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We present a method for total-energy minimizations and molecular-dynamics simulations based
either on tight-binding or on Kohn-Sham Hamiltonians. The method leads to an algorithm whose
computational cost scales linearly with the system size. The key features of our approach are
(i) an orbital formulation with single-particle wave functions constrained to be localized in given
regions of space, and (ii) an energy functional that does not require either explicit orthogonalization
of the electronic orbitals, or inversion of an overlap matrix. The foundations and accuracy of
the approach and the performances of the algorithm are discussed, and illustrated with several
numerical examples including Kohn-Sham Hamiltonians. In particular, we present calculations
with tight-binding Hamiltonians for diamond, graphite, a carbon linear chain, and liquid carbon at
low pressure. Even for a complex case such as liquid carbon —a disordered metallic system with
differently coordinated atoms —the agreement between standard diagonalization schemes and our
approach is very good. Our results establish the accuracy and reliability of the method for a wide
class of systems and show that tight-binding molecular-dynamics simulations with a few thousand
atoms are feasible on small workstations.

I. INTRODUCTION

Many studies of materials carried out nowadays in
condensed-matter physics are based on total-energy
calculations and molecular-dynamics simulations with
forces derived either from first principles (FP) or tight-
binding (TB) Hamiltonians. i These computations rely
on a single-particle orbital formulation of the electronic
problem. Within such a framework, the calculation of the
total energy amounts to the solution of a set of eigenvalue
equations (e.g. , the Kohn-Sham equations, in density-
functional theory), which is obtained by diagonalizing
the Hamiltonian matrix (H). H is usually set up ac-
cording to a chosen basis set for the electronic orbitals.
Both direct and iterative diagonalizations imply an over-
all scaling of the computational eÃort which grows as the
third power of the number of electronic states, and thus
as the cube of the number of atoms in the systems. This
unfavorable scaling is a major limitation to the use of TB
and FP Hamiltonians for systems containing more than a
few hundred and a few thousand electrons, respectively.

Iterative diagonalizations have been utilized in the
study of a variety of systems in recent years; indeed, when
the number M of basis functions is much larger than the
number N of electronic states these schemes are much
more eKcient than direct diagonalizations. There are two
types of iterative approaches: constrained minimization
(CM) methods in which the single-particle wave func-
tions are required to be orthonormal and unconstrained
(UM) methods, z s in which the orbitals are allowed to
overlap. In computations with plane wave (PW) ba-
sis sets and pseudopotentials —which are the ones most
widely used in, e.g. , 6rst principles molecular-dynamics

simulations4 —the evaluation of (HP), i.e. , of HP for the
N electronic states, requires O(NM) operations (M is
proportional to N). This is so if advantage is taken of fast
Fourier transform techniques and of the localized nature
of nonlocal pseudopotentials. The application of orthog-
onality constraints implies instead O(N2M) operations.
When UM are used, the calculation of the overlap ma-
trix (S) and of its inverse are of O(N2M) and O(Ns),
respectively.

Recently several groups have proposed methods to
overcome the problem of the so called Ns scaling, and de-
vised algorithms with linear system-size scaling. ' 'z'

These approaches are usually referred to as O(N) meth-
ods. Some of them are based on an orbital formulation
of the electronic problem, z' ' whereas others rely on
formulations without single-particle wave functions, but
based on the direct calculation either of the one-electron
Green function or of the density matrix. '

A key idea of O(N) orbital schemes is to use wave
functions forced to be localized in given regions of space.
These regions are to be chosen appropriately, i.e., large
enough so that the eH'ect of localization constraints can
be made negligible on the computed properties. The so-
lution of the eigenvalue problem by searching the eigen-
states directly is therefore abandoned in favor of a search
for a linear combination of eigenstates which is localized
in real space. In this way the total number of expan-
sion coefEcients used to represent the localized electronic
orbitals depends linearly on the size of the system and
the number of operations needed for the evaluation of
(HP) can be reduced to O(N). The idea of working
with localized wave functions is directly related to that
of taking advantage of the local nature of the density ma-
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trix (p) in real space, ' by considering the elements p,~

to be zero for distances larger than an appropriate cutoff
(localization) radius.

In order to reduce to O(N) operations not only the
calculation of (HP j but also iterative orthogonalization
procedures or the S inversion, one should in principle re-
sort to assumptions on the form of the overlap matrix.
If the off-diagonal elements of S can be made appropri-
ately small, with respect to its diagonal elements, then
the matrix can be inverted with an iterative procedure
whose number of iterations does not increase with the
size of the system, and which therefore implies a num-
ber of operations scaling linearly with system size. How-
ever, the problem of imposing explicit orthogonalization
constraints or of inverting S can be solved without any
assumption or approximation. One can de6ne a func-
tional with implicit orthogonalization constraints, con-
taining only the S matrix but not its inverse, in such a
way that it has exactly the same minimum as the Kohn-
Sham density functional. One can therefore use a func-
tional which is "easier" both to evaluate and to minimize
than those used in standard CM and UM methods, which
nevertheless has the "correct" ground state energy and
charge density. This is another key idea of the O(N)
orbital scheme which was introduced in Ref. 8.

Such an approach will be presented in detail in Sec. II
of this paper. In Sec. III we discuss numerical results
obtained for first principles calculations within density-
functional theory, in the local density approximation.
In Sec. IV we demonstrate that an algorithm with lin-
ear system-size scaling can be obtained when the func-
tional with implicit orthogonalization constraints is min-
imized with respect to localized orbitals. Sections V
and VI contain our results for the minimization of tight-
binding Hamiltonians, and for molecular-dynamics simu-
lations, respectively. Summary and conclusions are given
in Sec. VII.

