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Spectrum and binding of an ofF-center donor in a spherical quantum dot
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The energy levels and binding energies of an off-center donor in a GaAs-Ga& „Al„As spherical quan-

tum dot are calculated by a linear variational method. The results clearly show the quantum size effect.
The location effects of a donor ion on splitting, level ordering, and binding of the donor states are stud-

ied. It is found that the alteration of the position of a single Coulomb center can largely change the
single-electron spectrum in a quantum dot with a larger radius.

I. INTRODUCTION

Stimulated by interest in physics and technological ap-
plications of low-dimensional quantum structures, calcu-
lations have been performed for electron states and relat-
ed problems in two-dimensional quantum wells (2D
QW's), one-dimensional quantum-well wires (QWW's),
and quantum dots (QD's). ' ' Understanding the impur-
ity states in the confined systems is an important problem
in semiconductor physics. The impurity states in 2D
QW's and superlattices have been calculated by a number
of authors, ' ' and several calculations ' havebeenper-
formed for electron and impurity levels of QWW's. Re-
cently, the electronic structure of the quantum dot, espe-
cially the donor states, acceptor states, and excitons, has
received much attention.

The exact solutions of hydrogenic donors located at
the centers of spherical quantum dots (SQD's) have been
obtained earlier by us. ' However, the impurities could
be located anywhere in the SQD's, and the ground-state
level and the level ordering will change as the location
shifts to the edge or out of the SQD's as mentioned in
Ref. 9. Very recently, several authors have calculated the
ground energies of the donors at a distance D from the
centers in SQD's with an infinite barrier. At the same
time, a general variational method with the use of basis
functions not satisfying the boundary condition has been
developed. ' An improved approach has also been dis-
cussed in a recent paper. '

To our knowledge, there have been no calculated re-
sults about the excited states of off-center donors in QD's.
It should be interesting, therefore, to extend our early
work to a systematic investigation of the positional
dependence of ground and excited donor states in SQD's
with a finite barrier height and, then, to show the cou-
pling and competition effect of Coulomb potential with
confinement one and the location effect on level ordering
and binding energies. In addition, the ground states ob-
tained can be compared with others' ' and the barrier-
height effect on the quantum levels can be studied.

In Sec. II of this paper, the Hamiltonian and the calcu-
lation method are presented. The energy-level structure
and binding energies are shown and discussed in Sec. III
and Sec. IU, followed by a summary in Sec. U.

II. HAMILTONIAN AND CALCULATION METHOD

(2)

where Vo is the barrier height and can be obtained from a
fixed ratio Q =0.7 of the band-gap discontinuity
hE =1.247x eV between GaAs and Ga, „Al„As (Ref.
16) and, then, V0=0.8729x eV. In this paper, the
effective atomic units are used so that all energies are
measured in units of the effective Rydberg % and all dis-
tances are measured in units of efFective Bohr radius a'.
The % and a' can be determined by rn*e /2' e and
Efi /m e, where m* and e are, respectively, the elec-
tronic effective mass and the dielectric constant of GaAs
material and equal to 0.067m, and 13.18.' Then, the %
and a* are equal to 5.2 meV and 104 A, respectively. %e
should point out that the effective-mass difference be-
tween GaAs and Ga& Al As materials, and the polar-
ization and image charge effects have been ignored. The
Schrodinger-like equation is expressed as

H%'(r, 8, tp)=EWr, 8, tp) . (3)

For the symmetry, the eigenstates of H can be labeled by

Within the framework of an efFective-mass approxima-
tion, the Hamiltonian of a hydrogenic donor in a GaAs-
Ga& „Al„As spherical quantum dot can be written as

H= —V— 2 + V(r),
/r —Df

where the donor ion is located a distance D along the z
axis from the center of the sphere. The potential V(r) is
taken to be spherically symmetric in the present work
and has the form as follows:
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H =H0+H',

with

(4)

magnetic (m) quantum numbers. Because the radius and
angle variables do not separate, Eq. (3) cannot be solved
exactly. Therefore, approximation methods should be
used.

