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We study a model for a pair of copper-oxide planes, described by the t-J model with a small

interplane exchange term J~S, - S, . We show that this interplane interaction can be responsible
for some of the unusual properties of multilayer high-T, cuprates. An important role is played by
antiferromagnetic spin correlations, causing strong peaks in the susceptibility y (q, q, ) at the
incommensurate nesting vectors QAF (s, n 6 2z). Consequently the efFective coupling constants

&f (q) and J~ (q) are also peaked at q = QAF. We show that this leads to strongly enhanced

interplane pairing between fermions on adjacent CuO& planes, characterised by a pairing order
parameter 6i(r;i) = (f,t

~ fl&l —fi& l f t ) which extends over several lattice spacings. We Snd that
Ez(k) has an (extended) s-wave symmetry and is peaked at the corners of the Fermi surface. We

give qualitative arguments why the gauge Seld, which at low doping is very efFective in destroying
the in-plane pairing A~~, is less efFective in destroying the interplane pairing. This leads to the
conclusion that b, z(k) can be responsible for the observed spin-gap phase in bilayer cuprates. We
use this model to calculate the NMR-relaxation rate, the echo-decay rate, and the Knight shift. Our
numerical results are in qualitative agreement with the experimental data on YBa&Cu306.6. We
also suggest that the superconducting state in bilayer materials is a combination of d-wave pairing
in the plane and s-wave pairing between planes. In heavily underdoped materials where the spin

gap is large, the interplane pairing may dominate and a nodeless gap structure is predicted.

I. INTRODUCTION

Since the early days of high-T, superconductivity
physicists have focused on the copper-oxide planes to ex-
plain the unusual properties of the high T, c-uprates. A
widely accepted point of view is that the structure be-
tween the Cu02 planes can be considered as a charge
reservoir, whose only role is to fix a certain charge den-
sity in the Cu02 planes. Consequently many theoretical
models for the cuprates, such as the t-J model and the
Hubbard model, are actually models for a single CuOq
plane, ignoring the exchange coupling between the lay-
ers. This is appropriate for single-layer materials such
as La2 Sr Cu04, where the interlayer coupling is frus-
trated because the Cu02 layers are shifted relative to
each other. However, this is not the case for bilayer
materials such as YBa2Cu30~ g, because the two Cu02
planes in each bilayer are directly on top of each other,
giving rise to an unfrustrated exchange coupling between
the two planes.

Experiments indicate that there is a significant diKer-

ence between the physical properties of single-layer ma-

terials and the properties of multilayer materials. For in-
stance, it is well known that the superconducting transi-
tion temperature is in general higher for compounds that
have more Cu02 planes in a unit cell. Another diHerence
is that in multilayer materials such as YBa2Cuq06 6 one
observes a Spin gap in experiments that probe the spin de-
grees of freedom of the electrons. This spin-gap phase
is observed at low doping and survives well above the
superconducting transition temperature. According to a
recent analysis of the experimental data, the spin-gap
phase is only observed in multilayer materials but not

in single-layer materials. It is then plausible that the
spin gap is directly related to the pairing of electrons on
nearby CuO& planes. 4'

Before considering a model for coupled Cu02 planes,
we will first brie6y discuss the physics of a single Cu02
plane. A single CuOq plane can be described by the tJ-
model, 6 which has been studied extensively in previous
articles using the slave-boson gauge-field approach. r ~s

In this approach the physical electrons are split into
fermions and bosons (sometimes called spinons and
holons) that interact which each other via a fiuctuating
gauge field. The superconducting phase is the phase in
which the fermions have formed Cooper pairs, while the
bosons are Bose condensed at the same time. It was
suggested that the spin-gap phase corresponds to the sit-
uation in which the fermions have formed Cooper pairs,
but the bosons are not Bose condensed yet. ' ' 5 In
a recent article we showed that this picture is modified
significantly by the fiuctuating gauge field, which is very
eHective in destroying the formation of Cooper pairs at
low doping. As a result the superconducting transition
temperature is suppressed at low doping and the spin-

gap phase disappears completely. After including the
pair-breaking efFects of the gauge field the superconduct-
ing phase diagram that we obtained corresponds very
well with the actual phase diagram of the single-layer
high-T, cuprates. We conclude that the two-dimensional
t-J model is succesful in explaining the phase diagram
of single-layer cuprates, but is not able to explain cer-
tain features of multilayer materials, such as the spin-gap
phase.

In this paper we consider a model for two coupled
Cu02 planes, where each plane is described by the two-
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as follows. The pair-breaking effect of a gauge Beld is
related to the question whether or not a gap 4 breaks
the gauge symmetry in the system. In the case of an in-

plane gap El(k) the gauge symmetry is completely bro-
ken, while in the case of an interplane gap b,~(k) there
is still a gauge symmetry left in the system, correspond-
ing to a massless out-of-phase gauge-field mode. As a
result the interplane gap b, ~(k) can survive above the
Bose-condensation temperature, explaining the spin-gap
phase in multilayer cuprates.

II. RPA ANALYSIS
GP TAG CGUPLED CuGq PLANES

In this paper we study a system of two coupled CuQ2
planes, which is a simple model for a bilayer high-T,
cuprate such as YBCO. We describe each individual
plane with the two-dimensional t Jmo-del, and in ad-
dition we include an antiferromagnetic spin coupling be-
tween the electrons on neighboring planes. This gives the
Ham jltonian~'4

H —Hl" + H&" + J' & S!'& . S'"

where Hl &~ is the usual t JHami-itonian on plane n (n =
1 or 2), and SI" = cI"l cr pc,.pl is the spin operator of

the electron cI"l at site i on plane n. Notice that we did
not include any interlayer hopping in the Hamiltonian in
Eq. (1). We will return to address this issue in Sec. VII.
Typical values for the parameters t, J~~ and Jz are

t =0.4eV,

J~~ =0.12 ev,

J~ 0.01 eV.

The exact value of the interlayer exchange J~o~ is still un-
known, but a lower limit of 8 meV has been reported by
Tranquada et al. ~ and Shamoto et aLs This lower limit
was obtained by studying the (absence of) optical spin-
wave modes in undoped cuprates in neutron scattering
experiments.

At low doping the motion of the electrons on each plane
is controlled by the few empty sites. In order to take
this physics into account we will employ the slave-boson

approach, in which the original electron operator c; is

replaced by ft b, , where ft is a fermion operator carry-
ing the spin of the electron, and b; is a boson operator
that keeps track of the empty sites, carrying the charge
of the electron. In the slave-boson approach the t- J~~

Hamiltonian takes the form

Hc g„= C) (f, 5;b j, + c.c.)— . .

+J~o~ ) (S, . S, ——,'n, n, ),
(i,j)

where S; = f, cr p f;p is the spin . of the electron on site

dimensional t-Jmodel. In addition we include a small an-
tiferromagnetic spin interaction between the two planes

of the form Jz g,. S; S; . This model is similar to
a model studied by Millis and Monien. The antiferro-
magnetic interlayer coupling is responsible for the fact
that close to half filling the spins on nearby Cu02 planes
are locked in an antiparallel orientation. Experimental-
ists have not been able to determine the exact value of
J&0, but Tranquada et al. ~ and Shamoto et al. s have re-
ported a lower limit of 8 meV for J&0. Because the in-

terplane coupling is much smaller than the in-plane cou-

pling, one would naively expect that the interplane cou-

pling is completely irrelevant for the pairing mechanism
of the high-T, cuprates. We will argue however, that due
to strong antiferromagnetic spin correlations the egec-
tiue interplane coupling J&+(r) is strongly enhanced, and
extends over a coherence length of several lattice spac-
ings. The picture that we have in mind is that the spins
in each plane are correlated in patches that consist of
several spins, so that effectively there is a coupling of
correlated patches of spins on adjacent planes. This is
clearly a much stronger coupling than the original cou-
pling of single spins. The method that we use to take
the antiferromagnetic (AF) correlation of the spins into
account is the random-phase approximation (RPA).