II. AN ENERGY FUNCTIONAL WITH
IMPLICIT ORTHOGONALIZATION

CONSTRAINTS

A. De8nition and characterisation of the energy
functional

The key points of the unconstrained minimization
method introduced in Ref. 8 are (i) the replacement of
the inverse of the overlap matrix, entering the energy
functional used in standard UM methods, with its series
expansion in (I —S) up to an odd order At, where I is
the identity matrix; (ii) the implicit inclusion of orthonor-
mality constraints in the energy functional, at variance
with standard CM methods, where orthonormality con-
straints are treated explicitly, i.e., as Lagrange multipli-
ers. After de6ning the energy functional which satis6es
properties (i) and (ii), we will prove that (1) this energy
functional has the Kohn-Sham ground state energy (Eo)
as its absolute minimum and (2) its minimization yields
orthonormal orbitals.

We consider an energy functional of N/2 overlapping

where P(r) = p[A, (gj](r) = 2P,"~ A;~P~(r)P;(r), F[p]
is the sum of the Hartree, exchange-correlation, and ex-
ternal potential energy functionals, and r& is a constant
to be specified. The factor 2 accounts for the electronic
occupation numbers, which are assumed to be all equal.
For simplicity we consider real orbitals. According to
the choice of the matrix A, one can obtain either the
functional used in standard UM methods or the energy
functional which we introduced in Ref. 8. If A = S
where S;z ——(P;]Pz), then p[S ] is the single-particle
charge density p(r) and the term multiplying g is zero;
in this case the functional of Eq. (1) is the total energy
of interacting electrons in an external field according to
density-functional theory (DFT), written for overlapping
orbitals. 2s In particular, if the wave functions are or-
thonormal then A = S ~ = I, and Eq. (1) gives the
total-energy functional of DFT used in CM and ab ini-
tio molecular-dynamics (MD) simulations. We indicate
with (Qj and jPj sets of orthonormal and overlapping
orbitals, respectively, and with E+[(Qj] the energy func-
tional of CM procedures. The sets (gj and (Pj are re-

lated by the Lowdin transformation~s g; = P.8,
and then E+[S ~~2/] = E[S ~, (Pj]. Therefore

min&~&E [(vP j] = min&~&E[S, {Pj]= Eo (2)

The energy functional of (Pj, E[Q[(gj],(Pj], which
we introduced in Ref. 8 is obtained by taking A = Q
where

q=) (I-S)"
n=o

and JV is odd. Q is the truncated series expansion of
S . We note that, similarly to E+ and E[S ], E[Q] is
invariant under unitary transformations in the subspace
of occupied states, i.e., under the transformation P',. =

U;zP~, where U is an (N/2 x N/2) unitary matrix.
N/2

We now prove that the absolute minimum of E[Q, (Pj]
is Eo. If the orbitals are orthonormal, i.e., 8;~
h,~, then Q;~ = h;~ and E[Q, (g j] coincides with
E+[(@j]:min&~&E+[(Qj] = mini@&E[Q, (gj]. Further-
more, since (Qj is a subset of (Pj, min&~&E[Q, fQj] )
ming4, &

E[+, (Pj]. As a consequence

in(~&E [(&jl min(4&E[~ (Al. (4)

This shows that Eo is an upper bound to
minf4»EQ (A].

We consider the difference between the functionals
E[Q, (Pj] and E[S, (Pj], i.e.,

orbitals (Pj expanded in a finite basis set, and of the
(N/2 x N/2) matrix A:

(N/2

E[A. (~j] = 2 ):&',(4'] - —.
' 7'[~,)+ F[~]

(
+r&( N — drp(r) [,
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(5)

where A(A) = A(Q —S )+S i. Using Eq. (1), Eq. (5)
becomes

tence of g such that AE ) 0. However, in practical im-
plementations one can choose g smaller than the upper
bound of HH. Indeed for practical purposes it is not nec-
essary to require Eo to be the absolute minimum of E[Q],
but it is sufEcient to require it to be a local minimum of
E[Q]; the constant rl which fulfills this weaker condition
is in general much smaller than the upper bound of HH,
as we will discuss in the next section.

NI2

&E =2):(&,IHKS gl&)(&*, —S,, ) (6) B. Iterative minimisation of the energy functional

where HKs = —2V + VKs, with VKs = f~ dAVKs[p(A)]

and VKs[p] = s . HKs is a Kohn-Sham Hamiltonian,

where the self-consistent potential is averaged over the
integration path (A) of Eq. (5). Given a finite basis set
for the orbitals (p), one can choose rl large enough so that
the operator (HKs —rl) is negative definite; then also the

(N/2 x N/2) matrix (pi IHKs —rll p;) is negative definite.
Using the expression of the sum of a geometric series for

Q, we can express the difference between Q and S
as (Q —S-') = —S-'(I —S)++' = —(I —S)++'S-'.
If JV is odd, the difFerence between Q and S is a non-

positive definite matrix since S, S i, and (I —S)++i are
commuting non-negative definite matrices. Therefore if rl

and JV fulfill the above requirements, b,E is non-negative
since it is equal to the trace of the product of a negative
and of a nonpositive definite matrix. As a consequence,
for each set of (P),

E[& (&)] &E[S '
(&)] (7)

The equality holds only if (Q —S i) is equal to zero and
therefore only if S = I. Equation (7) shows that Eo is

a lower bound to minI~IE[Q, (p)]. From Eqs. (2), (4),
and (7) we have

m'nI~IE'[(&)]™n(4)EQ(&)1
= min&4, IE[S,(p)] = Eo. (8)

This proves that the energy functional E[+] has the
Kohn-Sham ground state energy (Es) as its absolute min-

imum, if q and JV fulfill the requirements discussed above.
We showed that E[Q] and E[S i] are equal only if

the orbitals are orthonormal [Eq. (7)] and that at the
minimum the two functionals are equal [Eq. (8)]. It then
follows that the minimization of E[Q] yields orthonormal
orbital8.