The Hamiltonian can be rewritten as

V%' /m * are, respectively, continuous at r =R0.
According to the variational principle, it is straightfor-

ward to obtain the equation

f
[H —(E E—)5;.]c =0, i =1,2, . . . ,f,

j=l
with

and

H = —V — +V(r)2w
0

T The condition that this set of equations has nonzero solu-
tion leads to the secular equation of finite degree f,

2W

r
(6)

where w can be taken as a variational parameter for a
better calculation. In the present work, w is equal to 1

and 0 for the calculation of quantum levels of a donor in-
side and outside the spherical quantum dot, respectively.
Let us consider a linear variational function of the form

IIH —B Ii
=0, (10)

where matrix elements of H' are H of Eq. (9) and B is a
diagonal matrix, i.e.,

In order to calculate H,', of Eq. (9), tt, is written in the
form

f=g c;11;, g;(«, H, q)=R„ i (r}Yi ~ (O, y), (12)

where 11|, is the ith exact normorthogonal eigenstate of
Ho with eigenenergy E;, which can be obtained exactly.
The principal, orbital, and magnetic quantum numbers of
f; are n;, 1, , and m, , respectively. In the problem con-
sidered, the summation in Eq. (7) includes only the terms
with a fixed magnetic quantum number m, i.e.,
m1 =m z

= =m& =m. In addition, it is interesting to
point out that g; and VP;/m ' (Ref. 9) and, then, 4 and

where YI (O, y) and R„ I (r) are the spherical harmonic
l i l

and radial wave function, respectively. Using the relation

p

(13)
E r) l 0 p'

where r( =min(r, r'), r) =max(r, r'}, and 8 is the angle
between r and r', a form of H, , which is useful for the
numerical calculation, is given by

l,.+ l. 1, 1 1 I; I, 1

H& =2w f R„ I R„ I r dr 5t t
—2 g ( —1) [(21;+1)(21+1)]'i

I=ll l Il j

, f R„,R„,«'+'dr+D'f R„ I R„. . .d» (14)

(See the Appendix. ) Then the energy levels are obtained
by solving Eq. (10) numerically. For central donors in
SQD's, i.e., D =0, the Hamiltonian H of Eq. (1) becomes
Ho of Eq. (5) with w =1. As mentioned above, the exact
solutions can be obtained. The quantum levels are depen-
dent on the principal and orbital quantum numbers n and
I, and degenerate with respect to the magnetic quantum
number m, so that the levels are denoted by E„I(w =1).
We have ls, 2p, 3d, 2s, 4f levels states, and so on, if the
usual notation of 1, i.e., s,p, d,f, . . . and the principal
quantum number n are used for the level notation. For
DAO, the degeneracy of E„&(w=1) is partially removed.
The quantum levels obtained by solving Eq. (10) can be
denoted by E„l even though l is not a good quantum
number. E„l is degenerate with respect to m and —m,
and E„l0 is nondegenerate.

Compared with the binding energy of a donor center in
a three-, two-, or one-dimensional system, the binding en-

where E„i(w=0) is the energy level as there is no
Coulomb potential in the Hamiltonian of Eq. (1), i.e.,
w=0 in Ho of Eq. (5). The equation of eigenenergies
E„&(w =0) is as follows:

ko+Kotan(koRD) =0 if 1=0, (16a)

ikihI(iK&RO)j i,(kiRO)

and

+Klh, ,(iK,RD)ji(ktRD)=0 if 1)1, (16b)

k =E' K =(V E)'—(17)

ergy of the corresponding donor states in the SQD can be
defined by

Ea(n, l, m ) =E„I(w=0)—E«
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is ls, 2p, 2s, 31,4f, 3p, 5g, 3s,4d, . . . and that of D = ao is
ls, 2p, 3d, 2s, 4f, 3p, 5g, 4d, 3s and so on. The ordering
difference can be explained as follows. For Rp = la ', the
confining potential Vp is much stronger than the
Coulomb potential, and the structure of levels is less
affected by the position of the donor ion, whereas for
Rp=3a*, the coupling between confining and Coulomb
potentials is stronger and leads to the change of level or-
dering as the donor is moved. An obvious feature of
Figs. 2(a) and 2(b) is the intersection of s states and d
states, which alters the sequence. The crossover of 2s and
3d occurs at about 0.7a', and that of 3s, 4d at about
0.4a '. This is a result of the coupling and competition of
Coulomb potential with the confinement one. Moreover,
the effect of the two potentials on energy levels is related
to the corresponding wave functions. Only s state wave
functions have nonzero values at the origin, so the
Coulomb potential around the center has greater
influence on s states than others. It is the reason why the
energies of s states change more remarkably along with
changing D than the others. The quantum size effect,
which exists commonly in microstructures, mainly stems
from the wave functions depending on some factors sensi-
tively when the size of the system reduces to the particu-
lar range. For the above problem, the radius Ro of QD's
is the sensitive factor. In addition to the effect of Ro, the
finite barrier height has an effect on the values of levels
and the ordering of higher levels too. The effect can be il-
lustrated by the result of w=0. For example, the value
of 4d, 6h, and 3s levels of R o

= la ' with Vo = cc are equal
to 82.719%, 87.531%, and 88.826%, and those with
Vo=80%, 64.207%, 68.929K, and 68.070%, respective-
ly. The ordering of 6h and 3s levels is reversed as Vo be-
comes finite. The same phenomenon exists also for
R p

=3a ', if Vp reduces to a lower value, for example,
10%. The change of energy ordering might lead to some
influence on the property of quantum dots as Ro and Vo
are in an appropriate range.