Our main conclusion is that the enhanced interplane
coupling J&~(r) leads to strongly enhanced pairing be-
tween fermions on different planes, described by the in-

terplane order parameter b,~(r;~) = (f,tf.&
—f.,&f t). . .(1) (2) (1) (2)

The possibility of interplane pairing has been discussed
earlier by Altshuler and loffe. s We find that due to the
antiferromagnetic spin correlations the order parameter
6~(r;~) extends over a coherence length of several lat-
tice spacings. Our calculations show that the interplane
gap b,z(k) has an extended s-wave symmetry (without
nodes), and is peaked at the corners of the Fermi surface.
This should be contrasted to the in-plane gap b, ~~(k),
which has a d-wave symmetry with nodes at four points
on the Fermi surface.

We propose that the interplane gap 6~(k) is re-
sponsible for the observed spin-gap phase in multilayer
cuprates, which had been suggested earlier by Millis
and Monien. 4 An objection against their work has been
that Jz is much too small to explain the spin gap in
YBa2CusOs s. We avoided this problem with the argu-
ment that at low doping J& is strongly enhanced by
antiferromagnetic correlations. This leaves the question
why we cannot apply the same argument to create a spin
gap using the in-plane coupling J~~+, which is still larger
than the interplane coupling J& . This is partly explained
by the fact that J& is much more enhanced than J~~

However, for a complete answer we have to go beyond
mean-field theory, and discuss the pair-breaking effects
of the gauge Geld in the t-J model. In a previous paper
we showed that at low doping the in-plane gap b,

~~ (k) is
destroyed by gauge Geld fIuctuations, so that the in-
plane pairing cannot give rise to a spin=gap phase. We
expect that the gauge field is less effective in destroying
the interplane gap h.~(k). This difference, which will be
discussed in greater detail in Sec. V, can be understood
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Vfe will use a Hubbard-Stratonovich transformation to
decouple the various terms in this Hamiltonian. The in-
teraction term S; . Sj can be decoupled in various dif-
ferent channels. The most common decoupling is in the
particle-hole channel by writing

0 0

0 01 1
2 2

0 0 1 0

0 0 0 1
S;.Sj —— 2i—(ft fj )(ft f; ) —in;n&+ in, . (4)

This decoupling gives rise to terms of the form g;~ f t
f~

in the Hamiltonian, where (,j is a tight-binding-like
resonating-valence-bond (RVB) order parameter. s The
disadvantage of this decoupling is that it does not take
the antiferromagnetic correlations of the spins into ac-
count explicitly. In order to take the antiferrornagnetic
correlations into account it is more appropriate to keep
terms of the form S; Sj in the Hamiltonian, which can
be treated perturbatively to include the effect of the spin
correlations. 2i In order to avoid double counting we write
the Hamiltonian in Eq. (3) as

~~ ) ( *' j 4n'nj)
&i,j)

and treat the first term using an RVB mean field (,j
and the second term using RPA. This admittedly ad hoc
decomposition will acct the numerical factors in our re-
sults, but not the qualitative conclusions. We decouple
K, i & in the particle-hole channel to obtain

II

o w s ( t 4t) I(ijI (ij I fi~fjo + bibj I
c c ~(;)E, II J

4t

II (, )

At this point the analysis is still exact if one integrates
over all configurations of the RVB field (;j(r). In the
mean-field approximation the field (;j is replaced by its
saddle point

The total Hamiltonian for the fermionic degrees of free-
dom then takes the form

H ) k(fk fkk+fk fk ) +HI

where ei, = —
2 J~o~((cos k +cos k„)—p, ~. The interaction

Hamiltonian Kp is given by

) J„'„,(;,)s!"'.s,'." '

(i j) nn'

) J„„,(q)S("& S "

where J„„(q)= J~~ (q) =
J~~ (cos q + cos q„) and

(q) = Jz(q, ) = Jze'~*", and d denotes the distance

between the two planes. It is convenient to write Hy ex-

plicitly in terms of the fermion operators f&
(n)

where (gg)~,„denotes pi, fk+g(2, rfi —g]2,1'
(n) f (n)

%e wiIl use a random-phase approximation to analyze
the antiferromagnetic correlations induced by the terms
in Hi. We will first calculate the dynamic spin suscepti-
bility X(q) [where q denotes (q, q„ibd„)],which contains
all the information about spin correlations. Within RPA,

(q) is given by a sum over the strings of bubbles
shown in Fig. 1. The susceptibility is actually an 8x8
matrix, because at each vertex of a bubble the fermion
can be either on plane 1 or on plane 2, and in addition
there are four possible spin combinations at each vertex

(tg, $$, g$ or $g). We can safely suppress the spin in-

dices, because every power of the 4x4 spin matrix in Eq.
(10) yields the same matrix again. This leaves us with
simple 2x2 matrices, where the index denotes whether
the fermion is on plane 1 or 2. The susceptibility is then
given by the matrix sum

J'(q) = ~)( (q) Ji(q)
J (q)' Jii(q)

(12)

Evaluating the matrix sum in Eq. (11) gives

1 0 0
RPA 0 + 4~

X X 1 Q Q y
4x J~'

0JO4X J
1~0JQ
4 II

x'
(1+ —,'x' J')' —I-'x' J' I'

4 II 4
1~0JO 1~0JO

4 L 4 II

1 OJO+ 1+ 1 QJO

~ ~ = CO+~+~
n n n n

n n n'

+ +
n n n'

FIG. 1. The renormalized susceptibility X (q) in the
RPA approximation. In each individual bubble the fermion

can be either on plane n = 1 or on lane n' = 2. The wavy

line denotes the in-plane exchange S, & S~. &, and the jagged
I

line denotes the interplane exchange S, S, %le shower that
due to autiferromaguetic correlations X (q) has strong in-

commensurate peaks at q = Q&F.

x "(q) = x'(q) ). ——,'J'(q)x'(q)
m=O

where Xo(q) is the contribution of a single bubble. The
matrix Jo(q) is given by
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This expression is only valid if the eigenvalues of the ma-

trix 4X (q)J (q) are smaller than 1. Putting i~„=0
this leads to the inequality

J'(q) 1+ —,'x'J'(q) ——,'x'J'
)1+ 4x' J'(q)]' —(-'x' J')' (17)

0 4
x (q) &

Jz —
J~~ (cos q + cos q„)

(14) JO
e's* 18

l'+ -'x'J~ (q)]' —(-'x'Ji)'

RPAx,h„.(q, q. , i~-) = cos2(2q, d)

1+ -x [J~~(q) + J~]
sins (-', q, d)

At intermediate doping this inequality is usually satisfied.
However, at low doping Xo(q) is enhanced at the nesting
vector QAF (x, z'), so that at sufFiciently low doping
the inequality breaks down for q QAF. This indicates
that at low doping the system becomes unstable against
a long-range Neel order with (S) P 0.

We analyzed XRPA(q) numerically using the param-
t t/J~~ ——3 n J&/J~~

——0.2. We found that for

these parameters the AF instability occurs at a dop-
ing x 0.08. We are mostly interested in the regime
close to the AF instability, i.e., z 0.08, which is
characterized by strong (incommensurate) peaks in the
renormalized susceptibility X+PA(q) at the nesting vec-
tor q = C}Ap (z, m 6 2z). This feature of X (q) has
been studied extensively by Tanamoto and co-workers
for a generalized t Jmodel -that included next-nearest-
neighbor hopping terms to simulate the band structure of
difFerent cuprates. 2i Their analysis was for a single CuOs
plane, and did therefore not include any interplane inter-
actions. They emphasized that the critical doping z, at
which the AF instability occurs depends strongly on the
details of the band structure.