The choice of rl which makes (HKs —rt) negative def-
inite deserves some comments. If the Hamiltonian of
the system does not depend on p, an g larger than
the Hamiltonian maximum eigenvalue e „ insures that
AE & 0. Within the local density approximation (LDA),
one can prove that HKs[p[Q]] & HIr[p], where HH [p] =
[ —2V' + VH[p] + V,„t], VH and V,„t are the Hartree
and external potentials, respectively, and p = p[S ].
This follows &om the property p[Q](r) & p(r), valid for
each point r, and from the explicit LDA expression of
the exchange and correlation energy as a function of p(r).
Within, e.g. , a plane wave implementation with a 6nite
cutofF, HH has an upper bound. This insures the exis-

In this section we discuss the choices of g appropriate
in practical applications and the convergence rate of it-
erative minimizations of E[C}]with JV = 1, compared to
that of E For.non-self-consistent Hamiltonians, we will
show that, if rt is larger than the Fermi energy, then Es is
a local minimum of E[Q]; furthermore, if a value of rl is
chosen which is close to the Fermi energy, the minimum
of E[Q] and that of E+ can be obtained with the same
computational efBciency.

The asymptotic convergence rate of iterative minimiza-
tions of a functional E[(gj] can be estimated by expand-
ing it around its minimum Eo, up to second order in the
variation of the wave functions (Pj. As discussed, e.g. ,
in Ref. 16, in the minimization asymptotic regime the
number of integration steps to reach convergence is di-
rectly related to the ratio between the maximum and the
minimum eigenvalues of the quadratic form which results
from the second order expansion of (E —Eo).

We consider a non-self-consistent Hamiltonian (H) and
we relate its eigenvalues ((e)) to those of the quadratic
expansion of (E[Q] —Eo). Since E[Q] is invariant un-

der unitary transformations in the subspace of occupied
states, a generic variation of the wave function with re-
spect to the ground state can be written as

with

I&*) = ). cilxi)
&c[787j

(10)

b,E = ) ) 2[e —e;](c' )
~q [8h4p] ig [c7cc]

+ ) 8 rt — '
(c,'. +e,')(~, +ci) 1

ij6[Qcc]

- 2

Here Iy&) are the eigenstates of H, and the indices i
and l belong to the set of occupied states and to the
set of occupied plus empty states, respectively. %'e de-
note with [OCC] and [EM'P] the sets of occupied and
empty states, and with [7 0'7] the union of the two sets.
ci are expansion coefficients of Ib„) over the eigenstates
of H If Eq. (9) i.s substituted into the expression of
b,E = E[Q] —Eo, the first order term vanishes, show-
ing that for each value of rI the orbitals Iyo) make E[Q]
stationary. The stationary point is, in particular, an ab-
solute minimum if q ) e, as shown in the previous
section. One is then left with a second order term, which
can be recast as follows:
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From Eq. (11) it is seen that the quadratic form 6E has
two sets of normal modes. The first set has eigenval-
ues k~;l = 2[& —e,.], which are always positive and
independent of g; they correspond to the coordinates
c' . These modes are associated with an increase of the
total energy when the orbitals acquire nonzero compo-
nents on empty eigenstates of H. They are the same as
the normal modes of (E+ —Eo), calculated in Ref. 17.
The second set of normal modes of AE has eigenvalues

k~;zl = 8[@—~" z"l); they correspond to the coordinates

[~(c' + c, )]. These modes are associated with a change

of E[Q] due to the overlap of the electronic wave func-
tions; they are indeed associated with the orthogonality
constraints implicitly included in the definition of E[Q]
and they are not present in (E —Eo).

For i1 larger than the highest occupied eigenvalue of H,
e~]2 (i.e., the Fermi energy), the k(;~l are positive and
thus Eo is a local minimum of E[Q]. g & EN~2 is a weaker
condition than the one required to prove Eq. (8); it is,
however, a sufficient condition to ensure that the mini-
mization of E[Q] leads to the correct ground state energy,
provided a reasonable starting point for the minimization
is chosen. This will be shown also with numerical exam-
ples in the next section.

The minimizations of E[Q] and E can be obtained
with the same efficiency provided the weaker condition
on rl is adopted. For example, one can choose q e~~z+i.
Under such a condition the ratio between the maxi-
mum and the minimum eigenvalues of the expansion of
(E[Q] —Eo) and of (E —Eo) is the same in inost sys-
tems. Indeed, the eigenvalues k lie in the interval defined
by the eigenvalues k, if the spread in energy of the ex-
cited states of H is four times smaller than the valence
band width. This condition is satisfied in most systems
of interest. This means that in practice iterative min-
imizations of E[Q] and MD simulations with E[Q] can
be performed with the same efficiency as the correspond-
ing calculations with E+. However, if g is chosen so
that Eo is an absolute minimum of E[Q), the time step
used in MD simulations, which is proportional 'is to the
square root of the maximum eigenvalue of AE [Eq. (11)],
is reduced by a factor of 2 with respect to that used in
standard calculations.