Up to now, only the ground state of an off-center donor
ion in an infinite well has been studied. It is helpful to
compare the ground levels obtained in the present work
with those in Ref. 15. The ground energies of an off-
center donor for D =0.5, and 1.0a' in a QD of Ro =3a*
with Vo=80% is, respectively, equal to —0.805% and
—0.743%. It is agreeable with those ( —0.82784% and
—0.75680%) in Ref. 15 since the finite-barrier effect is
small in this case.
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of ~R„&(r)~ approaches the origin gradually with increas-
ing n for fixed I. Therefore, the donor ions at the origin
influence the states with larger n more strongly. It ex-
plains the changing tendency of binding energy. The
phenomenon mentioned above is a conspicuous character
of electronic structures in quantum dots. However, the
binding energies of all states close to each other as D is
larger. For instance, they are between 0.9% and 1.05%
for Ro=la' with D=2a' and between 0.27% and
0.29% for Ro =3a ' with D =7a'. It is evident for large
D that the binding energy is approximately equal to 2/D
(in units of % ), which is the Coulomb energy of two point

IV. BINDING

Studying the binding energy defined as Eq. (15), we find
that the binding energy increases with increasing
principal quantum number n for fixed I and D=O,
i.e., EII(1,0,0) &Ea(2,0,0) &Ez(3,0,0), EII(2, 1,0)
& EII(3, 1,0) & EII(4, 1,0) and so on, as shown in Figs. 3(a)
and 3(b), because of the confining potential Vc. It is quite
different from the situation of an isolated hydrogen atom
and its binding energy decreases with increasing n. As
Rp is in a proper range, the motion of electron is mainly
restricted in the well. Studying the radial wave function
R„I( r), It call be found that the posltio11 of tile IIiaxlniu111

FIG. 3. Binding energies Ez(n, l, m) of 1s, 2s, 3s, 2p, 3p, 3d,
and 4f states with m =0 (a) and 2p, 3p, 3d, and 4f states with
~m ~

=1 and 2 (h) as a function of D for an off-center donor in
SQD's of R0=3a* with V0=80%.
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TABLE I. Maxima of E&(n, l, 0) and minima of E„to with the corresponding positions D .

Ro= la

Ro =3a

nl

D
E.io

Eg(n, 1,0)
D
E„IO

Eg(n, l, 0)

1$

0
3.337
4.620
0

—0.872
1.891

2p

0.51
12.383
3.842
1.60
0.717
1.368

3d

0.64
22.981
3.612
1.88
2.132
1.297

2$

0
25.828
5.597
0
1.989
2.085

4f

0.68
35.439
3.480
2.01
3.821
1.219

3p

0.30
42.474
4.542
0.73
4.499
1.658

5g

0.71
49.758
3.320
2.04
5.741
1.168

0.40
60.207
4.000
1.08
7.015
1.517

3$

0
62.299
5.771
0
6.849
2.311

charges separated by a distance of D. The value of all of
the binding energies estimated by 2/D is, respectively,
equal to 1% and 0.28% for D =2a' and 7a ', and close to
that mentioned above.

As shown in the figures, the binding energies reduce
with increasing

~
m

~
for fixed 1 and n and it is consistent

with the ordering mentioned in Sec. III. Furthermore,
the binding energies of states with ~m ~

=/ reduce mono-
tonously with increasing D, while all of the other states
have maximum binding energies at some D not equal to
zero. The maximum value is larger for smaller ~m ~. The
above character can be explained as follows. According
to the angular distribution of wave functian, the states
with m =0 mainly distribute along the z axis and the oth-
er states are more and more distant from the z axis with
increasing ~m~. So, the donor ion infiuences the state
with smaller ~m ~

more efFectively and, then, a larger
binding energy is gained. The maximum binding energies
of several states with m =0 and the corresponding levels
are shown in Table I for both cases of Ro = la ' and 3a *.
It is readily seen that for a fixed (n —I —1) with m =0,
i.e., fixed radial-node numbers of wave functions, the po-
sition of maximum binding energy increases and the max-
imum value decreases with increasing l. It is easy to un-
derstand if we note that for the fixed (n —1 —1) the posi-
tion of the maximum of ~R„&(r)~ increases with l. It is
readily seen that the maximum binding energies and their
positions of higher levels with the same (n —I —1) are
close to each other.