The physical susceptibility that one measures in
neutron scattering experiments is proportional toQ„„,(n'~x~n), which gives

Note that J&+ always has the form J& (q, q, )
J& (q)e's ". Close to the AF instability J~~ (q) and

J&+(q) are both strongly peaked at the nesting vector
q = QAF, and the width of this peak is related to the cor-
relation length ro over which the spins are Neel ordered.
Let us first study Eqs. (17) and (18) in the important
limit J&o « J~s~. In that case J~t+ is enhanced by a factor

(1+4X J~~ ),while J& is enhanced by the square of this

factor. We conclude that for q ™QAF, J& (q) is much
stronger enhanced by antiferromagnetic correlations than
Jf+(q). It is interesting to note, however, that J& (q)
will never exceed

~ J~t~(q)~, assuming that J& &
~ J~~ (q)~.

In the limit 4X (q)(J~~ (q) —J&) -+ —1, J&+ approaches

J~t (q), even if Jz was initially much smaller than Jo.
This implies that close to the AF instability J& and Jf
are approximately equal in strength.

We analyzed J~~ (q) and J& (q) numerically using the

parameters t/J~~ ——3 and Jz/J~~ = 0.2. We focused
in particular on doping slightly above the critical doping
z, 0.08 at which the AF instability occurs. In Fig. 2 we
h pl t Jll~(q) and J&+(q) for z = 0.09, z = 0.12,

and z = 0.20. The three curves show that close to the
AF instability there are strongly pronounced incommen-
surate peaks at QAF (vr, vr + 2z). By analyzing this
peak we 6nd that for z = 0.09 the correlation length ro
is roughly three lattice spacings, i.e., ro/a 3. These

Here we used that J&0(q, ) = J&oe*s* . This expression
shows that X h„,(q, q, ) has a modulation as a function
of q, with a period 2m/d. The maxima occur at q, = vr/d
(mod 2m/d) and the minima at q, = 0 (mod 2vr/d).
This modulation is especially pronounced close to the
AF instability with q QAF. In that case the maxima
can be significantly larger than the minima. This corre-
sponds well with the neutron scattering experiments of
Tranquada et aL, who measured X"(QAp, q ) as a func-
tion of q . They indeed observed a modulation of period
2m/d, with maxima at q, = +m/d that were approxi-
mately twice the value of the minimum at q, = 0.

We will now use the expression for X
P

(q) in Eq. (13)
to calculate the e8ective spin-spin interaction, which we
denote by J~t (q) and J& (q, q, ). Within RPA the effec-
tive interaction can be written in matrix notation as

gefF gO 1gO RPAgO
4

where the 2x2 matrices Jo and ~ are given by Eqs.
(12) and (13). Evaluating the matrix products gives

30

20-

10.
I

0

-10-

(m, 0)

;6
~ 5
-' 4

I
I

0 3
I

, 2

, 0
-' -1

" -2

-3

x = 0.09
x = 0.12
x = 0.20

(0, 0)

FIG. 2. The effective in-plane coupling Jf (q) (left axis)
and the effective interplane coupling Jz (q) (right axis) for
various values of the doping x. The right axis is blown up by a
factor of 5 in order to show the features of Jz (q) more clearly.
Close to the AF instability at z, :0 08 Jj (q) and J~ (q)
have strong incommensurate peaks at Q~F —(s', s' + 0.&9).
These peaks fade away at higher dopings x &) x . Notice
that for z ~ z, the interplane coupling J~ (Q~F) is more
enhanced than J~j (Q~F). As a result Jz and Jf become
comparable in strength, even though initially J& (( J~~.
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peaks fade away when the doping is much higher than
z, . Notice that for z = 0.09, J&+(q) is much smaller
than J!! (q) over most of the Brioullin zone, but close to
the incommensurate peaks J& (q) is more strongly en-
hanced than J' (q), so that the Jz (q) and J~~ (q) be-
come comparable in strength at q Q&F. This means
that the interplane coupling cannot be ignored when the
spins of the electrons exhibit strong antiferromagnetic
correlations.

II =)
l

k

+)

f(2) 0
k

~ —kg f
J!! (')&!!(')

0
&k +J

+ J' (r)b, (r)

Hamiltonian in momentum space in the matrix form

III. INTERPLANE PAIRING

In the previous section we showed that the interplane
coupling J& (q) is strongly enhanced around q Q~F
due to antiferromagnetic correlations. We will now show
that this enhanced coupling leads to interplane pairing
at a much higher energy scale than before. The phys-
ical picture that we have in mind is that the spins on
both planes form patches of correlated spins, so that the
system can create extended Cooper pairs that consist of
patches of spins on one plane that pair up with corre-
sponding patches of spins on the other plane. This in-
terplane pairing is characterized by the order parameter

&~(r*g) = (f g'f,'g' —f g'f, t')
Consider the Hamiltonian in Eq. (8), but with the bare

in-plane and interplane couplings Jll and JL replaced by

the effective couplings J' and J'+. Each of these inter-
action terms can be written in the form

J„"„,(..t) (s!"' s(" ' —,'n;~,)-
1j tt

( )
f(")ty("')t f(")ty("')t)

f(n')f (n) f(n')f (n)
jl it (19)

I=) ~f~."f~.'+ 2 ) -'"- ( v)
k, n (in jn')

y(")f("') y(")f("'))ij ~2 it j$ i$ jt —C.C.

(20)

where the indices n and n' denote plane 1 or 2. The prime
in P' denotes that the sum is only over the bonds (i, j)
for which J „(r,i) ) 0. This means that for J!! (r;i)
we only include bonds (i, j) with i and j on different
sublattices, while for J&+(r,i) we only include bonds (i, j)
with i and j on the same sublattice. At the mean-6eld
level the fields A;- are replaced by their saddle points,
i.e., constant values that minimize the total &ee energy.
Assuming that E;. = 4 (r,~) is real, we can write the

The coupling constants J„'+,(r,i) are the Fourier trans-
forms of the functions J!t (q) and Jz (q) in Eqs. (17)
and (18). The terms in Eq. (19) can be decoupled
in the particle-particle channel by de6ning a Hubbard-

I

Stratonovich field 6,."." on the bond (i, j), under the
condition that J„„(r,i) ) 0. This gives the Hamiltonian

where

tg = —2(J!!(Cos k~ + cos kv) py't

6!!(k)= ) cos(k. r) J!! (r)b, !!(r),

(22)

I

A~(k) = ) cos(k r) J& (r)A~(r). (24)

Ey (k) = ~qz + Ay (k) z,

A~(k) = b, !!(k)+ Ag(k).

(25)

(26)

The order parameters b, !!(r) and 6~(r) are determined
by the condition that the free energy is at a local mini-
mum. The free energy is given by

F = ) J!! (r)A!!(r) + J& (r)D~(r)

2T ) — ln [cosh(E, (k)/2T) j .
d k

S=+
(27)

Putting BF/06"" (r) = 0 for all 6""(r), we obtain the
following set of self-consistency equations:

d2k t s" " A, (k) ~A„„(r)=),cos(k r)
s=+1

(28)
)

This set of self-consistency equations has in general sev-
eral solutions, depending on the symmetry that one
chooses for the order parameter, i.e., the relative signs of
the order parameters 4 (r) on different bonds r. Close
to half Riling one can find the most favorable symmetry
of the order parameter, by studying the &ee energy in
Eq. (27) in the limit A„(r)—+ 0. This gives

F(b,) —F(0) = ) J!! (r)dl, !!(r) + JJ (r)EJ (r)
r

d2k
IL3,!!(k) + E~(k) ](2x)

tanh(~g/2T)
X (29)