The functional introduced in Sec. II A has clear advan-
tages over standard energy functionals when conjugate
and preconditioned conjugate gradient minimization pro-
cedures are used: the complication of imposing orthonor-
mality constraints is avoided, and unlike ordinary uncon-
strained methods an automatic control of the S matrix
is provided, since at the minimum S = I. Furthermore,
when preconditioning of the high &equency components
of the single-particle wave functions is introduced, e.g. , in
Car-Parrinello molecular-dynamics simulations, the inte-
gration of the electronic equation of motion does not im-
ply any extra work, at variance with integration schemes
with explicit orthogonalization constraints.

cently proposed in the literature for electronic-structure
calculations with linear system-size scaling. In particu-
lar, Ordejon et al. derived the same functional as that
of Eqs. (1) and (3) for JV = 1 for non-self-consistent
Hamiltonians. Their derivation is based on a Lagrangian
formulation with explicit orthogonalization constraints,
where the Lagrange multipliers (A;~.) are approxiinated
by an expression which is exact only at the minimum, i.e.,
A;~ = (P;[H~Pz) Th. e approach presented by Ordejon et
al. i is similar to that of Wang and Teter, 7 although in
Ref. 7 constraints are introduced by means of a penalty
function. However, the minimum of the Wang and Teter
functional is Eo only if the weight of the penalty function
goes to infinity, at variance with our and Ordejon et al. 's

functionals which at the minimum are always equal to
Eo

Instead of using an orbital formulation, Li, Numes,
and Vanderbilts and Dawio proposed a functional for
total-energy minimizations within a density matrix for-
mulation. In this case one minimizes the energy func-
tional with respect to the density matrix, which must
fulfill the idempotency condition. This condition is en-
forced by minimizing the total energy with respect to a
purified version of the density matrix 'is [p(r, r')], con-
structed from a trial density matrix p(r, r') in such a
way that its eigenvalues lie on the interval [0,1]. The
energy functional E[Q] [Eqs. (1) and (3)] for non-self-
consistent Hamiltonians can be rederived within the for-
mulation of Ref. 9 if p(r, r') is expressed in terms of the
occupied single-particle wave functions, i.e., p(r, r )
g, z~&ccj P;(r)P;(r'), and a purification transformation

is chosen such that P = I —(I —p)++i. This transfor-
mation forces the eigenvalues of P to be less than 1 only
if JV is odd; one does not need to force the eigenvalues
to be positive, as is done in Ref. 9, since by construction
p(r, r') = P,.z~zccj P;(r)P;(r') has a number of nonzero
eigenvalues equal to the number of occupied states.

III. NUMERICAL RESULTS OF FIRST
PRINCIPLES CALCULATIONS

The validity of the minimization scheme presented
in Sec. II was tested numerically for KS Hamiltonians
within the LDA, by computing the ground state energy
of Si in the diamond structure. We used an expansion
coefficient A = 1 to define the Q matrix entering the en-
ergy functional [see Eq. (3)]. We chose g sinaller than the
maximum eigenvalue of HKs,' this choice ensures that the
iterative minimization properly converges to the ground
state energy Eo, unless a pathological starting point for
the electronic orbitals is chosen.

E[Q] was minimized by steepest descent; the deriva-
tive of the functional with respect to the single-particle
orbitals is given by

C. Relationship with other functionals

The total-energy minimization scheme which we in-
troduced in Ref. 8 is related to other approaches re-

OE[Q] = 4) .[(HKs n) 14,)(2~ ' —~,')
J

-I4.) (&~ l(HKs —~) I&')] . (12)
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particle wave functions are orthonormal already well be-
fore reaching the minimum.

w -252.4
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0 200 400 600
NUMBER OF ITERATIONS

FIG. 1. Total energy (E) as a function of the number of
iterations for a steepest descent minimization of 64 Si atoms
in the diamond structure, described within the LDA with a
PW basis set. The solid and dotted lines correspond to the
minimization of E[Q] and E (see text), respectively. Q was
defined with JV = 1. We used kinetic energy cutoffs of 12 and
36 Ry for the wave functions and charge density, respectively,
and we set g at 3 Ry above the top of the valence band.
Each run was started from the same set of random Fourier
coefBcients.

The orbitals were expanded in PW's with a kinetic en-

ergy cutoff (E,„t) of 12 Ry and the interaction between
ionic cores and valence electrons was described by a
norm-conserving pseudopotentiali@ expressed in a sep-
arable form. z The calculation was started from orbitals
set up &om random numbers, with il set at 3.0 Ry above
the top of the valence band. In Fig. 1 we report E
and E[Q] as a function of the number of iterations; it
is seen that the minimizations of the two functionals
require the same number of iterations and lead to the
same energy. Figure 2 shows the integral of the charge
density during the minimization procedure. For JV = 1,
b,N = N —jdrp(r) = N —Tr(QS) is given by

(13)

This is a positive quantity which goes to zero as the or-
bitals become orthonormal. In our calculation the dif-
ference b,N between the total number of electrons and
the integrated charge reaches a value very close to zero

( 10 ) after ten iterations, showing that the single-

256 &

236

0
216

0 5 10
NUMBER OF ITERATIONS

FIG. 2. Total electronic charge as a function of the number
of iterations for the energy minimizations reported in Fig. l.
The total number of electrons in the system is 256.