It can be easily seen that four values, i.e., both energies
of D=0 and D= ao, the minimum (maximum binding)
energy and its position, are important for determining the
D dependence of a level and the level order. The energies
of D =0 and oo can be calculated exactly. The maximum
binding energy and its position of a level can be obtained
by solving Eq. (10) with different D. Those of a higher
level with larger I, however, can be estimated on the basis
of the features of binding energies mentioned above.
Then, the range of a higher level can be determined. For
example, the range of 6h levels can be obtained by using
the energies of D=O and Qo, the estimated maximum
binding energies and positions, and the approximate

binding energies 2/D of a larger D, as shown in Figs. 1(b)
and 2(b). It is interesting to nate that the 3s levels can in-
tersect with the 6h level in Fig. 1(b) and with 4d and 6h
levels in Fig. 2(b}, respectively. The feature means that a
single Coulomb center has mare important effects on the
level ordering for a larger QD than for a smaller one.

V. SUMMARY

Using a linear variational method, we have reported
the calculated results of ground states and excited states
af donor confined by GaAs-Ga, „Al„As SQD and locat-
ed inside and outside of the SQD. The results have clear-
ly demanstrated the so-called quantum size effect. The
splitting and ordering of quantum levels is dependent on
the radius R p, the distance D, and the barrier height Vp.

For states with fixed I and n, the binding energies de-
crease with increasing

~
m ~. The binding energies of

states with ~m ~

=I decrease monotonously with increas-
ing D, while all of the other states have maximum bind-

ing energies at some D not equal to zero. The maximum
values are larger for smaller ~m ~. It is also seen that the
maximum binding energies and their positions of higher
levels with the same (n —I —1) are close to each other.
The character of binding energies can be used to estimate
the minimum value of a higher level and its position.

The most interesting and inspiring feature of the D
dependence of the energy-level structure is the intersec-
tion of some levels. It means that a single Coulomb
center with a proper D can largely change the single-
electron spectrum of a quantum dot with proper Rp and

Vp and, then, the property. The concept might be useful
for designing some devices in the future. In addition to
the effect of a single Coulomb center, the effect of the po-
tential shape of a spherically symmetric quantum dot and
that of nonspherically symmetry of QD's on the spectrum
can be important in some other kinds of quantum-dot
systems. It is an interesting subject to study.

APPENDIX

Using Eqs. (12) and (13), Eq. (9) becomes

H'J=2w f R„&Rn,I,.r dr 5I, I, 2X f. Yt'm. (.8 +)Ylfm(0 +)PI(cosO)dQ

X &+, f R„IR„ I
r'+ dr+D'f R„&R„I & &

drl+] n, , n. .
g) && f J p
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where Pi(cos8) is I-Legendre function. According to

J I Yi ~ Y, ~ Yi ~ sinededq=

where

I) l2 l3{21,+1)(212+1){213+1)
' li 12 13

4~ 0 0 0 ml m2 m3
(A2)

l, l2 l3

ml mp m3

is the %igner 3-j symbol,

I, IJ I I, IJ I

J Yi'~ Y( Pi(cose)dQ, =( —1) [(21;+1)(2I+1)]'~z

with

I, 12 13

ml m2 m3

(I, +12
—

13 )!(12+13
—I, )!(13+I, —

12 )!
( i) ) 2 ll!3

(I i +12+13+1)!

[(I,+m, )!(I,—m, )!(12+m2 }!(12—m2)!(13+m 3 )!(13—ms )!]'~2
X $(—1)"

«!(Ii +12 13 «)!(Ii mi «)!(12+m2
—«}!(I3—12+m) +«)!(13—I )

—m2+«)l

(A4)

where only the finite number of « is included in the summation since «runs over all integers which do not lead to nega-
tive factorials. The I, , 12, 13 and m, , m2, ms lead to nonzero 3-j symbol if they satisfy

and

I, +12 13, 12+13 I } y 13+1i —12 Therefore,

II, —IJ l

~ I & I, + IJ (A6)

I, & lm, I, I, & lm, l, I, & Im31,

ml+m2+m3=0 .

(A5)
is satisfied and the summation in Eq. (Al) has only finite
terms.

Finally, Eq. (14) can be obtained by using Eqs. (Al),
(A3), and (A6).
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