The sum P,' denotes a sum over bonds, which means
that r and —r should be counted only once and r = 0
is counted half. The Hamiltonian in Eq. (21) can eas-
ily be diagonalized, which gives the quasiparticle energy
dispersion
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The gain in free energy is largest if all the terms in the
expression for b, (k) in Eqs. (23) and {24) add con-
structively for the momenta k that give the largest con-
tribution to the integral in Eq. (29). Close to half filling
the momentum integral in Eq. (29) is dominated by the
k vectors at the four corners of the Fermi surface, i.e.,
the points k = (her, 0) and k = (0, +ir), because close
to half filling the density of states diverges at those four
points. At the corner k = (m, 0) the gap b, (k) is given
by

E„„(~,0) = ) (-1)" J„„(r)b,„„(r). (3o)

Because the summation P', is only over vectors r for
which J„„(r)is positive, the terms in Eq. (30) add con-
structively if we let the sign of E„„(r)alternate depend-
ing on whether r and r„areeven or odd. We will mea-
sure r and r„in units of the lattice constant a. To
be more explicit, the gain in &ee energy is largest if we
choose

0 for r even and r„odd,
b, ~~(r) = & & 0 for r odd and r„eve ,n

0 for r + r„even,
(31)

& 0 for r~ and r„even,
b~(r) =

& ( 0 for r and r„dod,
0 for r + r„odd.

(32)

Notice that 6~~(r, r„)= —b~~(r„,r ) and A~(r»r„) =
+b,~(r„,r ). This implies that b, g(k) has an extended
s-wave symmetry [i.e. , br(k) = br(kz) f» kz
(ks, )'c )], while h~~ (k) has an extended d-wave symmetry
[i.e., E~~(k) = —6~~(k~)]. The prefix "extended" indi-
cates that A~(k) and b, ~~(k) can be anisotropic around
the Fermi surface, with peaks at the corners (her, 0) and
(0, +n'). This should be contrasted to a pum s-wave
symmetry [b,~(k) = const] or a pure d-wave symmetry
[b,

ii (k) oc cos k~ —cos k„].
We can now explain why superconductivity is en-

hanced when the effective coupling J' (r) extends over
several lattice spacings. Suppose that J'~(r) falls off over
a correlation length ro, for example, J'+(r) = Joe "~".
In that case there are of the order of ro2 terms A(r) that
add constructively in the expression for the gap A(k) in
Eq. (30) for k = (km, 0) or (0, her). Therefore the second
term in the free energy in Eq. (29), which corresponds to
a gain of free energy, is essentially enhanced by a factor
ro4On the other. hand the first term in Eq. (29), which
corresponds to a coat of free energy, is only enhanced by
a factor ro. We therefore obtain a net gain of free en-
ergy which becomes larger and larger if the correlation
length ro increases. As a result superconductivity is en-
hanced. We would like to emphasize that our arguments
for the behavior of E~~ (k) and. b,~ {k) are only valid close
to half filling, and under the condition that T (( J and
A(k) (( J. These conditions are needed to make sure
that the moxnentum integrals in Eqs. (28) and (29) are
dominated by the corners of the Ferxni surface. Away
&om half filling the corners of the Fermi surface become
progressively less important, and therefore superconduc-

tivity will not be as strongly enhanced in that case.
Prom this point on we will focus on the order paraxne-

ter h~(r), and ignore b, ~~(r). The motivation for this is
twofold. The first reason is that the interplane order pa-
rameter A~ is more efBcient in taking advantage of the
antiferroxnagnetic correlations than L~~, which is partly
due to the fact that J&+(q) is stronger peaked at q = QAF
than J~~ (q), as we explained after Eq. (18). But our

xnain motivation for ignoring A~~ is that the gauge field is
very effective in destroying the in-plane gap b,

~~
(k) at low

doping. This is the region we are interested in, because
the spin-gap phase is observed at low doping. We antic-
ipate that the gauge field is less effective in destroying
the interplane gap b, ~(k), which we will discuss in more
detail in Sec. V.

IV. NUMERICAL ANALYSIS
OF INTERPLANE PAIRING

The numerical results presented in this section are
meant for underdoped cuprates in the spin-gap phase.
Within our model this corresponds to the situation in
which L~ is finite, but EL)

——0. We solved the self-
consistency equations for A~(r) in Eq. (28), using the
RPA-enhanced interplane coupling J&~(r) that we cal-
culated in Sec. II. We performed the calculations at a
doping z = 0.085, which is close to the AF instability at
z 0.08. In this calculation we assumed Jzo ——0.2 J~o~.

For this amount of doping J&~(r) falls off over a corre-
lation length of approximately three to four lattice spac-
ings, which is quite typical for high-T, cuprates in the
spin-gap phase.

In Fig. 3 we show a plot of (—1)" A~ (r) versus ~r~ for
the discrete set of bonds on which E~(r) is defined; i.e.,
r +r„is even. Note that A~(r) falls off over a coherence
length of approximately three to four lattice spacings,
and that A~(r) is positive on the sublattice with r even

12 --- i---. s-- ~ i---. ~0.

0 10' l.(0, 0)

0.08-

~ 0.06-
CI
+l 0.04-
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o -A(r„,r„)
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FIG &. The pairing order parameter b, i (r) for x = 0.085.
Due to the antiferromagnetic correlations b.~ (r) is also
nonzero for r g 0, and b,&(r) decays over a correlation length
of approximately three to four lattice spacings. Notice that
Ai (r) alternates sign from one sublattice to the next, as
indicated by the squares (+b,~) and the diamonds (—A~).
Also notice that A~(r) is relatively strong along the diago-
nals r = +r„.This implies that in momentum space b,~(k)
is enhanced around the diamond-shaped Fermi surface.
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Ag(k)

I Ps%i. QQ3

Q Q2

QQQ

(denoted by squares) and negative on the sublattice with
r odd (denoted by diamonds). This alternating sign
was anticipated in the previous section in Eq. (32). Also
notice that ~6~(r)

~

is relatively large on the diagonal r =
(j,j), which means that in momentum space 6~ (k) will
be enhanced along the diamond defined by k~4k„=+sr.

In Fig. 4 we show a two-dimensional plot of A~(k)
in momentum space. Observe that b,~(k) is indeed en-
hanced at the Fermi surface, and that Ag(k) is espe-
cially large at the four corners of the Fermi surface. This
anisotropy of b, ~ (k) is easier to see in Fig. 5, which shows
a plot of b, ~(k) around the Fermi surface for three differ-
ent values of doping. Note that A~ (k) has an (extended)
s-wave symmetry without nodes, and that the anisotropy

FIG. 4. A contour plot of the gap E~(k) for x = 0.085
and J& ——0.2Jll. The diamondlike Fermi surface is indicated
by the black dotted line. Notice that the gap b, ~(k) has
an extended s-wave symmetry, with peaks at the four cor-
ners k = (err, 0) and k = (0, +rr), and without nodes. At
the corners of the Fermi surface the gap is approximately
Ez(k) —0.032Jf 4 meV. Also notice that A~ (k) is sig-
ni6cantly larger at the Fermi surface than in the middle of
the Brioullin zone.

of b,~ (k) is quite pronounced for x = 0.085, but less pro-
nounced for x = 0.09 and x = 0.10. Let us first look at
the results for x = 0.085 (solid line). At the corners of
the Fermi surface the value of A~(k) is approximately
0.032 J~~ 4 meV. In the middle of the Fermi surface
the gap is approximately two-third of this value. We
also calculated the pairing transition temperature TI, at
z = 0.085, which gave the result T& 0.016J~~, which is
of the order of 20 K. We emphasize that these numbers
depend strongly on the specific values of the parameters
in the model, and how close the doping is to the critical
value x, . Although the magnitude of the gap A~(k) is
still too small, we believe it is plausible to identify the
spin gap observed in YBa2CusOs s with A~(k), and the
spin-gap phase transition with T&+. In Fig. 5 we also
show b, ~(k) for a slightly higher doping x = 0.09 and
z = 0.10. Notice that further away &om the critical dop-
ing x, = 0.08 the magnitude of A~ (k) decreases rapidly,
and the anisotropy of b, ~(k) is less pronounced as well.
This result shows that the antiferromagnetic correlations
are essential to make interlayer pairing possible at a rea-
sonably high-energy scale.