IV. LOCALIZED ORBITALS AND AN
ALGORITHM WITH LINEAR SYSTEM-SIZE

SCALING

We now turn to the discussion of the approach in-
troduced in Sec. II within a localized orbital (LO)
formulation. Within such a formulation, each single-
particle wave function is constrained to be localized in
an appropriate region of space, which we call the local-
ization region (LR): the electronic orbitals are free to
vary inside and are zero outside the LR. Different single-
particle orbitals can be associated with the same LR, e.g. ,
two doubly occupied orbitals per LR for C and Si, which
have four valence electrons. The extension of a LR is de-
termined by the bonding properties of the atomic species
composing the system, and it is the same irrespective of
the size of the system which is simulated. The choice
of the centers of the LR's is arbitrary. In all of our cal-
culations (see the next section) we centered the LR's on
atomic sites; this choice is physically unbiased, i.e. , it can
be adopted for a generic system whose bonding properties
are totally unknown. If one wants to take advantage of
known properties of the system, LR's can, for example,
be centered. on atomic bonds or on positions compati-
ble with the symmetry of the Wannier functions, if these
can be defined. This is, however, difficult to do, e.g. , at
each step of a MD simulation, where the evolution of the
bonding properties as a function of time is not known.
One could also treat the centers of the LR's as variational
parameters and optimize their locations during the cal-
culation.

We now consider the minimization of E[Q] with re-
spect to LO ((P~}).When the orbitals are localized, S,z
and (P; ~HKs]P ) are sparse matrices which have nonzero
elements only if i and j belong to overlapping LR's. The
evaluation of E[Q] [Eqs. (1) and (3)] as well as of

[Eq. (12)] implies only the calculation of matrix products
containing S,~. and (P; ~HKs~g ). No orthogonalization
or S inversion is needed. Thus, at each step, the min-
imization of E[Q] can be performed with a number of
operations which is proportional to the system size.

When localization constraints are imposed, the varia-
tional &eedom of the minimization procedure is reduced.
The energy obtained by minimizing a functional with re-
spect to LO's is then larger than the absolute minimum

(Eo) obtained with no constraints on the single-particle
wave functions. In particular, the minimum of E[Q] with
respect to LO (P~) does not coincide with that of E[S ],
and the LO's which minimize E[Q] are in general not
orthonormal. This is easily seen as follows. Whereas
Eqs. (4) and (7) hold also for LO's, Eq. (2) is no longer
valid when localization constraints are imposed. Indeed
the transformation from (@)to (Pf with S ~2 does not
preserve the size of the LR, i.e., it does not Inap functions
localized in a given region onto functions localized in the
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same region of space. Therefore Eq. (8) does not hold

but is replaced by

min~@i}E & min(pI}E[Q] & min(4L}E[S ] & Ep,

(14)

where the LR's for the (g~} and (P+j are the same.
Since in Eq. (14) the equality is in general not satisfied,
at the minimum S is different f'rom I, contrary to the
case of extended orbitals.

The variational quality of the results obtained by min-

imizing E[Q], i.e., the difference (min(yL}E['Q] Ep),
depends upon (i) the order A chosen for the definition of
the Q matrix and (ii) the size of the LR. For S & 2I, it
is easy to see that E[Q(JV —2)] & E[Q(JV)]. Therefore
by increasing JV in the definition of Q, one obtains an
improvement of the total energy. This leads as well to
an increase of the number of operations needed in the
computation of Q [see Eq. (3)]. Most importantly, in or-
der to improve the quality of the results one can choose
to increase the size of the localization region. We note
that the number of nonzero elements of S is proportional
to nLRN, where nl, R is the average number of regions
overlapping with a given one. Instead, the number of de-

grees of freedom needed to define the N j2 single-particle
orbitals is proportional to mN, where m is the number
of points belonging to a LR, e.g. , the number of points
where the wave function is nonzero. The ratio nl, R/m
strongly depends on the basis set chosen to set up the
Hamiltonian. The optimal choice of Af and of size of the
LR's, i.e., of the parameters determining the efficiency
and accuracy of the computation, crucially depends upon
the chosen basis set.

In calculations where m » nLR, the computer time for
the S inversion amounts to a small fraction of the total
time also for relatively large systems (e.g. , systems with
up to a few thousand electrons in LDA calculations with
a PW basis). On the other hand, for computations with
small basis sets, such as those with TB Hamiltonians, the
computer time for the S inversion constitutes a consider-
able part of the total time already for small systems (i.e.,
containing a few tens of atoms).

V. MINIMIZATION OF TB HAMILTONIANS

functions of the LR centered in I have nonzero compo-
nents on the atoms belonging to the set LRr and zero
components (expansion coefficients) on the atoms which

do not belong to LRI. The expansion coeKcients of the
single-particle orbitals are treated as variational param-
eters in our calculations. The total number of expansion
coeKcients grows linearly with the size of the system.

We tested two different shapes of the LR. In one case
an atom is defined as belonging to LRI if its distance
to the site I is less than or equal to a given radius r,
(in other words, a Euclidean metric is used to define the
shape of the LR). In'the second case, we took advantage
of the form of the TB Hamiltonian and we considered an
atom as belonging to LRI if it is connected to the site I
by a number of nonzero hopping terms less than or equal
to a given number of shells Ng.

In all calculations E[Q] was minimized with respect to
PL, by a conjugate gradient (CG) procedure. The gra-

dients s ~P) are simply obtained by projecting Eq. (12)
s

onto the LR where P~ is defined. For non-self-consistent
Hamiltonians, the line minimization required in a CG
procedure reduces to the minimization of a quartic poly-
nomial in the variation of the wave function, along the
conjugate direction. In our calculations the line mini-
mization is performed exactly by evaluating the coeffi-
cients of the quartic polynomial.

We found that when localization constraints are im-
posed, E[Q] can have local minima and metastable
states, where the system may be trapped for a long time
during the minimization procedure, before reaching a
minimum. This problem can be overcome if an appro-
priate choice of the initial guess for the iterative diag-
onalization is made. In all of our calculations we used
starting wave functions with nonzero components only
on the site I where they were centered; furthermore, or-
bital components were the same for each I. This choice

2 .

