢eV and E=5.0X10* V/cm. Notice
that in this case the resonance occurs between impurity and site
2. (c) The same as (a) for ,=—0.1 eV and E=7.5X10* V/cm.
We notice that the hopping is inhibited since most of the time

the particle is at the origin.
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three different regimes: (i) resonance between nearest-
neighbor sites in the lattice which correspond to strong
fields, (ii) resonance between distant sites in the lattice,
which correspond to weak fields, and (iii) field and impur-
ity are such that we are far from resonance.

In Figs. 5(a)-5(c) we show the propagators for
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FIG. 6. (a) We show the propagators for sites 0 and 1 for a
deeper impurity ,=—0.5 eV and E=5.0X10° V/cm [n=1 in
Eq. (10)]. A periodic oscillation between these two sites can be
seen clearly with the period T=27#/2V. (b) We show the
propagators for sites 0 and 2 for ¢,=—0.5 eV and E=2.5X10°
V/cm [n=2 in Eq. (10)]. We see an oscillation taking place be-
tween these two sites with a longer period than in (a). (c) The
same as (a) for £,=—0.5 eV and E=3.75X10° V/cm. In this
case we are far from resonance. Again the hopping is inhibited
and the particle remains almost completely localized at the im-
purity.
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go=—0.1 eV and three values of the field, which corre-
spond to the three regimes. We can clearly classify the
regimes by the different periods. In fact, in the low-field
case we have a large period [Fig. 5(b)], while for strong
fields we have strong oscillations taking place with a
short period [Fig. 5(a)]. On the other hand, far from res-
onance [Fig. 5(c)], we see strong oscillation and almost lo-
calized in site 0 with virtual transitions to the nearest
neighbor.

In Figs. 6(a)-6(c), we show the propagators for
go=—0.5 eV and three values of the field, which corre-
spond to the three regimes. it is interesting to compare
these results with the ones shown in Fig. 5(a)-5(c). In
this case of a deeper impurity, we have to go to stronger
fields in order to get the resonance between nearest-
neighbor sites [Fig. 6(a)] and next-nearest-neighbor sites
[Fig. 6(b)]. When far from resonance [Fig. 6(c)] the hop-
ping is strongly inhibited even to the first neighbor.

We can see a very interesting behavior for the case of
resonance between the impurity and first-site neighbor,
namely, that independently of the particular values of the
field and the impurity as long as they fulfill the relation
eEa =¢, , the quasiperiod is 27 (in units of #/2V). This
kind of universality can be understood from the equations
of motion (5). In fact, by neglecting the amplitudes other
than f, and f (this is a good approximation for strong
fields), we have a pair of equations that couples these am-
plitudes. In this case, the solution is strictly periodic
with a period, which is always 27%/2V.

This would indicate a very interesting application to
SI’s, since by varying the field we can satisfy the reso-
nance condition of Eq. (12) for different lattice sites,
which in turn give a different response from the sample.
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For strong fields, we can reach the situation of an oscilla-
tion between two neighboring sites in the lattice, which
would indicate that the impurity potential should be pre-
cisely ey=eEa.

CONCLUSIONS

We would like to conclude by stating that the effect of
the field is to remove the degeneracy between the on-site
levels, inhibiting the hopping effects. The presence of the
impurity, on the other hand, brings the possibility that
two on-site energies are nearly degenerate, thus enhanc-
ing hopping. However, if the sites are far from each oth-
er the tunneling through the lattice is damped severely
(low-field case). When the two levels correspond to
nearest neighbors in the lattice, the particle oscillates
back and forth between the sites (strong-field case),
resembling very closely the situation encountered in the
case of a double-well potential, as was reported in the ex-
periments done by Roskos et al. !’

For a long time it was thought that Bloch oscillations,
because of their large period, were almost impossible to
detect, but Waschke et al.!'* showed conclusively that the
particles perform a number of complete oscillations. Ob-
viously the experiment should be done at low tempera-
tures so that phonon-scattering processes do not mask
the effect.
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FIG. 1. We show the propagator probability as a function of time and lattice site for the following values: electric field intensity
E=5.0%X10* V/cm and impurity energy g,= —0.05 ¢V. We also show the mean-square displacement as a function of time. We can
see clearly a strong oscillation between impurity site and its first neighbor to the left [see Eq. (10)].
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FIG. 2. The same as Fig. 1 for E=5.0X10* V/cm and g,=—0.10 eV.
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FIG. 3. The same as Fig. 1 for E=5.0X10* V/cm and g,—0.15 eV. We notice the small amplitude for site 3, which becomes de-
generate with the impurity and see that the maximum in {n?) coincides with the maximum of P;(z).
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FIG. 4. The same as Fig. 1 for E=5.0X10* V/cm and ;= —0.075 eV. By looking at the mean-square displacement we can see
the presence of several periods since in this case we are far from resonance.