In the RPA treatment the antiferromagnetic correla-
tions are tied to the band structure in a way that may
not be quantitatively correct. To study the dependence of
the gap A~ on the correlation length ro and the coupling
constant Jz, we consider an effective interplane pairing
parametrized by

where r/a = (i, j), and ro should be interpreted as the
correlation length of the antiferromagnetic correlations.
The dependence of the gap on the coupling constant J&
is shown in Fig. 6, which is a logarithmic plot of 4& "

0.03

0.02

0.01

= 0.09
0g~ ~~a++++ease eve~~+

10

x=0.10

0.0$ 0.5
a ~ I ~ ~ ~

1.0
8 = atan(kP„)

1.5

FIG. 5. The interplane gap b.i (k) around the Fermi sur-
face for x = 0.085, x = 0.09 and x = 0.10. The gap b ~(k) has
an extended 8-wave symmetry, and is anisotropic around the
Fermi surface, with peaks at the corners of the Fermi surface.
This anisotropy is quite pronounced for x = 0.085, which is
close to the AF instability at x = 0.08. At the corners of the
Fermi surface the gap is approxiznately 0.032 Jll 4 meV
for x = 0.085. For higher doping x = 0.09 and x = 0.10 the
amplitude of the gap decreases rapidly, and the anisotropy
almost disappears. The conclusion is that the antiferromag-
netic correlations are essential for the enhancement of A~ (k).

10 0 6 8
Jg /Jg

10 12

FIG. 6. A logarithmic plot of the gap 4& " at the corner
of the Fermi surface as a function of the interplane coupling
constant (J~) . In this calculation we assumed that the ef-

fective coupling is given by J& (r) = +Jz exp( —r/ro), and
we fixed the doping at x = 0.09. We performed the calcu-
lations for a correlation length ro = 3 (A) and ro = 6 (&),
and compared the results with an "on-site' interaction, which
corresponds with ro ~ 0 ( ). The straight lines show that
A~ " depends exponentially on (J~) . The functional form
is given in Eq. (34). Notice that for ro = 3 the slope of the
line is 2.7 times smaller than for ro ~ 0, and that therefore
&~ "(ro = 3) )) A& "(ro ~ 0). The finite correlation length
has the efFect of enhancing Jz by a factor of 2.7.
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versus (J&) . We defined 6T as the value of A~(k) at
the corner of the Fermi surface. We did the calculations
for a correlation length rp -+ 0 (0), rp = 3 (Q), and
rp ——6 (p'). The case rp -+ 0 is the situation when

Jz (r) and E~(r) are only nonzero for r = 0, which
corresponds to a pure s-wave symmetry. Observe that
the data points lie on straight lines with different slopes.
We conclude that 6z (k) has the functional form

1.14 Jll exp
~

—1.56 J~~ /J~

II
0.41 J exp

/

—0.44 Jg/Jz

for rp/a m 0,

for rp/a = 3,

for rp/a = 6.

(34)

V. PAIR;BREAKING EFFECTS
OF THE GAUGE FIELD

We have argued in a previous paper that for a sin-
gle Cu02 plane a auctuating gauge field destroys the

This BCS-like functional form is not surprising, because
b,~(k) is determined in a way that is very similar to
BCS theory. Notice however that the coefficients Eq. (34)
change dramatically when the correlation length rp/a in-
creases &om 0 to 3. For rp/a & 3 these coefficients do
not change much anymore, because the system can only
take advantage of very long correlation lengths if there
is perfect nesting of the Fermi surface. This calculation
was done at a 6nite doping x = 0.09, and thus the nest-
ing is not perfect. First consider the coefficient in the
exponent, which drops &om 1.56 to 0.58 when rp/a in-
creases &om 0 to 3. The physical explanation for this is
that when patches of spins cooperate to form extended
Cooper pairs, J& gets effectively renormalized by a factor
which increases with rp/a. This renormalized J& is the
coupling constant that enters the exponent in Eq. (34),
i.e., Jz ——p'ss Jz 3J& for rp/a = 3. Now consider
the prefactor in Eq. (34), which is proportional to JP. In
BCS theory this prefactor would be equal to the Debye
&equency, which provides a cutoff in the energy integra-
tions. In the calculation that led to Eq. (34) there was no
cutoff in the energy integrations, and so the Debye &e-
quency is replaced by J~~, the overall energy scale. If the
correlation length rp increases, an effective energy cutoff
is introduced, because b, ~(k) becomes anisotropic with
peaks that have a width proportional to a/rp. There-
fore the "Debye frequency" J gets replaced by roughly

II

(a/rp) J~~ . We would like to mention that this calculation

did not take any frequency dependence of J'~(q, w) into
account. Millis and Monien argued that the &equency
dependence of J'+(q, u) introduces another cutoff in the
energy integrations, of the order of (a/rp)2J~~, 22 and
is therefore more important than the cutoff provided by
the momentum dependence of J'+(q, u). This argument
does not modify the coefBcients in the exponents in Eq.
(34), and thus 6&+ is still strongly enhanced when the
correlation length increases.

in-plane pairing order parameter A~~ above the Bose-
condensation temperature TBE. This explains the ab-
sence of a spin-gap phase in single-layer materials. In this
section we will argue that the gauge field is not as effec-
tive in destroying the interplane order parameter A~, so
that the spin gap can survive in multilayer materials.

In the previous sections we discussed a mean-field ap-
proximation of the t-J model. To go beyond mean-field
theory we will now introduce a gauge field that takes a
certain class of Quctuations around the mean-field result
into account. The gauge 6eld is the phase of the RVB-
order parameter

(35)

where ( is given by Eq. (7). We refer to other papers
for a more comprehensive discussion of the properties of
this gauge field a;i.r iP i2 zs In our model for two Cu02
planes there are two gauge-field modes per unit cell, be-

cause each plane has its own gauge 6eld, denoted by a;.(x)

and a, Suppose that the two planes are coupled by a(2)

nonzero interplane order parameter L~, as described by
the Hamiltonian in Eq. (21). In that case the two gauge-
6eld modes are coupled as well, and the total gauge-6eld
action has the form

T t' (i)o

ll~~(q) 11~(q)
11~(q) Il~~(q) (a,'" )

' (36)

where q denotes (q, iv„)and iv is a Matsubara &e-
quency. The propagators II~~(q) and II~(q) are given by
the diagrams in Fig. 7. Notice that II~(q) = 0 when
A~ ——0, because in that case the two planes are uncou-
pled, and thus the diagram in Fig. 7(b) vanishes. The
eigenmodes of the action in Eq. (36) are the in-phase

mode a&+ —(az + aq( )/~2 and the out of phoae mo-de-

az = (as —as )/~2. We will denote the propagators(-) (~) (2)

of these two eigenmodes by II+(q)—:II~~ (q) + II~(q).
In order to decide whether the combined effect of the

two gauge-Geld modes is pair breaking or not, one has to
calculate the total &ee energy of each gauge-field mode,
and study whether the &ee energy increases or not when
a gap A~ opens up. This is outside the scope of this
paper, and we will instead limit ourselves to qualitative

n n

(q)
—np n

n n

n n'

11 (q) = -C)-
n n'

FIG. 7. The diagrams for the gauge Seld propagators II~~ (q)
and II~(q). The indices n and n' indicate plane 1 or plane 2
(and n g n') The propagator .II&(q) is only nonzero if there
is a coupling between the two planes. In Sec. V we show that
the in-phase propagator II+ ——II~~ + II~ becomes massive
when an interplane gap E~ opens up, while the out-of-phase
propagator II = II~~

—II~ remains massless.
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arguments why it is less costly to have an interplane gap
A~ than to have an in-plane gap 4~~. Our qualitative
argument is based on the fact that in the case of inter-
plane pairing one of the two gauge-field modes remains
massless, while in the case of in-plane pairing both modes
become massive. The fact that a certain mode becomes
massive is generally an indication that this mode is pair
breaking.