0~O

tX
Q
K
UJ

The LO formulation was tested numerically using TB
Hamiltonians ' with the convention c, + c„=0. We
performed calculations for Si and C in different aggre-
gation states. In calculations for crystalline structures,
we considered nonzero hopping terms only between first
neighbors. We chose a number of LR's equal to the num-
ber of atoms and we centered each LR at an atomic site
(I). In a TB picture a LR can be identified with the
set of atoms belonging to it. For each site I, we label
the set of atoms which belong to a LR with LRI. C
and Si atoms have four valence electrons and there are
two doubly occupied states for each atom in the system.
We then associated two states to each LR: The two wave

Q
s

2

FIG. 3. Percentage error on the cohesive energy of Si (di-
amond structure) as a function of the number of shells (N, )
in the localization region, computed with a TB Hamiltonian
(see text). Diamonds and crosses refer to minimizations of
E[Q] with Q[AI = 1] and Q[Af = 3], respectively. The LR's
were defined using a Euclidean metric (see text). The errors
were evaluated with respect to a computation with extended
orbitals. Calculations were performed at the same Sxed vol-
ume.
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allowed us to avoid local minima and metastable state
traps for a wide class of ionic configurations. The prob-
lem of being trapped in metastable states or local minima
involves only electronic minimizations; it does not con-
cern MD simulations, where the ground state orbitals of
a given step can be used as guess wave functions for the
following step.

Figure 3 shows the percentage error on the cohesive
energy E, of Si in the diamond structure, as a function
of the size of the LR, computed with respect to a calcula-
tion performed with extended orbitals. All computations
were carried out with 216 atom supercells, simple cubic
periodic boundary conditions, and the I' point only for
the supercell Brillouin zone (BZ) sampling. E, was eval-

uated with Q[JV = 1] and Q[JV = 3] and with rl = 3 eV.
The shape of the LR was first chosen using a Euclidean
metric. We denote with N, the number of shells included
in a LR, defined according to such a metric. It is seen
that E, converges rapidly as a function of N„with both
A = 1 and 3. Already with N, = 2 (17 atoms belong to a
LR) the results are very good, i.e. , E, is higher than the
result obtained with extended orbitals by only 2.1% and
0.8% for JV = 1 and 3, respectively. For JV = 1, the error
on the total charge b, N [see Eq. (13)] which gives the
deviation from orthonormality due to localization con-
straints is in general very small; already for N, = 2 we

find it to be 0.2%. We note that when going from N, = 3
(29 atoms in a LR) to N, = 4 (35 atoms in a LR), we

obtain the smallest variation of E,. Indeed the atoms
added to a LR when including also the fourth neighbor
shell are not connected by hopping terms to those defin-

ing a LR when N, = 3. This suggests that a definition
of LR based on hopping terms is more physical than one
based on the Euclidean metric. We repeated the calcu-
lations with JV = 1 by choosing the LR's according to
the hopping parameters and by setting the number of
hopping shells Nh at 3. (For the diamond lattice, the
definition of LR's using the two metrics is different for

Ng and N, larger than 2.) The choice Nh = 3 amounts
to considering 41 atoms in a LR. The percentage error

(0.7%) on E, is very close to that obtained with N, = 5

(0.6%), although the number of atoms in a given LR is

bigger (47). The choice of the shape of the LR's accord-

ing to the hopping parameters is superior to that of the
Euclidean metric and it is especially so when energy dif-

TABLE II. Percentage errors on the equilibrium lattice pa-
rameters (bra), cohesive energy (bE, ) and bulk modulus (bB)
of diamond, graphite, and a carbon linear chain, as obtained

by minimizing E[Q] with Q[A = I] and Nz = 2, described
within a TB framework. The errors were evaluated with re-

spect to a computation with extended orbitals.

Crystal structure bra (%) bE. (%) bB (%)

Diamond
2D graphite

1D chain

0.2
0.4
0.5

1.4
2.5
4.7

1.0
1.4
2.7

-4.5

ferences between different structures are to be computed.
This is the definition which was adopted in all subsequent
calculations for C.

Results for carbon in diferent crystal structures are
presented in Tables I and II and in Fig. 4. We chose
systems with different bonding and electronic proper-
ties: an sp bonded insulator, diamond, an sp bonded
semimetal, planar graphite, and an sp bonded metal, a
nondimerized C chain. Table I shows the binding energy
of the three structures as a function of the size of the
LR. The calculations were performed with E[Q(JV = 1)].
The errors for Nh, = 2 and Np, = 3 are of the same
order as those found in the case of silicon, and in partic-
ular we find that already for Ng = 2 the LO formulation
and a direct diagonalization scheme are in good accord.
In Fig. 4 we compare the total energy of the three C
systems as a function of the lattice parameter, as ob-
tained by direct diagonalization of the Hamiltonian and

by minimizing E[Q(JV = 1)] with respect to LO, with

Nh ——2. The agreement between the two calculations is

again very good for the three systems, in spite of their dif-

TABLE I. Cohesive energy E, (eV) of diferent forms of
solid carbon computed at a given lattice constant ro (A.) as
a function of the number of shells (¹)included in the LR.
The calculations were performed with a TB Hamiltonian, with
supercells containing 216, 128, and 100 atoms for diamond,
two-dimensional graphite, and the linear chain, respectively.