Evaluating the diagrams in Fig. 7 in the presence of an
interplane gap A~(k) gives

The Higgs mechanism does not apply because the gauge
invariance is not broken, and therefore the out-of-phase

gauge-field mode aq ) remains massless.
For a more detailed analysis of the pair-breaking effects

of the gauge-field modes a(+) and a( ), one has to study
the contribution of the gauge field to the Bee energy,
given by 5

Fi+„~,= T ) log ll~(q, iv„)
q vn

(37)

d'k
Ilp(q, iv„)=C+2T)

~
qx

~ ~

qx2+2 i Bk) i Bk)
6E' —(d„(d~

(~2 + g2) (~I2 + gl2) '

dv= ) —[2ng (v) + 1]
0 27f

(Im Ilg {q,v + ib) l
x arctan

(Re Ilg(q, v+ ib) )
(41)

In the normal state the gauge field gives a rather large
negative contribution to the &ee energy. It has been
shown that the free energy from free fermions and bosons
is much too large, and that the negative contribution
&om the transverse and longitudinal gauge auctuations
yields a kee energy which is in much better agreement
with high-temperature expansions. 2s

Let us now ask what happens when a gap opens up
in the fermion spectrum. We can calculate Ez~ „~s,(A) by
substituting the propagator II~(q, v, E) into Eq. (41).
I.et us first consider Fs~+„~z,(A). For b, g 0 a gap appears
in Im II~(q, v), eliminating the contribution of modes
with v ( 2b, . For v ) 2A, —(Im II+/Re II+) is still
suppressed compared to its normal state value, causing

a significant increase in Fs~+„lz,(6). It was shown in Ref.

12 that Fs „z,(b) oc 6 ~ if T ) TBE. This cost in
free energy is so large that it destroys the possibility of
fermion pairing for T ) TBE, thereby eliminating the
spin-gap phase in single-layer cuprates.

The story is quite difFerent for Ez~ z, (b,). Again a gap
appears in Im II (q, v), but for v ) 2b, the coherence
factor in Eq. (37) is such that —{ImII jRe II ) is actu-
ally enhanced, i2 which overwhelms the loss of free energy

from frequencies v ( 2b, . Considering that Fz~ „z(4) de-
creases when a gap opens up, we conclude that the gauge-

field mode aq is pair enhancing. The pair-enhancing

nature of aq can also be understood in another way.
The fermions on the two planes couple to the a( ) mode
with opposite charge, so that the exchange of an a(
mode leads to an attraction, analogous to what happens
in the t-t'-J model. In our case we expect that the

effects of the aq+ and aq gauge Huctuations largely
cancel each other, so that the mean-Beld treatment of in-

terplane pairing may be quite reliable. As a result it is

likely that over a certain temperature range the in-plane

gap A~~ {k) is completely destroyed by gauge-Beld fiuctua-
tions, while the interplane gap b,~(k) still survives. This
region can be identified with the spin-gap phase.

whel'e ihl = i'~ —iv~) e, e = egg (2, 6, 6 = Q~(k +
qj2), and E = Qe2 + b,2. The first term in Eq. (37) is a
constant given by the first diagram in Fig. 7(a), which is
equal to

d2k 82eg

(2~)2 gk2 E2 + ~2 ' (38)

For 6 = 0 this constant | exactly cancels the second
term in Eq. (37) for q ~ 0 and iv„=0. Thus the gauge
field is massless in the normal state. Note that the func-
tional form of the in-phase propagator II+(q) is similar
to the BCS expression for the propagator of the electro-
magnetic gauge field in the presence of a gap, 24 except
that the coupling constants are very different. It is very
well known that this propagator becomes massive when
a gap opens up, i.e., II+(0, 0) oc 62&, which is responsible
for the Meissner effect in BCS superconductors.

The out-of-phase mode a~, on the other hand, has a(—)

propagator II (q) with a different coherence factor, pro-
portional to ee' —u„~„'—AA'. One can easily check that
due to the minus sign in the coherence factor the second
term in Eq. (37) exactly cancels the constant C in Eq.
(38) in the limit q ~ 0 and iv„=0, even when 4 g 0.
In other words, the out-of-phase propagator II (q) re-
mains massless when an interlayer gap opens up. The

physical reason why the out-of-phase mode aq
) remains

massless is related to gauge invariance. Without pair-
ing the Hamiltonian is invariant under the local gauge
transformation

f(nl
jo
(n)
u

(39)

(40)

~jar

; a,.j —&,- + &j
(~) (~) (~)

VI. NMR-RELAXATION RATES

Experiments on YBa2Cuq066 show that quantities
that probe the spin degrees of freedom of the system,

A finite gap 4 generally breaks this gauge invariance,
which implies that the gauge-field mode becomes mas-
sive. This is usually refered to as the Higgs mechanism.
In order to see what happens to the out-of-phase gauge-

field mode aq, we only consider gauge transformations

that satisfy y; = —y,- . One immediately observes that

the interplane order parameter 6 ~ ——(f,& f,& f,.& f,t)— .(~) (2) (~) (2)

is invariant under this class of gauge transformations.
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The form factor F(q) depends on the direction of the
magnetic field, and whether one probes the copper sites
or the oxygen sites. Following Millis et aLss and Monien
et aL, 2 the form factors are given by

63 3- . 2
q) = —

All + 2B(«s q u + cos q„o)

+—[A~ + 2B(cos q a + cos q„a)]
3 2

8

F~(q) = —[A& + 2B(cosq a+ cosq„a)]
4

F(q) = —| (1+cosq a),
2

(43)

where "63" denotes the Cu site, and "17" denotes the
0 site. The constants A~~, A~, and C are approxi-

mately equal to29

All = 4B
Ai ——0.84B,
C = 168B,

(44)

and B 40.8 kOe/p~. The main feature of these form
factors is that i~F(q) vanishes at q = (vr, 7r), while

Fll (q) has its maximum at q = (n, m). This implies that
the relaxation rate on the copper sites will be strongly en-
hanced due to antiferromagnetic correlations, while this
enhancement will not be seen in (i TiT)

In order to find (TiT) we will use the RPA approxi-
mation to calculate the susceptibility y~hy, (q, u). Within
the RPA approximation one can express X h„,in terms
of the bare susceptibility ye(q, u), similar to the expres-
sion in Eq. (15). The only difference is that we now have
a finite spin gap b,~(k) coupling the two planes, which
implies that the bare susceptibility yo(q, u) is now a 2x2
matrix instead of a number. Following the derivation of
Eq. (15), and replacing yo by a 2x2 matrix ~0 at each
step, we obtain

cos2(2q d) sin (2q, d)
Xphys(q q ~) = + X+(q ~)+ +X+ + —X—

(45)

such as the NMR-relaxation rate Ti, the echo-decay
rate T2, and the Knight shift, are strongly reduced
below a certain crossover temperature. In this section
we will show that our model can reproduce the unusual
temperature dependence of these quantities. The two
main ingredients to obtain our results are the presence of
strong antiferromagnetic correlations and the opening of
a spin gap L~ due to the pairing of fermions on adjacent
Cu02 planes. We will mainly focus on the calculation
of the NMR-relaxation rate (TiT), whose temperature
dependence contains information about both the magni-
tude of the spin gap and the presence of antiferromag-
netic correlations.

The NMR-relaxation rate is directly related to the sus-
ceptibility according to the formula

x,"„.(q, )

TgT p~h,

where

Xk X)) +XJ i
0 0

J~ ——J)t 6 J~. (46)

[For y+ ——y = y this reduces to the expression in Eq.
(15).] The susceptibilities y~ are determined by evalu-
ating a single fermion bubble, which gives

d2k 1 2 f(E') —f(E)

1 —f(E') —f(E)+Py+ E+E +~+ir
+~~+ ir ~ -(~+ ir)], (47)

where e = ei,+&]2, e = er, &]2, and E = i/e + b, . The
coherence factors l+ and p+ are defined by

2 i~1 (48)

In BCS theory one only obtains the "plus" coherence
factors l2 and p .24 In our case the "minus" coherence
factors l and p are due to the fact that the pairing
is between fermions on different planes, which can be in
phase or out of phase with each other.

We included a finite scattering rate I.
' in the expres-

sion for Xy, in order to remove a logarithmic singular-
ity in y+(q, ur)/ur in the limit ~ -+ 0. In conventional
superconductors this logarithmic singularity, cut off by a
small scattering rate I' « T, is responsible for the Hebel-
Slichter peak in (TiT) i just below the pairing transition
temperature. For the cuprates it is well known that there
is an anomalously large scattering rate I', which can be a
sizable &action of the temperature T. Within our treat-
ment of the t-J model this scattering rate is due to strong
gauge-field fiuctuations. io The large value of I' implies
that the Hebel-Slichter peak will be significantly smaller
in the cuprates than in conventional superconductors.

Before presenting our numerical results, we will first
discuss the value of the gap 6~(k) that enters the cal-
culation of yy(q, ur). The gap 6~ has to be quite large
in order to identify b,~ with the temperature scale be-
low which (TiT) i decreases, which happens at about
150 K for underdoped YBa2CusOs s. As was discussed
in Secs. III and IV, the interplane gap b ~(k) is strongly
enhanced by the antiferromagnetic correlations in under-
doped cuprates. Within our RPA treatment we can only
obtain a sufficiently large value for 6(k) if the doping
is very close to the critical doping x, 0.08 at which
the antiferromagnetic instability occurs. However, ex-
periments show that the antiferromagnetic correlations
remain rather strong over a wide range of doping. Unfor-
tunately the RPA approximation is not powerful enough
to capture this physics. We will therefore in this sec-
tion use a value of A~ that fits the observed tempera-
ture dependence of (TiT), keeping in mind that the
antiferromagnetic correlations are responible for such a
large value of the gap. Although b, ~(k) is anisotropic
around the Fermi surface, this anisotropy does not play
an important role in the calculations below. The rea-
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son for this is that the expression for (TiT) is domi-
nated by wave vectors q QAF, and the integrand for

y~(Q~F, 0) is only large when k+ 2QAF and k —
2 Q~F

are both on the Fermi surface. This condition is only
satisfied when k 6 2Q~F = +2QAF. Thus we can safely

put A~ = 6~(&Q~F) in the calculation of (TiT) . No-
tice that it is important that A~(k) has an (extended)
s-wave symmetry, because 6~(2 QAF) would nearly van-
ish if 6~(k) had a d-wave symmetry.

We will now discuss the temperature dependence of
the gap A~(T). The most straightforward approxima-
tion would be to assume that b,~ is a mean-field order
parameter with a BCS-like temperature dependence. In
that case A~(T) = 0 for T ) TI, and b,~(T) increases
with an infinite slope just below Tp, as is shown in the
insert in Fig. 8. However, this BCS picture assumes that
there is a long coherence length, so that A~ can be inter-
preted as a long-range order parameter. As was pointed
out by McMillan, this is not the appropriate picture
if there is a relatively short coherence length, which is
clearly the case for cuprates in the spin-gap phase. If the
coherence length is small the long-range order parame-
ter (b,~(r)) vanishes, and instead one should identify the
gap with the local order parameter (~b, ~(r)~ ). Thus we
are not dealing with a true gap, but with a pseudogap.
This implies that there is not a sharp transition at which
the gap disappears, because above the mean-Beld tran-
sition temperature the local order parameter (~6i (r) ~ )
remains nonzero. This is indicated by the insert in Fig.
9, which shows a tail in the pseudogap A~ for T & Tp.
For most purposes this tail in A~(T) is not very impor-
tant, because it will be washed out by thermal fiuctua-
tions. However, the tail in b, ~(T) will have a significant
effect on the Hebel-Slichter peak in (TiT), which will
be smeared out if the gap Ag(T) is smoothly varying
instead of dropping down to zero at T = TI. This can
explain the absence of a Hebel-Slichter peak for the high-
T, cuprates at the onset of the spin-gap phase.
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FIG. 8. The NMR-relaxation rate (TiT) on the copper
and the oxygen sites for two values of the scattering rate l .
This calculation uses a BCS-like temperature dependence for
the spin gap b, ~(T). The Hebel-Slichter peak gets less pro-
nounced when F increases. For T ) Tp the relaxation rate

( Ti T) rises when T decreases, while ( TiT) remains

constant. This rise in ( Ti T) is due to antiferromagnetic
correlations. Notice that there is a sharp change in behavior
for T (TI and T & TI, which is not observed in experiments.

50

40

30
JD
lQ

20

10

I =0.1 T
s s e ~ ~

8.0o 0.05 0.10 0.15
T (Jg

0.20 0.25

FIG. 9. The NMR-relaxation rate (TiT) on the copper
and the oxygen sites, using a pseudogap b, i.(T) which has a fi-

nite tail for T ) Tz, as is shown in the inset. The main diEer-
ence with Fig. 8 is that the Hebel-Slichter peak gets smeared
out over a wider range of temperature. As a result (TiT)
varies smoothly as a function of temperature, which agrees
well with measurements on underdoped YBaqCu30g. q.

(49)

In Fig. 10 we plot T2 versus temperature for various

values of the scattering rate I'. Notice that in contrast
to Figs. 8 and 9, introducing a Gnite I' does not mod-

In Fig. 8 we show plots of the NMR-relaxation rate

(TiT) i on the copper and the oxygen sites for various

values of the scattering rate I'. This calculation assumes
a BCS-like behavior for the gap A&(T), and TJ is chosen
to be equal to 0.1J. For small values of the scattering
rate I' the Hebel-Slichter peak is quite pronounced, but
the size of this peak gets smaller and smaller when I' in-

creases. However, even for a large value of I' one still ob-

serves a drastic change in the behavior of (TiT) i when

T crosses the transition temperature TI . Also notice
that for T ) Tp, (ssTiT) i increases when T decreases,
while (i"TiT) i remains almost constant. The reason
for this difference is that the form factor F(q) is finite

at q = (z, vr), while i~F(q) vanishes at q = (z, x) ac-

cording to Eq. (43). Therefore only the copper sites can
take full advantage of the enhancement of y"&,(q, u) for

q QAF, which becomes stronger and stronger at lower

temperatures.
In Fig. 9 we again show (TiT) i as a function of tem-

perature, but this time we assumed that b~(T) has a
finite tail for T & TI„asis shown in the inset. The
main difkrence between Figs. 8 and 9 is that the tail
in E~(T) smears out the Hebel-Slichter peak. As a re-

sult the temperature dependence of (TiT) in Fig. 9 is

smooth over the entire temperature range, which agrees

much better with experiments than the plots in Fig. 8.
As explained earlier in this section, we think that a tail
in the pseudogap b, ~(T) is closer to the truth than a
BCS-like behavior of b~(T).