-7.5
1.1 1.4

d(A)

1.7

Crystal
structure

Diamond 1.54
2D graphite 1.42
1D chain 1.25

7.16
7.09
5.62

7.23
7.19
5.75

7.26
7.28
5.93

rp E(NI, =2) E(Ng=3) E, (¹=oo)
FIG. 4. Total energy (E) of diamond (dots), bidimensional

graphite (open circles), and a carbon linear chain (squares)
as a function of interatomic distance (d), computed with a
TB Hamiltonian and supercells containing 216, 128, and 100
atoms, respectively. The dotted lines were obtained by min-

imizing at each volume E[Q] with Q[JV = I], and by using
localization regions de6ned with Nh ——2. The solid lines were
instead obtained by diagonalizing the Hamiltonian, with no
constraints on the wave functions.
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ferent bonding and electronic properties. The percentage
differences between the computed equilibrium properties
(lattice constant, cohesive energy, and bulk modulus) are
given in Table II.

VI. MOLECULAR DYNAMICS WITH TB
HAMILTONIAN8

By using the functional E[Q] and localized orbitals
one can set up a MD scheme in which the computa-
tional cost of each step scales linearly with the system
size. According to the Helmann-Feynman theorem, one
can obtain the forces acting on a given atom I by com-
puting Fr = VxE[—Q; (Pr, ), (RI)]; here (Rx) denotes
ionic positions and f/1, f are the localized orbitals which
minimize E[Q]. The general expression of the ionic forces

is given by FI = —2P,. ~ Q,~(P;I&& IP~), where V in-
dicates the external potential in a L6A calculation and
the Hamiltonian in a TB calculation. In practical com-
putations it is convenient to first calculate the auxiliary
wave function

N/2

14') = ) .'. I4') (15)

and then to evaluate the expression of FI as follows:

N/2

FI = -2) .(&'I R I&'). (16)

The ground state wave functions (Pr, ) can be obtained
either by evolving the electronic states according to Car-
Parrinello dynamics (see, e.g. , Ref. 8), or by minimizing
the energy functional E[Q] at each ionic move. In our
simulations, we determine the sets LRI at each ionic step;
consequently the sites belonging to a set vary as a func-
tion of time, when, e.g. , the atoms are diffusing or chang-
ing their local coordination. This implies an abrupt mod-
ification of the basis functions used for the expansion of
(PL, ) and therefore a discontinuity of (PL, ) as a function
of the ionic positions. In correspondence to any change
of the sets LRx, E[Q] must be minimized with respect to
the electronic degrees of freedom; we therefore chose to
minimize the energy functional at each ionic step, irre-
spective of whether the LR changes at a given step. The
minimizations were performed with a conjugate gradient
procedure where we used as initial guess for the orbitals
the linear extrapolation of the minimized wave functions
of the two previous ionic steps, as suggested in Ref. 3.

In order to test the accuracy and efficiency of the LO
scheme for different classes of systems, we performed MD
simulations for a crystalline insulator, i.e., diamond at
low temperature, and for a liquid metal, i.e., liquid car-
bon at T 5000 K. As for the calculations for C pre-
sented in the previous section, we adopted LR's centered
on atoms, which include up to the second shell of neigh-
bors and whose shape is determined by the hopping pa-
rameters.

We irst discuss the case of crystalline diamond, when

the sets LRI do not vary in time. We find that for dia-
mond our MD scheme allows for a correct description of
the total-energy oscillations, around equilibrium, consis-
tently with what was previously obtained for Si. We per-
formed two simulations, one with a 64 atom and the other
with a 1000 atom supercell. In both cases we started &om
an ionic configuration with zero velocities, generated by
giving a random displacement to the atoms up to 0.03 A.

with respect to their equilibrium positions. The integra-
tion time step (b,t) used in the simulations was 30 a.u.
and the number of CG iterations per ionic move was 10.
In Fig. 5 we show the potential energy (E) and the sum
of the kinetic (Ei,;„) and potential energy of the system
as a function of the simulation time. It is seen that the
same energy drift b, (E + Ei,;e)/Ex, ;„(0.1 in 0.5 ps) was
found for the two simulations. This shows that the num-
ber of CG iterations to obtain a given accuracy in the
energy conservation does not depend on the size of the
system and that the overall scaling of the computational
scheme is therefore linear. Finally we evaluated the rel-
ative error on the ionic forces FI introduced by localiza-

~plac Fext
)tion contraints as = ' ' ', where the overbar

indicates time averages, and the superscripts "loc" and
"ext" refer to calculations performed with localized and
extended states, respectively. This error was found to be

6% in crystalline diaxnond at room temperature.
We note that, if extended states are used, the num-

ber of iterations needed to have the same conservation of
energy as the one reported in Fig. 5 is smaller than 10.
Nevertheless our MD scheme applied to ordered systems
becomes more efficient than direct diagonalization of the
Haxniltonian already for small systems, i.e., for systems
containing more than 40 atoms. This can be seen in
Fig. 6 where we coxnpare the efficiency of our approach
to that of direct-diagonalization-based MD schemes.

We now analyze a MD simulation run during which
the sets LRI change as a function of time. In Fig. 7 we
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TIME (ps)
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FIG. S. potentiai energy (lower part) and the sum of the
(

simulation time for crystaOine C in the diamond structure
at 70 K. The dotted and solid lines refer to two calculations
performed with a TB Hamiltonian, with 64 atom and 1000
atom supercells, respectively. In both cases we used Q[JV = &]

and Nh, = 2; the LR's were computed for the configuration at
0 K and held fixed during the whole simulation.
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FIG. 6. CPU time per ionic step (30 a.u. ) as a func-
tion of the number N of atoms in the system for a
TB-MD simulation of C diamond at low temperature (see
text). Squares and crosses indicate the CPU time in a di-
rect-diagonalization-based scheme and in our MD approach
(with 10 CG iterations per ionic move), respectively. Cal-
culations were carried out on a Silicon Graphics Iris Indigo
4000.
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FIG. 7. Potential energy for an oscillation of crystalline di-

amond around equilibrium, computed with extended (dotted
line) and with localized (solid line) orbitals as a function of
simulation time. The two energy curves have been computed
for the same ionic trajectories, generated by a simulation with
localized orbitals. The LO calculation is the same as the one
carried out in Fig. 5, but here the LR's are allowed to vary
during the simulation. tq and t2 denote times at which the
LR's change.

show the potential energy for an oscillation of crystalline
diamond around equilibrium, computed with extended
(E'", dotted line) and with localized (E' ', solid line)
orbitals as a function of simulation time (t). The two
energies have been computed for the same ionic trajec-
tories, generated by a simulation with localized orbitals.
The MD run shown in Fig. 7 is the same as the one re-
ported in Fig. 5 but now the LR's are allowed to vary
in time. At t = ti, the evolution of the ionic positions
makes the number of atoms belonging to given localiza-
tion regions increase. At t = t2, the ionic configuration is
such as to restore the localization regions as they were at
& & ti. Since at t = ti, t2 an abrupt modification of the

FIG. 8. Time derivatives dE'"'/dt = P Fi"' vi (dotted

line) and dE"'/dt = g Fl ' vI (solid line) of the potential
energy curves reported in Fig. 7 (see text).

basis functions used for the expansion of (Pg) occurs,
the potential energy E" is discontinous and its deriva-

tive with respect to ionic positions is not well defined.
However, ionic forces can still be defined by neglecting
the discontinuity in E and by evaluating either the left
or the right derivatives of the potential energy. The nu-

merical values of the left and right derivatives are in fact
the same within a very small error. This error is neg-

ligible, being much smaller than the one introduced by
localization contraints. This can be seen in Fig. 8 where

we compare forces obtained in calculations with extended
and localized orbitals by plotting dE'"i/dt = g& Fr" vI
(dotted line) and dEi '/dt = Pl F&~

' vI (solid line). On
the scale of the picture no discontinuity is observable in

dE"/dt at t = t„t,
We now turn to the discussion of the simulation of liq-

uid C, during which many changes of LRI were observed.
We generated a diffusive state at T 5000 K starting
&om a diamond network prepared at a macroscopic den-

sity of 2 gr cm; we then heated the system by means

of a Nose-Hoover thermostat. We used a 64 atom cell
with simple cubic periodic boundary conditions and only
the I' point to sample the BZ. We used a cutoff radius
of 2.45 A for the hopping parameters entering the TB
Hamiltonian and for the two-body repulsive potentiai22

(i.e. , the cutoff distances r and d of Ref. 22 are set
at 2.45 A.). Equilibration of the system was performed
in the canonical ensemble and temporal averages were

taken over 3.8 ps. The same simulation was repeated
twice: once with our MD scheme and once by using di-

rect diagonalization at each step. The radial distribution
function g(r) and the partial atomic coordinations ob-
tained in the two cases are shown in Fig. 9 and Table III,
respectively. The agreement between the two descrip-
tions is excellent, showing that the LO scheme is accu-
rate even for a difficult case such as a disordered system
with differently coordinated atoms and metallic proper-
ties. The self-diffusion coefFicients obtained in the two
cases are 0.4 x 10 cm s and 0.6 & 10 cm s, re-
spectively. The difference between the cohesive energies
computed within the extended orbitals and the LO for-
mulation for given ionic configurations is of the order of
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2

TABLE III. Percentage number of differently coordinated
sites (N, ) in liquid C computed as averages over a TB-MD
simulation of 3.8 ps. The results of the LO formulation with
Nq ——2 and JV = 1 are compared to those of a direct diago-
nalization scheme (Nq = oo).

N, Ng ——oo

2
r(A)

one fold
two fold

three fold
four fold

5
38
53

4

4
42
50

4

FIG. 9. Radial distribution function g(r) of liquid C (see
text) computed as average over a TB-MD simulation of 3.8
ps. The results of the LO formulation with Nq = 2 and Af = 1
(dotted line) are compared to those of a direct diagonalization
scheme (solid line). The average number of atoms in a LR is
18.

2%%up, similar to what we found for crystalline structures.
In the simulation for the liquid with LO's, we used

b, t = 5 a.u. and we performed 50 iterations per ionic
move, in order to minimize E[QI. This number is much
larger than that needed for ordered systems, such as crys-
talline diamond. Consequently, in the case of liquid C our
scheme becomes advantageous with respect to direct di-
agonalization when the number of atoms is larger than
200.

VII. CONCLUSIONS

ized orbital formulation. The use of LO's reduces the
evaluation of the energy functional and of its functional
derivative to the calculation of products of sparse matri-
ces.

The performances and efBciency of the method have
been illustrated with several numerical examples for
semiconducting and metallic systems. In particular, we
have presented molecular-dynamics simulations for liq-
uid carbon at 5000 K, showing that even for the case of
a disordered metallic system the description provided by
the LO formulation is reliable and very accurate. We
have also shown that tight-binding molecular-dynamics
simulations with 1000 atoms are easily feasible on small
workstations, implying a one day run to obtain 0.5 ps.
Molecular-dynamics simulations for very large C systems
are under way.

We have presented an approach to total-energy min-
imizations and molecular-dynamics simulations whose
computational workload is linear as a function of the sys-
tem size. This favorable scaling is obtained by using an
energy functional whose minimization does not imply ei-
ther explicit orthogonalization of the electronic orbitals
or inversion of an overlap matrix, together with a local-
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