We now turn to the calculation of the spin echo-decay
rate T2, which has been measured experimentally by
Takigawa. 3 It is given theoretically by
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FIG. 10. The echo-decay rate T~ as a function of tem-
perature for two values of the scattering rate I'. The dashed
lines assume a BCS-like temperature dependence of the spin

gap 6~ (T), and the solid lines assume a pseudogap behavior.
The tail in the pseudogap removes the singular behavior of
T~ at T = TI . Changing the value of F does not have a
significant effect on the behavior of T2
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FIG. 11. The Knight shift as a function of temperature.
In this calculation we used I' = 0. The dashed line assumes
a BCS-like temperature dependence of the spin gap A~(T),
and the solid line assumes a pseudogap behavior. The Knight
shift decays exponentially when T + Az(T).

ify T2 significantly. Comparing the solid lines and the
dashed lines we see that a tail in the pseudogap A~(T)
smears out the singular behavior of Tz at T = Tps. No-

tice that for T ) TJo, the echo-decay rate T2 increases
upon lowering T, which is due to antiferromagnetic cor-
relations. This resembles the temperature dependence of

( sTqT) in Fig. 9. However, for T ( TI, the tempera-
ture dependences of (TqT) and T2 are very different,
because (TzT) vanishes exponentially for T m 0, while

T2 remains finite.
For completeness we show in Fig. 11 the temperature

dependence of the Knight shift, which is proportional to
y~gr, (q ~ 0, ur = 0). This quantity essentially probes the
density of states around the Fermi surface, and vanishes
exponentially when a spin gap opens up. We conclude
that our calculation of T~, T2 and y~g„,(0, 0) exhibits
spin-gap behavior qualitatively similar to experiments,
and that in order to explain the onset of the spin gap at
150 K 0.1 Jll' a s in gap of the order b, L 0.2 J
required.

VII. DISCUSSION

In this paper we studied a model for two Cu02 planes,
coupled with a small antiferromagnetic interplane inter-

action J& P,. S; ~ .S, This model is relevant for multi-
layered high-T, cuprates that have two (or more) Cu02
planes in a unit cell.

Using a random-phase approximation we showed that
close to half filling the susceptibility gRPA (q, q, ) is
strongly peaked at the the nesting vector q Q~p, due
to short-range antiferromagnetic correlations of the spins
in each plane. Our expression for y P

(q, q, ) explains
the strong modulations as a function of q, that have
been observed in neutron scattering experiments for un-

derdoped cuprates. ~ Within the same RPA analysis we
showed that the effective coupling constants J'~(r) and

II

J&+(r) are also strongly enhanced by antiferromagnetic
correlations. As a result J~~ (r) and J&+(r) can extend
over several lattice spacings. Close to the AF instabil-
ity J~~ and J& become comparable in strength, because

J& (q) is stronger enhanced than Jf (q) for q Qgp.
Due to the fact that the interplane coupling J&+(r) is

longer ranged, the system can form Cooper pairs that
consist of fermions that are separated by several lattice
spacings, characterized by the order parameter b,~(r).
We solved the self-consistency equations for the order
parameters b,~(r), and found that the interplane pair-
ing is indeed strongly enhanced by the antiferromagnetic
correlations. An interesting aspect is that the gap b, ~(k)
has an extended 8-wave symmetry without nodes. A sim-
ilar treatment of the in-plane pairing would lead to a gap
h~~(k) with an extended d-wave symmetry with nodes at
four points on the Fermi surface. The gap b, ~(k) is en-
hanced close to the Fermi surface, and is in particular
large at the corners of the Fermi surface. How much can
we trust the numbers that come out of this calculation?
First of all the value of the gap is quite sensitive on the
exact value of the parameters of the model. One also
has to keep in mind that the RPA approximation is a
gross oversimplification when the system is close to an
AF instability. We can however state that our results
are in qualitative agreement with the observed spin gap
in underdoped YBa2Cu306 6.

We propose that the enhanced interplane pairing pro-
vides a mechanism for the observed spin-gap phase in
multilayer cuprates. To support this we argued that the
gauge 6eld, which destroys the in-plane gap LII in a single
Cu02 plane close to half 6lling, is less effective in destroy-
ing the interplane gap A~. The physical argument for

this is that the out-of-phase mode a~ = (a~ —a~ )/y 2(-) (~) (2)

remains massless when the interplane gap A~(k) opens

up. This implies that the gauge-6eld mode a~ is not
pair breaking. A more detailed calculation in Ref. 12 of
the free energy of a gauge 6eld indicates that the gauge-
field mode az ~ actually favors pairing, and will partly
cancel the pair-breaking effects of the in-phase gauge field

mode a~ = (u~ + uv )/~2. The physical consequence(+) (&) (2)

of this is that at low doping the interplane gap A~(k)
can survive at a higher temperature than the in-plane gap
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b, ~~(k). This makes it possible that interplane pairing is
responsible for the observed spin-gap phase in multilayer
cuprates.

Our model is able to explain the unusual temperature
dependence of several physical quantities that are re-
lated to the spin susceptibility. %e calculated the NMR-
relaxation rate (TqT) ~, using a value of the interplane
gap A~ that corresponds with the observed spin gap in
underdoped YBa2Cu306 6. Our numerical results show
that at high temperatures ( TqT) increases when T
decreases, while (1"TqT) remains almost constant. Be-
low the pairing transition temperature Tp, ( T1T)
and (1~TqT) ~ both decrease rapidly. The Hebel-Slichter
peak is reduced by the assumption of a pseudogap behav-
ior and the presence of inelastic scattering, presumably
due to gauge 6eld Huctuations. The physical reason why
there is a pseudogap instead of the usual BCS gap is be-
cause there is a rather short coherence length, so that the
gap should be interpreted as a toeal order parameter,
which does not undergo any sharp transitions.

So far we have ignored any interlayer hopping of the

form t1c, c, . From the analog of Eq. (3) it is clear(~)t (2)

that ignoring t~ is reasonable provided that xt~ ( J~.
If this is violated, we expect interlayer pairing to be
suppressed, but we have not studied this quantitatively.
Not enough is known about t~ and J~, but our guess
is that zt~ and J~ are comparable. However, even a
small t~ will lead to coherence between bosons on the two
planes immediately below TBE, so that the fermion pair-
ing becomes genuine superconducting pairing between
electrons on the two layers.

The possibility of interplane pairing has interesting
consequences for the symmetry of the superconducting
gap in bilayer materials. In Fig. 12 we show a schematic
phase diagram for these materials, in which the thick
solid line denotes the onset of superconductivity. At
low temperatures the in-plane d-wave and the inter-
plane 8-wave pairing will coexist, giving rise to a quasi-
particle dispersion E(k) = (e(k)2 + Ay(k)2)~~2, where

A~(k) = A~(k) + A~~(k). If A1 is indeed as large as
150 K, as the experiments seem to indicate, it is likely

0.15

010

~ 0.05
EI super-

conductor

"8oo
~ I

0.05
s I

0.10
doping x

I

0.15 0.20

FIG. 12. A schematic phase diagram for bilayer cuprates.
We predict that the spin-gap phase is due to interlayer fermion

pairing, enhanced by antiferromagnetic correlations. Below
the superconducting transition (thick solid line) the a-wave

interplane pairing and the d-wave in-plane pairing coexist.
We expect that for underdoped samples b,~(k) dominates
over A~~(k), giving rise to a nodeless superconducting state,
indicated by the shaded region. At higher doping the four
nodes of a d-wave superconductor are split into eight nodes.
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that for underdoped materials A~ ) ~b.
~~ ~

for all k, which
implies that the superconducting gap is nodeless. This is
indicated by the shaded region in Fig. 12. As doping is
increased, A~ decreases rapidly with the loss of antifer-
romagnetic correlations, and we cross over to a supercon-
ducting state with nodes. We expect that in fully doped
systems the d-wave order parameter 4~~ dominates, but
as long as D~ remains 6nite the four nodes for a con-
ventional d-wave superconductor will be split into eight
nodes.
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